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Abstract
We introduce a meta dataset for few-shot relation extraction, which includes two datasets derived from existing
supervised relation extraction datasets – NYT29 (Takanobu et al., 2019; Nayak and Ng, 2020) and WIKI-
DATA (Sorokin and Gurevych, 2017) – as well as a few-shot form of the TACRED dataset (Sabo et al., 2021).
Importantly, all these few-shot datasets were generated under realistic assumptions such as: the test relations
are different from any relations a model might have seen before, limited training data, and a preponderance of
candidate relation mentions that do not correspond to any of the relations of interest. Using this large resource,
we conduct a comprehensive evaluation of six recent few-shot relation extraction methods, and observe that no
method comes out as a clear winner. Further, the overall performance on this task is low, indicating substantial
need for future research. We release all versions of the data, i.e., both supervised and few-shot, for future research.1
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1. Introduction

Information Extraction (IE) plays a pivotal role in
Natural Language Processing (NLP). IE is funda-
mental to many NLP tasks such as question an-
swering, event extraction, knowledge base popu-
lation, etc. Relation Extraction (RE) is a sub-task
of IE with the focus of identifying entities and their
semantic relations in a given text, enabling the
extraction of structured information from unstruc-
tured data. For instance, in the sentence “John
Doe was born in New York City”, Relation Extrac-
tion can transform this into a structured tuple such
as → (John Doe,born in,New York City), indi-
cating the inherent relation between the person,
action, and location.

Many supervised methods have been proposed
to address the relation extraction task (Soares
et al., 2019; Zhang et al., 2018; Wang et al., 2016;
Miwa and Bansal, 2016, inter alia). However, a tra-
ditional supervised machine learning (ML) setup is
not always realistic for RE due to the large amount
of training data required. This setup is mostly in-
compatible with real-world RE scenarios such as
pandemic response or intelligence, in which RE
models must be developed and deployed quickly
with minimal supervision.

Considering this task setup, a realistic choice
for solving this problem is few-shot learning (FSL)
and its RE equivalent, few-shot relation extraction
(FSRE), in which (a) each relation class is as-

1Datasets and additional resources are available at:
https://github.com/clulab/
releases/tree/master/
lrec2024-realistic-fewshot-meta-dataset

sociated with a very small number of examples
(typically 1 or 5), and the relation classes in the
testing partition are different from any relations
a model might have seen before. While several
FSRE datasets and methods have been proposed
recently (see Related Work), this subfield of NLP
is still poorly understood due to a lack of realistic
datasets and rigorous evaluations. This observa-
tion has motivated this work, in which we introduce
a meta dataset for the task as well as a meaningful
evaluation of multiple FSRE methods on this data.
The key contributions of our work are:

(a) We develop a meta dataset for FSRE, which
includes three datasets: one based on
NYT29 (Takanobu et al., 2019; Nayak and
Ng, 2020), one based on WIKIDATA (Sorokin
and Gurevych, 2017), and lastly the few-shot
variant of TACRED proposed by (Sabo et al.,
2021). All these datasets were converted into
realistic few-shot variants using the procedure
detailed in § 3.4. This procedure guarantees
a setup that is aligned with real-world appli-
cations, e.g., the test relations are different
from any relations available in a background
dataset, limited training data, preponderance
of candidate relation mentions that do not cor-
respond to any of the relations of interest, etc.

(b) We conduct a comprehensive evaluation of
six recent FSRE methods using this meta
dataset. Our evaluation reveals that none
of the models emerged as a definitive win-
ner. Furthermore, the overall performance of
the best models was notably low, indicating
the substantial need for future research. Our

https://github.com/clulab/releases/tree/master/lrec2024-realistic-fewshot-meta-dataset
https://github.com/clulab/releases/tree/master/lrec2024-realistic-fewshot-meta-dataset
https://github.com/clulab/releases/tree/master/lrec2024-realistic-fewshot-meta-dataset
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datasets will contribute as an invaluable re-
source for this future research.

2. Related Work

2.1. Methods
Historically, relation extraction approaches can be
categorized as either rule-based or relying on sta-
tistical models. In the past decade, the latter
category has been dominated by neural-based
methods. More recently, hybrid directions have
emerged, aiming to combine the advantages of
both. We delve deeper into each of these direc-
tions.

2.1.1. Rule-based Methods

Prior to the widespread adoption of statistical ma-
chine learning, rule-based approaches enjoyed a
period of prominence. These methods typically in-
volve the acquisition of rules representative of spe-
cific relations. For example, the rule [ne=PER]+
<nsubj born >nmod_in [ne=LOC]+ captures
a syntactic pattern for the born_in relation, where
the pattern matches if the underlying constraints
are satisfied: a named entity labeled as person
is connected to the word born with a nominal
subject dependency, and the same word born
is further connected to a named entity labeled as
location with a nominal modifier dependency.
For example, this pattern will match the sentence:
John Doe was born in New York City. A match of
such rules is then interpreted as an indication that
the two entities participate in the corresponding re-
lation.

In (Hearst, 1992), the authors propose a set of
handwritten rules to extract words satisfying the
hyponymy relation. Subsequently, efforts were di-
rected toward automating the learning of such pat-
terns (Riloff, 1993, 1996; Riloff and Jones, 1999)
with and without supervision. (Gupta and Manning,
2014) improves automatic pattern learning by al-
lowing soft matching in the form of predicting the
labels on unlabeled entities.

Another prominent line of work for rule-based
methods is that of casting the pattern learning
problem as a graph-based problem and leverag-
ing graph-based algorithms (Kozareva et al., 2008;
Vacareanu et al., 2022a).

2.1.2. Neural-based Methods

The adoption of neural-based methods has grown
significantly due to their high performance, making
them the de facto approach for relation extraction
tasks today. Many underlying architectures were
proposed for relation extraction, such as ones
based on CNNs (Zeng et al., 2014; Nguyen and

Grishman, 2015), RNNs (Zhang and Wang, 2015),
LSTMs (Zhang et al., 2017), or, more recently,
Transformers (Vaswani et al., 2017; Joshi et al.,
2019). These approaches typically operate end-to-
end and are built on top of pre-trained embeddings,
either static (Mikolov et al., 2013; Pennington et al.,
2014; Bojanowski et al., 2016) or contextual (Mc-
Cann et al., 2017; Peters et al., 2018; Devlin et al.,
2019).

A more recent direction has been translating the
relation extraction task into a different NLP task
to leverage more training data (Chen et al., 2022).
For example, relation extraction can be cast as an
entailment problem (Sainz et al., 2021; Rahimi and
Surdeanu, 2023), or as summarization (Lu et al.,
2022).

A distinctive direction emerged in the last years,
attempting to combine the advantages of both rule-
based systems and neural-based systems. For ex-
ample, Vacareanu et al. (2022b) teaches a neural
network to generate rules for RE. Other directions
aiming to improve the explainability of the resulting
model include: (i) learning an explainability classi-
fier jointly with the RE model to ensure faithfulness
of explanations (Tang and Surdeanu, 2021, 2023),
or (ii) learning a neural “soft” (or semantic) matcher
to improve the rules’ recall (Zhou et al., 2020).

2.2. Datasets and Methods for Few-Shot
Relation Extraction

A key contribution to the RE space is the creation
of datasets that support the development of new
RE approaches. A recent survey (Bassignana and
Plank, 2022) categorized popular relation classifi-
cation datasets based on their data sources into
three main categories: (i) News and Web, (ii) Sci-
entific Publications, and (iii) Wikipedia, totaling 17
datasets. We refer the reader to this survey for
more details.

An important and realistic setting for this task is
few-shot relation extraction (FSRE), where only a
small number of training examples are available
for each relation class to be learned. Notably, only
three datasets are available in a few-shot format
(Bassignana and Plank, 2022): FewRel (Han et al.,
2018), FewRel 2.0 (Gao et al., 2019), and few-shot
TACRED (Sabo et al., 2021).

The FewRel dataset, containing 70,000 sen-
tences covering 100 relations from Wikipedia, is
created by identifying relation mentions through
distant supervision; noise is subsequently filtered
by crowd-workers (Han et al., 2018). Later on,
the FewRel 2.0 dataset (Gao et al., 2019), an ex-
tension of the original FewRel dataset (Han et al.,
2018), introduced a new test set in a distinct do-
main and included the option of a NOTA (None of
the Above) relation.
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Sabo et al. (2021) argues that FewRel provides
an unrealistic benchmark due to its uniform re-
lation distribution and the prevalence of proper
nouns as entities. Although FewRel 2.0 tried to
amend it using an updated episode sampling pro-
cedure, the evaluation setup is still notably unreal-
istic (Sabo et al., 2021). As a solution, Sabo et al.
(2021) converted the supervised TACRED dataset
(Zhang et al., 2017) into a few-shot TACRED vari-
ant by applying realistic episode sampling. Con-
cretely, the episode in an FSRE evaluation should
be selected in a way that follows all the criteria (a–
f) we mention in Section 3.4. To develop our other
few-shot datasets, i.e., NYT29 and WIKIDATA, we
followed a similar strategy (see § 3.4 and 3.5).

Nevertheless, despite the unquestionable con-
tribution of such datasets to the RE field, we ob-
served a lack of consistency in the results ob-
served in the various proposed evaluations. For
example, some methods evaluated on FewRel at-
tained an accuracy of 93.9%, surpassing human-
level performance at 92.2% (Soares et al., 2019).
While FewRel 2.0 yields lower results, i.e., the best
method achieved 80.3% (Gao et al., 2019), they
are still remarkably high, given the challenging na-
ture of the task.

Further, (Sabo et al., 2021) evaluated their
MNAV model (which was state-of-art at the time)
on FewRel 2.0 and achieved an F1 score of ap-
proximately 78% for 5-way 1-shot and 80% for 5-
way 5-shot, whereas the best results on TACRED
are much lower: the F1 score is 12.4% for 5-
way 1-shot and 30.0% for 5-way 5-shot. These
differences are caused by differences in how the
datasets are constructed, which impacts consis-
tent analyses of the proposed methods. To rem-
edy this issue, we propose a meta dataset for few-
shot RE that includes three datasets that are con-
structed using the same realistic procedure and
capture multiple important phenomena. This al-
lows us to rigorously evaluate multiple approaches
for few-shot RE as shown in § 5.2.

3. Dataset Construction Process

We detail next our first key contribution: the con-
struction of a meta dataset for FSRE, which com-
bines two new FSRE datasets and a third existing
one.

3.1. Data Sources

We leverage three existing supervised datasets for
RE to serve as our starting point. These datasets
cover a diverse set of domains: NYT29, WIKI-
DATA, and TACRED.

NYT29: The NYT29 dataset originates from the
New York Times corpus, which comprises a col-
lection of more than 1.8 million articles authored
and released by the New York Times between
January 1, 1987, and June 19, 2007, with article
metadata provided by the New York Times News-
room (Sandhaus, 2008). This dataset was anno-
tated with relations from Freebase using distant
supervision by Riedel et al. (2010). Depending
on how many relation classes are kept, this orig-
inal dataset has multiple versions, e.g., “NYT10,”
“NYT11,” and “NYT29” (Takanobu et al., 2019;
Nayak and Ng, 2020). Our work relies on the
latter version, which contains 29 distinct relations
(e.g.,/people/person/place_lived), and it
covers a wide range of topics, news events, and
perspectives.

WIKIDATA: The WIKIDATA dataset is a subset
of Wikipedia, wherein articles have been marked
with Wikidata relations using distant supervision
(Sorokin and Gurevych, 2017). This corpus en-
compasses two primary types of annotations: en-
tities and relations. Entity annotations are derived
from Wikipedia article links. Each link has been
converted to a Wikidata identifier using the map-
pings from the Wikidata itself. Additional entities
are recognized using a named entity recognizer
and are linked to Wikidata.

TACRED: Unlike the previous two datasets,
which were annotated using distant super-
vision, TACRED was manually annotated
for 42 relation classes from the TAC KBP
challenge (Surdeanu and Heng, 2014) (e.g.,
per:schools_attended and org: members)
plus no_relation. The dataset contains
106,264 RE examples, which were annotated
over textual data from both newswire sources and
the corpus employed in the annual TAC Knowl-
edge Base Population (TAC KBP) challenges
(Zhang et al., 2017). These examples are gen-
erated by merging human annotations obtained
from the TAC KBP challenges and crowdsourcing.

It is important to note that these datasets capture
distinct phenomena that are important for RE:

(1) NYT29 and WIKIDATA were annotated using
distant supervision, whereas TACRED was manu-
ally annotated. It is known that distant supervision
introduces label noise (Riedel et al., 2010). This
is particularly important for the negative class, i.e.,
in the case of distant supervision, negative labels
can be false negatives. That is, they should not be
interpreted as “no known relation label applies” but
rather as “we have no information about this entity
pair in the knowledge base.” This impacts the sam-
pling procedure discussed later in this section.
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(2) NYT29 allows multiple relations to exist be-
tween the same two entities in the same sentence.
For example, in the sentence “Mr. Mashal, speak-
ing in Damascus, Syria, said …” and the entity
pair “Damascus” and “Syria” is annotated with two
relations: administrative_divisions and
capital. Because of this, multi-label RE classi-
fiers may have an advantage on NYT29.
(3) WIKIDATA allows for overlapping entities. For
example, in the sentence “…featuring Lon Chaney
and Andrew Lloyd Webber’s 1986 musical .” and
the entity pair “1986” and “1986 musical” is anno-
tated with first performance. This is likely to
confuse methods that rely on entity markers (Zhou
and Chen, 2022).

3.2. Linguistic Annotations
Since some of these datasets were not accom-
panied by linguistic annotations, we processed
the texts in house to guarantee that the same
linguistic information is available for all three
datasets. For all linguistic annotations, we used
the processors library.2 This library uses LSTM-
CRFs (Lample et al., 2016) for case restoration,
part-of-speech (POS) tagging, named entity recog-
nition (NER), and the method of Vacareanu et al.
(2020) for dependency parsing.

3.2.1. NYT29

In the original NYT29 dataset, the texts in the three
partitions (train, dev, test) were initially presented
in lowercase, which led to certain inaccuracies dur-
ing linguistic annotation. To solve this problem,
we first restored case using the LSTM-CRF in the
processors library. On a small sample, we ob-
served that this restoration is over 95% accurate.

We then tokenized the text and applied POS tag-
ging, NER, and dependency parsing. However, to
determine the subject and object type for each re-
lation mentioned, we used the provided gold entity
labels in the original dataset (see Table 1).

We observed that a small number of sentences
in the NYT29 dataset were not parsed into a de-
pendency tree by the processors parser (i.e.,
the parser produced several subtrees that covered
different sentence fragments). The main cause of
this error was long and complex sentences. How-
ever, the number of sentences with such errors
was small: 0.1% of the training sentences, 0.07%
in dev, and 0.1% in the test. For simplicity, we re-
moved these sentences from train and dev, and, in
order to not modify the test partition, we manually
corrected the parse trees for the sentences in the
test.

2https://github.com/clulab/processors

Sentence: “An arts center that the town of old
Saybrook plans to open next year will be named
after Katharine Hepburn.”

Entity 1: “Katharine Hepburn”
Predicted label: PERSON
Gold label: PERSON

Entity 2: “old Saybrook”
Predicted label: ORGANIZATION
Gold label: LOCATION

Table 1: An example from NYT29 with gold and
predicted entity labels. We used the gold entity
labels for this dataset.

Dataset Entity Labeling Scheme
NYT29 Gold labels

WIKIDATA Predicted labels
TACRED Predicted labels

Table 2: Labeling scheme for entities participating
in relations in the three datasets considered.

3.2.2. WIKIDATA

For WIKIDATA, we used the same NLP library for
tokenization, POS tagging, NER, and dependency
parsing. Case restoration was not needed for the
WIKIDATA sentences.

However, one important difference between
NYT29 and WIKIDATA is that the labels for entities
participating in relations in WIKIDATA are limited to
just two: “Lexical” for named entities, and “Date”
for dates. To increase the informativeness of en-
tity labels, we adopted the labels predicted by the
processors NER if they overlap with the span of
the entity labels in WIKIDATA. If no predicted NE
overlaps with a relation entity, we keep the default
WIKIDATA entity label.

3.2.3. TACRED

In the TACRED dataset, essential NLP tasks,
i.e., POS tagging, NER, and dependency parsing,
were performed using Stanford CoreNLP (Man-
ning et al., 2014) and included in the original
dataset. To maintain compatibility with previous
works, we keep the same linguistic annotations.

Importantly, TACRED and our version of WIKI-
DATA use labels predicted by a NER for the entities
participating in a relation, whereas NYT29 uses
gold labels. Table 2 summarizes this information.

3.3. Negative Class Label Standarization
The concept of negative relations refers to in-
stances where the relation between two entities ei-
ther does not fit into any predefined categories, or

https://github.com/clulab/processors
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it may indicate that there is no relation between
them at all. Note that negative labels are handled
differently in the three datasets considered:
(1) NYT29 contains no annotations for the nega-
tive relation label. In this situation, we introduce
negative examples using the supervised-to-few-
shot transformation described in Section 3.4 and
Algorithm 1.
(2) In contrast, TACRED and WIKIDATA explic-
itly annotate some negative relations between en-
tity pairs that co-occur in the same sentence (TA-
CRED uses the no_relation label, while WIKI-
DATA uses P0).

The above differences impact the few-shot ver-
sion of these datasets (see § 3.4) and, thus, the
performance of few-shot RE models. Lastly, we
standardize the label for negative relations to NOTA
across the three datasets.

To increase reproducibility, after all these pre-
processing steps were applied, we formatted all
three datasets using the same tabular format. The
format is described in Appendix A. This is the
same format the TACRED dataset used. We fol-
lowed the exact format so that we could apply the
transformation technique of converting the super-
vised dataset into the few-shot dataset described
in (Sabo et al., 2021).

3.4. Supervised to Few-Shot
Transformation

We transform the supervised NYT29, TACRED,
and WIKIDATA datasets into FSRE datasets by
applying a generalized form of the transformation
method described in (Sabo et al., 2021). This pro-
cess transforms a supervised dataset into a real-
istic FSRE dataset by following a series of con-
straints that are likely to occur in real-world appli-
cations:
(a) The test (or “target”) relation classes are differ-
ent from any of relations that might be available in
a background dataset (“background relations”);
(b) The number of training examples K for each
target relation class is very small (typically 1 or 5);
(c) The distribution of relations is not uniform, i.e.,
some relations are rarer than others;
(d) Most candidate relation mentions do not corre-
spond to a target relation;
(e) Many relation candidates seen in testing may
not correspond also to a background relation.
Thus, a traditional supervised RE classifier that
trains on the background data is not applicable;
(f) Entities participating in relations may include
named entities, as well as pronouns and common
nouns.

Before we formalize the transformation process,
we introduce some necessary notations:

C – A set of known relation classes in a dataset
partition.

NOTA – The relation class NOTA (None-of-the-
above) is assigned to entity pairs whose cor-
responding relation class is not in the applica-
ble C set. Note that this is different from the
no_relation label used in the supervised
datasets. In the FSRE setting, NOTA includes
both no_relation examples as well as all
positive relation labels that are not used in the
dataset partition at hand (Sabo et al., 2021).

D – A relation classification dataset such that D :
{(xi, ci)}ni=1, where ∀ci ∈ C ∪ {NOTA}.

xi – Represents the i-th instance in a RE dataset
D such that xi = (e1, e2, s)i where e1 and e2
represent a pair of entities in a sentence s,
where the relation between this two entity is
labeled ci.

N -Way K-Shot – We follow the N -way K-shot
setup for FSRE, as proposed by (Vinyals et al.,
2016; Snell et al., 2017). In an N -way K-
shot setup, a classifier aims to discriminate
between N target relation classes using only
a support set K examples of each. Typically,
K is a very small number, e.g., 1 or 5.

Algorithm 1 describes the transformation pro-
cess of a supervised RE dataset D containing re-
lation labels C into a few-shot dataset DFS , CFS .
The two key steps of the transformation algorithm
are as follows. First, we split the original dataset
into three partitions (train/dev/test) such that they
are pairwise disjoint with respect to the positive re-
lations they contain (steps 1 and 2). For example,
if the train partition contains the relation country
of origin, this relation is not allowed to appear
in dev and test. Second, for each partition, we con-
vert all relation labels that are assigned to another
partition to NOTA (steps 3 and 4). Table 3 shows
an example of the transformation process for WIKI-
DATA.

3.5. Episode Sampling

The small number of examples per class in FSRE
(K) may introduce statistical instability in the re-
sults observed. To address this, episodic learning
repeats the training/evaluation of a given method
over a large number of episodes that sample differ-
ent support sentences for the given classes. More
formally, for a N -way K-shot setup an episode E
consists of three items:
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Algorithm 1 Transformation of a supervised RE
dataset to few-shot RE using the N -way K-shot
setup

Input: D,C
Output: DFS ,CFS

Step 0: Replace no_relation with NOTA in D;
remove no_relation from C, if present

Step 1: Split D in Dtrain, Ddev, and Dtest

Step 2: Choose a random split of C as Ctrain,
Cdev, and Ctest such that the following two con-
ditions are true:
(a) Ctrain , Cdev, and Ctest be pairwise disjoint
(b) |Ctrain| , |Cdev|, and |Ctest| ≥ N (for N -

way K-shot)

Step 3:
for each (xi, ci) ∈ Dtrain do

if ci /∈ Ctrain then
ci = NOTA

else
Retain the original label

Step 4: Repeat Step 3 for Ddev and Dtest using
their corresponding Cdev, and Ctest label sets

Step 5: Ctrain = Ctrain ∪ {NOTA}
Cdev = Cdev ∪ {NOTA}
Ctest = Ctest ∪ {NOTA}

Step 6: CFS = (Ctrain,Cdev,Ctest)
DFS = (Dtrain,Ddev,Dtest)

return CFS ,DFS

(a) N randomly chosen target relations:

Ctarget = {c1, c2, ....., cN} s.t. c1..N /∈ {NOTA}

(b) A randomly chosen support set of size K for
each of the N relations:

Xsupt = {X1,X2, .....,Xi, .....,XN}

Xi = {(x1, ci), (x2, ci), ..., (xj , ci), .., (xK , ci)}

(c) A randomly chosen labeled example as a
query Q = (xq, cq) such that (xq, cq) /∈ Xsupt.

Given an episode E = (Ctarget,Xsupt, Q), the
goal of a Few-Shot learning classifier is to create a
decision function to choose a label from Ctarget ∪
{NOTA} for the given query Q.

We describe a general approach of N -Way K-
Shot episode sampling procedure in the Algorithm
2, where DE and CE are input dataset and labels

Sentence 1: “Among the current participants,
Iceland, Norway, and Switzerland are not mem-
bers of the European Union.”
Entity pair: “Norway”, “Switzerland”
Original label: no_relation
Label after transformation: NOTA
Reason: no_relation in the supervised set-
ting becomes NOTA for FSRE
Sentence 2: “Horror writer Stephen King once
visited his friend, Peter Straub, whose house is
in Crouch End.”
Entity pair: “Peter Straub”, “Crouch End”
Original label: residence
Label after transformation: residence
Reason: The sentence is in the dev set, and
the relation label residence is part of Cdev

Sentence 3: “Progeny is an American science
fiction film released in 1999.”
Entity pair: “Progeny”, “American”
Original label: country of origin
Label after transformation: NOTA
Reason: The sentence is taken from the dev
set, but the relation residence is part of Ctest

Table 3: Example data points before and after the
transformation process in Algorithm 1.

Algorithm 2 Episode sampling for a N -way K-
shot FSRE

Input: DE ,CE , episodeSize
Output: Etest

Etest = {}
C ′

E = CE − {NOTA}
for e = 0 to episodeSize do

Ctarget = RandomSample(C ′
E , N)

Xsupt = [ ]
for i = 0 to |Ctarget| do

r = Ctarget[i]
Xi = RandomSample(DE ,K, r)}
Xsupt[i] = Xi

D′
E = {DE : DE /∈ Xsupt}

Q = RandomSample(D′
E , 1)

C ′
target = Ctarget ∪ {NOTA}

Etest = Etest ∪ {(C ′
target, Xsupt, Q)}

return Etest

to sample from, and Etest is the set of returned
episodes.

A similar episode sampling approach has been
described in (Sabo et al., 2021). To create train
episodes, Dtrain and Ctrain should be used as in-
put. In the same way, dev and test episodes can
be created using their respective data and relation
sets.
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4. Dataset Statistics

Table 4 summarizes key statistics for the three su-
pervised datasets that serve as the starting point
for FSRE. We chose three datasets with a sig-
nificant variation in the number of relations. Ta-
ble 4 shows that TACRED has 42 relations, NYT29
has 29 relations, and WIKIDATA has 352 relations,
which is much larger. Additionally, when we look
at the NOTA instances, these three datasets dif-
fer enormously. For instance, in the supervised
NYT29, there are no NOTA instances. In super-
vised TACRED, the number of NOTA instances
is higher than the number of NOTA instances in
the supervised WIKIDATA. Table 5 summarizes
how the number of relation instances and NOTA in-
stances in three resulting FS datasets have been
changed from supervised datasets. In Appendix B,
we present further statistics and analysis demon-
strating that our FSRE meta-dataset meets all the
requirements of a realistic few-shot relation extrac-
tion dataset.

TACRED NYT29 WIKIDATA
Train Size 68,124 78,885 775,919
Dev Size 22,631 5859 251,802
Test Size 15,509 8759 739,408
Relation Class 42 29 352
Relation Instances 21,773 93,503 1,299,085
NOTA Instances 84,491 0 468,044

Table 4: Statistics of the supervised TACRED,
NYT29, and WIKIDATA datasets. The first three
rows report the number of sentences per partition.

TACRED NYT29 WIKIDATA
Relation Instances 9,600 58,841 513,891
NOTA Instances 96,664 34,662 1,253,238

Table 5: Statistics of the Few-Shot TACRED,
NYT29, and WIKIDATA datasets.

5. Experimental Results

5.1. Experimental Setup
We applied the transformation techniques outlined
in § 3.4 and § 3.5 on all datasets described in the
previous section to produce their FSRE variants.3
We tested on all datasets in 5-way 1-shot and 5-
way 5-shot scenarios. In both cases, we repeat
the procedure with 5 different random seeds.

5.2. Models
We evaluated the following baselines and models:

3To enable comparison with previous work, for TA-
CRED we kept the transformation introduced in (Sabo
et al., 2021).

Unsupervised Baseline – This baseline model
uses solely the entity types in both the query sen-
tence and the support sentences for classifica-
tion during inference (Vacareanu et al., 2022b). If
there are support sentences with the same entity
types as the query sentence, the model randomly
chooses one and predicts its relation. In other
cases, the baseline predicts NOTA.

Sentence-Pair – We implement a baseline simi-
lar to (Gao et al., 2019), which operates as follows:
We pair each query sentence to each support sen-
tence and feed the concatenated text to a sentence
transformer (Reimers and Gurevych, 2019) to ob-
tain a single score that quantifies the degree to
which both sentences convey the same underlying
relation. During training, we fine-tune the model
to maximize the score between sentences with
the same relation and minimize the score between
sentences with different relation (or NOTA). During
inference, we predict the relation associated with
the highest score, provided it is above a thresh-
old tuned on the development partition. Otherwise,
we predict NOTA. We use a pre-trained model and
show results with and without fine-tuning.4

MNAV – Multiple NOTA Vectors (MNAV) is an ex-
tended version of the NAV method, which com-
putes a score between the query vector, each sup-
port sentence vector, and, additionally, a learned
vector for the NOTA class (Sabo et al., 2021). In-
stead of just one vector for NOTA, MNAV uses mul-
tiple vectors to account for the fact that NOTA is a
“catch all” for all other relations. The number of
NOTA vectors is tuned on the development set. In
the classification process, the model selects the
nearest vector to the query representation to es-
tablish the predicted relation label.

OdinSynth – OdinSynth is a transformer-based
rule synthesis model that generates rules from
the provided support sentences and then applies
these rules to the query sentence (Vacareanu
et al., 2022b). If none of the rules match, the model
predicts NOTA. If there exists a match with one or
more rules, the model predicts the relation through
majority voting.

Hard-Matching Rules – Represent lexico-
syntactic rules created over the shortest path
connecting the two entities.

Soft-Matching Rules – This is a neuro-symbolic
model (Vacareanu et al., 2024) that aims to in-
crease the recall of rules by leveraging the high
expressivity of neural networks. The method first

4cross-encoder/ms-marco-MiniLM-L-6-v2
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Model 5-way 1-shot 5-way 5-shot
P R F1 P R F1

Unsupervised Baseline 5.70 ± 0.10 91.02 ± 0.65 10.73 ± 0.18 5.65 ± 0.11 95.56 ± 0.70 10.67 ± 0.20

Sentence-Pair (not fine-tuned) 3.9 ± 0.21 5.21 ± 0.31 4.45 ± 0.24 2.76 ± 0.16 8.79 ± 0.58 4.2 ± 0.25
Sentence-Pair (fine-tuned) 6.89 ± 0.33 28.56 ± 1.67 11.10 ± 0.55 14.94 ± 0.26 24.03 ± 0.32 18.42 ± 0.16
MNAV 15.11 ± 0.46 8.47 ± 0.31 10.85 ± 0.29 24.48 ± 1.02 32.00 ± 1.07 27.73 ± 0.94

OdinSynth 23.48 ± 1.46 11.46 ± 1.02 15.40 ± 1.21 29.77 ± 0.83 20.34 ± 0.53 24.16 ± 0.44

Hard-matching Rules 51.35 ± 6.53 2.94 ± 0.48 5.56 ± 0.90 45.94 ± 5.31 10.81 ± 1.23 17.50 ± 1.98
Soft-matching Rules 33.46 ± 1.47 19.69 ± 1.14 24.78 ± 1.22 51.66 ± 1.85 26.02 ± 1.29 34.59 ± 1.24

Table 6: The results for the 5-way 1-shot and 5-way 5-shot settings on the test partition of the FS TACRED
dataset.

Model 5-way 1-shot 5-way 5-shot
P R F1 P R F1

Unsupervised Baseline 11.60 ± 0.18 40.34 ± 0.54 18.03 ± 0.26 11.70 ± 0.25 40.65 ± 0.45 18.17 ± 0.34

Sentence-Pair (not fine-tuned) 10.61 ± 0.32 12.39 ± 0.41 11.43 ± 0.35 15.81 ± 0.94 5.41 ± 0.25 8.06 ± 0.39
Sentence-Pair (fine-tuned) 38.09 ± 2.42 7.4 ± 0.42 12.4 ± 0.71 36.48 ± 1.37 16.02 ± 0.41 22.26 ± 0.62
MNAV 25.08 ± 0.73 34.37 ± 0.87 29.00 ± 0.80 33.24 ± 1.06 15.47 ± 0.38 21.12 ± 0.55

OdinSynth 30.07 ± 0.93 9.42 ± 0.31 14.34 ± 0.46 21.61 ± 0.61 17.98 ± 0.45 19.63 ± 0.51

Hard-matching Rules 77.47 ± 1.53 1.53 ± 0.13 3.01 ± 0.25 80.49 ± 1.73 3.40 ± 0.12 6.52 ± 0.23
Soft-matching Rules 20.80 ± 0.38 12.27 ± 0.39 15.44 ± 0.40 24.50 ± 0.83 16.67 ± 0.49 19.84 ± 0.59

Table 7: The results for the 5-way 1-shot and 5-way 5-shot settings on the test partition of the FS NYT
dataset.

Model 5-way 1-shot 5-way 5-shot
P R F1 P R F1

Unsupervised Baseline 2.52 ± 0.16 29.99 ± 1.42 4.64 ± 0.28 2.28 ± 0.13 54.35 ± 1.03 4.38 ± 0.24

Sentence-Pair (not fine-tuned) 6.4 ± 1.51 2.55 ± 0.66 3.65 ± 0.92 2.68 ± 0.56 8.67 ± 1.57 4.09 ± 0.82
Sentence-Pair (fine-tuned) 6.65 ± 0.78 7.99 ± 0.93 7.26 ± 0.85 5.76 ± 0.87 8.74 ± 0.95 6.94 ± 0.93
MNAV 17.49 ± 1.45 6.76 ± 1.21 9.74 ± 1.47 15.27 ± 0.98 28.26 ± 0.96 19.83 ± 1.06

OdinSynth 12.99 ± 1.67 6.15 ± 0.58 8.34 ± 0.85 10.09 ± 1.31 19.18 ± 1.57 13.21 ± 1.46

Hard-matching Rules 6.38 ± 3.24 0.38 ± 0.20 0.72 ± 0.37 5.15 ± 1.83 1.13 ± 0.37 1.85 ± 0.61
Soft-matching Rules 35.88 ± 10.01 2.73 ± 0.86 5.06 ± 1.58 17.58 ± 3.28 9.71 ± 2.15 12.50 ± 2.59

Table 8: The results for the 5-way 1-shot and 5-way 5-shot settings on the test partition of the FS WIKI-
DATA dataset.

attempts to match a rule the traditional way (see
Hard-Matching Rules). If the match fails, it then
falls back to the neural component, which will pre-
dict a matching score s ∈ [0, 1]. The training of the
neural component utilizes (rule, sentence) tuples
along with a contrastive loss function. The objec-
tive is to maximize the similarity between rules and
sentences with the same relation while minimizing
it for those with different relations.

In addition to a comprehensive assessment of
the six recent few-shot relation extraction mod-
els mentioned above, we also evaluated a Zero-
Shot Large Language Model (LLM) baseline on
our FSRE meta-dataset. The details of this base-
line and the experimental result are provided in Ap-
pendix C.

5.3. Results Analysis

Table 6, 7, 8 represent the result of different mod-
els on our resulting FSRE datasets. We draw the
following conclusions:

First, no single method emerges as the clear
top performer across all scenarios. For instance,
Soft-matching Rules achieves the highest perfor-
mance on Few-Shot TACRED (Table 6), MNAV ex-
cels on Few-Shot WIKIDATA (Table 8), and in the
case of Few-Shot NYT, MNAV performs best for
1-shot, while Sentence-Pair leads for 5-shot (Ta-
ble 7). The latter result is surprising, given the sim-
plicity of this baseline.

Second, the performance varies drastically be-
tween the datasets for both 1-shot and 5-shot sce-
narios. For instance, in Few-Shot WIKIDATA 5-
way 1-shot, the top-performing method achieves
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an F1 score of 9.74, whereas in Few-Shot TA-
CRED 5-way 1-shot, the best method reaches an
F1 score of 24.78. This underscores the impor-
tance of employing multiple evaluation datasets to
gain a realistic assessment of a model’s perfor-
mance. Further, the overall performance across
all datasets is low, which indicates a substantial
need for future research in this domain.

In our evaluation of the six models, FS WIKI-
DATA exhibited comparatively lower performance
across all datasets. To understand the underlying
reasons, we conducted a qualitative error analysis
on FS WIKIDATA, the details of which are provided
in Appendix D.

6. Conclusion

In this paper, we presented a meta dataset for few-
shot relation extraction (FSRE), which comprises
three FSRE datasets: two were derived from es-
tablished supervised relation extraction datasets,
while one is an existing FSRE dataset. All datasets
were intricately derived to replicate real-world sce-
narios, ensuring a strong alignment with real-world
contexts. Then, we assessed six relation extrac-
tion methods on this meta dataset and found that
no single model consistently performs well across
all scenarios. This suggests the need for future
research in this domain.

As future work, we plan to leverage the result-
ing dataset to develop methods that demonstrate
consistent and robust performance.
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Appendix A

Table 9 summarizes the tabular format used to rep-
resent the three supervised datasets that are the
starting point of the few-shot datasets generated
in this work.

Field Description
id Incremental unique ID for each

example or sentence
docid For dev set docid = ”dev”, for test

set docid= ”test”, and for train set
docid = ”train”

relation This field denotes the relation la-
bels between the given entities

token An instance of a sequence or
word in the sentence

subj_start Start index of the subject in a
sentence

subj_end End index of the subject in a sen-
tence

obj_start Start index of the object in a sen-
tence

obj_end End index of the object in a sen-
tence

subj_type Subject type (e.g., person name)
in a sentence

obj_type Object type (e.g., person name)
in a sentence

stanford_pos POS tag of the current token
stanford_ner Named entity label of the current

token
stanford_head 1-based index of the depen-

dency head of the current token
stanford_deprel dependency relation of the cur-

rent token to its head token

Table 9: Descriptions of the columns in the tab-
ular format used to encode the three supervised
datasets used in this work. Note that the “stanford”
prefix for the last three columns is maintained for
compatibility with the TACRED format; in NYT29
and WIKIDATA, this information is generated using
the processors library instead.

Appendix B

In section 3.4, we outlined six characteristics es-
sential for a realistic Few-Shot dataset. Our FSRE

https://api.semanticscholar.org/CorpusID:12873739
https://api.semanticscholar.org/CorpusID:12873739
https://api.semanticscholar.org/CorpusID:11717703
https://api.semanticscholar.org/CorpusID:11717703
https://aclanthology.org/2022.aacl-short.21
https://aclanthology.org/2022.aacl-short.21
https://aclanthology.org/2022.aacl-short.21
https://api.semanticscholar.org/CorpusID:210718708
https://api.semanticscholar.org/CorpusID:210718708
https://api.semanticscholar.org/CorpusID:202789603
https://api.semanticscholar.org/CorpusID:53080736
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Figure 1: Few-Shot TACRED top five relation dis-
tribution

meta dataset fulfills all these six criteria. For in-
stance, we split the original dataset into three par-
titions (train/dev/test) such that they are pairwise
disjoint with respect to the positive relations they
contain (as outlined in Steps 1 and 2 of Algorithm
1). This guarantees that the test relation classes
in our dataset are distinct from any relations that
might be present in a background dataset, thereby
fulfilling constraint (a) of the realistic Few-Shot
assumption. Moreover, we follow the 5-way 1-
shot and 5-way 5-shot setup for episode sampling,
which ensures that the number of training exam-
ples for each target relation class is very small (1
or 5), thus satisfying constraint (b). Figure 1, 2, 3
illustrate the non-uniformity of the relation classes
and the predominance of NOTA class, indicative of
satisfying realistic constraints (c), (d), and (e). Fig-
ure 4, 5, 6 indicate the presence of a variety of POS
tags, with a notable percentage of proper nouns,
common nouns, and pronouns, reflecting the diver-
sity and realism of entity distributions, thus satisfy-
ing constraint (f).

Appendix C

Zero-Shot LLM Baseline
We evaluated the Zero-Shot relation classification
performance of the Large Language Model (LLM)
using GPT-4. The experiment was conducted on a
test set containing ten episodes, with each episode
containing three test sentences. For each sen-
tence, we prompted GPT-4 to identify a relation for
a given entity pair using the prompting technique
described by Kai Zhang (2023). The prompt in-
cludes the label verbalization technique to articu-
late the relations. We conducted the experiment

NOTA

/location/location/contains

/people/person/nationality

/people/person/place_live
d

/location/country/capital
0

1

2

3

·104
34,662

26,517

8,090 6,865 6,680

Figure 2: Few-Shot NYT29 top five relation distri-
bution

NOTA
country

located in the administrative
territo

rial entity

instance of

shares border with
0

0.2

0.4

0.6

0.8

1

1.2

·106

1.25 · 106

81,394 63,773 38,796 37,290

Figure 3: Few-Shot WIKIDATA top five relation dis-
tribution

in both 5-way 1-shot and 5-way 5-shot configura-
tions, where GPT-4 was tasked with classifying the
relation for the given entity pair into one of the five
target relations or indicating ‘None of the Above’
(NOTA) if none is applicable. Figure 7 illustrates
an example of the prompt.

The results of the experiment are presented in
Tables 10, 11 and 12. In the tables, we included
the performance scores of other models on the
same test set to facilitate easier comparison. The
results show that zero-shot LLM achieves low pre-
cision and high recall in FS TACRED (see Table
10) and FS NYT29 (see Table 11). The low preci-
sion is attributed to a high false positive rate, where



16605

Proper Noun

Pronouns

Common Noun
Others

0

20

40

60

66.75%

15.38%
9.04% 8.82%

Figure 4: Few-Shot TACRED Entity POS tag dis-
tributions
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Figure 5: Few-Shot NYT29 Entity POS tag distri-
butions
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Figure 6: Few-Shot WIKIDATA Entity POS tag dis-
tributions

Given a sentence and two entities
within the sentence, classify the
relation between the two entities
based on the provided sentence. All
possible relations are listed below:

-org:top_members/employees: Entity
1 has the high level member Entity 2

-per:schools_attended: Entity 1
studied in Entity 2

-org:founded_by: Entity 1 was founded
by Entity 2

-per:origin: Entity 1 has the
nationality Entity 2

-per:date_of_birth: Entity 1 has
birthday on Entity 2

-NOTA: None of the above

Sentence: “In an atmosphere of
conflict and misunderstanding, the
travel and tourism industry can be
an incredibly powerful force for
conciliation,” said PATA president
and chief executive officer Peter de
Jong.

Entity 1: PATA
Entity 2: Peter de Jong

Figure 7: An example of prompt for Zero-Shot LLM
baseline.

GPT-4 often chose a positive relation from the tar-
get set instead of selecting NOTA when the correct
relation was not among the target relations. How-
ever, when the correct relation is included in the
target set, GPT-4 tends to identify it correctly, re-
sulting in a high true positive rate. Although GPT-4
generally performs better than the other models, it
is not always the best in every scenario. For ex-
ample, in the FS NYT29 5-way 1-shot configura-
tion, the MNAV model outperforms GPT-4, and in
the FS WIKIDATA 5-way 5-shot setup, the Unsuper-
vised Baseline model performs better than GPT-4.
This reinforces the conclusion drawn in section 5.3
that no single model consistently stands out as the
best performer across all scenarios, underscoring
the significant need for continued research in this
field.

Since a small test set was utilized in this ex-
periment, further research is necessary to gain
a deeper understanding of the Zero-Shot relation
classification capabilities of Large Language Mod-
els.

Appendix D

Qualitative Error Analysis
In the few-shot relation extraction (FSRE) setting,
the performance of all six models we evaluated
was comparably low when evaluated on WIKI-
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Model 5-way 1-shot 5-way 5-shot
P R F1 P R F1

Unsupervised Baseline 8.33 33.33 13.33 11.76 66.67 20

MNAV 0 0 0 25 33.33 28.57

Hard-matching Rules 0 0 0 0 0 0
Soft-matching Rules 66.67 66.67 66.67 16.67 33.33 22.22

Zero-Shot LLM (GPT 4) 50 100 67 27 100 43

Table 10: The results for the 5-way 1-shot and
5-way 5-shot settings on a small test partition
of the FS TACRED dataset.

Model 5-way 1-shot 5-way 5-shot
P R F1 P R F1

Unsupervised Baseline 18.18 50 26.67 12.5 37.50 18.75

MNAV 58.33 87.5 69.99 10.07 55.77 17.06

Hard-matching Rules 0 0 0 0 0 0
Soft-matching Rules 25 37.5 30 25 37.5 30

Zero-Shot LLM (GPT 4) 26.08 75 38.71 21.74 62.5 32.26

Table 11: The results for the 5-way 1-shot and
5-way 5-shot settings on a small test partition
of the FS NYT29 dataset.

Model 5-way 1-shot 5-way 5-shot
P R F1 P R F1

Unsupervised Baseline 10 10 10 50 58.33 53.85

MNAV 0 0 0 66.67 16.67 26.67

Hard-matching Rules 100 0 0 100 0 0
Soft-matching Rules 33.33 10 15.38 33.33 10 15.38

Zero-Shot LLM (GPT 4) 55.55 50 52.63 60 46.15 52.17

Table 12: The results for the 5-way 1-shot and
5-way 5-shot settings on a small test partition
of the FS WIKIDATA.

DATA. This can be primarily attributed to the high
prevalence of long-tail entities in WIKIDATA. In
(Chen et al., 2023), it is reported that approxi-
mately half of the entities in WIKIDATA fall into the
long-tail category. The challenges stemming from
this prevalence of long-tail entities contribute signif-
icantly to the observed performance degradation.
Firstly, the data scarcity inherent in long-tail enti-
ties exacerbates the already challenging few-shot
learning scenario, where models are expected to
generalize from limited examples. With fewer in-
stances available for these long-tail entities, mod-
els struggle to capture the diverse range of relation
patterns and semantic nuances associated with
them. Additionally, the lack of contextual cues and
varied semantic contexts surrounding these enti-
ties further compounds the difficulty of accurate re-
lation extraction. As a result, the efficacy of mod-
els in the FSRE setting is hampered by the combi-
nation of data scarcity and the intricate nature of
relations involving long-tail entities in WIKIDATA.
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