
LREC-COLING 2024, pages 16686–16697
20-25 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

16686

TP-Link: Fine-grained Pre-Training for Text-to-SQL Parsing
with Linking Information

Ziqiang Liu1, , Shujie Li2, , Zefeng Cai2, Xiangyu Li2, Yunshui Li1,
Lei Zhang1, Chengming Li3∗, Xiping Hu3, Ruifeng Xu4, Min Yang1∗

1Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences
2University of Science and Technology of China, 3Shenzhen MSU-BIT University

4Harbin Institute of Technology (Shenzhen)
{zq.liu4, ys.li, lei.zhang2, min.yang}@siat.ac.cn

{ustclsj, galileoc, xyli1}@mail.ustc.edu.cn

Abstract
In this paper, we introduce an innovative pre-training framework TP-Link, which aims to improve context-dependent
Text-to-SQL Parsing by leveraging Link ing information. This enhancement is achieved through better representation
of both natural language utterances and the database schema, ultimately facilitating more effective text-to-SQL
conversations. We present two novel pre-training objectives: (i) utterance linking prediction (ULP) task that models
intricate syntactic relationships among natural language utterances in context-dependent text-to-SQL scenarios, and
(ii) schema linking prediction (SLP) task that focuses on capturing fine-grained schema linking relationships between
the utterances and the database schema. Extensive experiments demonstrate that our proposed TP-Link achieves
state-of-the-art performance on two leading downstream benchmarks (i.e. , SParC and CoSQL).
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1. Introduction

Text-to-SQL semantic parsing task (Zhong et al.,
2017; Yu et al., 2018) plays a crucial role in trans-
forming natural language utterances into corre-
sponding SQL queries, which can be executed on
structured ontologies like databases or knowledge
bases. Furthermore, it has evolved into conver-
sational text-to-SQL semantic parsing (Yu et al.,
2019a,b), which allows the conversion of user’s
real-time utterance into precise SQL query within
multi-turn dialogues. The refined task not only
extends the scope of the original text-to-SQL se-
mantic parsing but also integrates historical utter-
ances to generate accurate and comprehensive
SQL queries, allowing users to engage in more intri-
cate inquiries, streamlining knowledge retrieval and
aligning effectively with practical requirements. Pre-
trained language models (PLMs) have been demon-
strated to be powerful in enhancing text-to-SQL
parsing task, achieving impressive performance
attributed to rich prior language knowledge in large-
scale corpora. However, previous research (Yin
et al., 2020; Yu et al., 2021a) has shown inher-
ent differences in the distributions between tables
and plain text, leading to sub-optimal performance
of general pre-trained language models such as
BERT (Devlin et al., 2019), RoBERTa (Liu et al.,
2019), and ELECTRA (Clark et al., 2020). Re-
cent studies (Shi et al., 2021; Yu et al., 2021a;
Liu et al., 2022; Deng et al., 2021) have mitigated
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What are the source airports?

SELECT SourceAirport FROM 
Flights

TURN 1

Also include the destination airports.

SELECT SourceAirport FROM 
Flights UNION SELECT 
DestAirport FROM Flights

TURN 2

Which airports are not included in that?

SELECT AirportName FROM 
Airports WHERE AirportCode 
NOT IN (SELECT SourceAirport 
FROM Flights UNION SELECT 
DestAirport FROM Flights)
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Figure 1: An example of cross-domain context-
dependent text-to-SQL.

the aforementioned limitations by designing cus-
tom table-based language models for text-to-SQL
parsing, which encode both natural language ut-
terances and tables simultaneously. As the scale
of pre-trained language models increases, large
language models (LLMs) have emerged. Unlike
models like BERT and T5 (Raffel et al., 2023) that
require fine-tuning with a small amount of data,
large language models like GPT-3 (Brown et al.,
2020) require prompt engineering to generate tar-
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get outputs, which exhibits remarkable zero-shot
and few-shot capabilities. Recent study (Liu et al.,
2023) indicates that even without using any training
data, ChatGPT∗ still possesses strong text-to-SQL
capabilities, although there remains some gap com-
pared to current state-of-the-art models.

While PLMs and LLMs have shown promising
results for text-to-SQL parsing tasks, multi-turn text-
to-SQL task has consistently encountered two ma-
jor challenges:

Firstly, leveraging contextual historical informa-
tion from the dialogue is pivotal, particularly the syn-
tactic coreference relationships within the context,
to ensure the accurate generation of SQL state-
ments. As shown in Figure 1, there are numerous
instances of coreference (e.g., "in that") and ellip-
sis (e.g., "Also include"), making this task very
challenging. SCoRe (Yu et al., 2021b) focuses
on identifying semantic switches in nearby utter-
ances, neglecting to address long-range semantic
dependencies. STaR (Cai et al., 2022) captures se-
mantic dependencies at the sentence level through
SQL similarity comparison, yet it does not effec-
tively model contextual coreference relationships
at finer-grained word/token level.

Secondly, context-dependent text-to-SQL pars-
ing task is challenging due to potential SQL se-
mantic inheritance in consecutive dialogue turns,
which means a current SQL query might be modi-
fied by previous queries. However, when a context
switch occurs, these information becomes redun-
dant, affecting the final SQL generation. There-
fore, it’s essential to model a more nuanced rela-
tionship between the context and the schema. As
shown in Figure 1, there exists considerable link-
ing information between utterances and database
schemas(e.g., "source airports" in utterance and
"SourceAirport" in database schema). In recent
study, RASAT (Qi et al., 2022) adjusts its self-
attention mechanism to relational self-attention, in-
corporating diverse relation information to boost
encoding capabilities, but it does not consider infor-
mation redundancy. CQR-SQL (Xiao et al., 2022)
simplifies the schema linking information fused
with downstream parsing models by rewriting multi-
turn dialogues, but requires additional training and
extensive complex annotation work. MIGA (Fu
et al., 2022) integrates referential relationship and
schema linking information through a multi-task ap-
proach but neglects redundancy. SCoRe (Yu et al.,
2021b) predict SQL keywords using only the current
turn’s information, overlooking previous dialogues’
schema linking information. STaR (Cai et al., 2022)
tracks states at the schema level but does not con-
sider fine-grained relationship between contextual
utterances and the schema.

In this paper, we present an innovative pre-
∗https://chat.openai.com/

training framework TP-Link aimed at improving
context-dependent text-to-SQL parsing task by
leveraging linking information to address all the
challenges mentioned above. This enhancement
is achieved through better representation of both
natural language utterances and the database
schema, ultimately facilitating more effective text-
to-SQL conversations. We present two novel pre-
training objectives: utterance linking prediction
(ULP) task, which models intricate syntactic re-
lationships among natural language utterances
in context-dependent text-to-SQL scenarios, and
schema linking prediction (SLP) task, focused on
fine-grained schema linking relationships between
the utterance and the database schema.

We evaluated TP-Link on SParC (Yu et al.,
2019b) and CoSQL (Yu et al., 2019a) datasets,
and our main contributions of this work are summa-
rized as follows:

• We introduce a utterance linking prediction
(ULP) task to explicitly model word-level coref-
erence relation within the context, effectively
addressing complex coreference and ellipsis
issues in multi-turn dialogues.

• We introduce a fine-grained schema linking
prediction (SLP) task to ensure more precise
schema linking, and enable the current utter-
ance to focus on critical schema linking in-
formation from preceding utterances. Subse-
quent to the application of similarity filtering,
the model allocates a greater degree of atten-
tion to pertinent schema linking information.

• Experimental results show that TP-Link
achieves new state-of-the-art results on
two context-dependent text-to-SQL datasets,
SParC and CoSQL.

2. Methodology

2.1. Task Definition

In this section, we first introduce the task definition
of conversational text-to-SQL parsing. The objec-
tive of the multi-turn text-to-SQL task is to generate
a SQL query qt corresponding to the current turn
t given the user’s current utterance ut, the history
of utterances Ht = [u1, u2, ..., ui, ..., ut−1], and the
database schema S = [s1, s2, ..., sj , ..., sm] com-
posed of m tables. Specifically, the i-th utterance
is composed of ni words and can be formally rep-
resented as ui = [w1i , w2i , ..., wni

]. The j-th table
consists of kj columns and can be formally repre-
sented as sj = [tj , c1j , c2j , ..., ckj

], where tj and cj
represent the table name and column names of the
schema, respectively.

https://chat.openai.com/
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Figure 2: The overview of the proposed TP-Link framework consisting of two novel pre-training objectives:
Utterance Linking Prediction (LULP ) and Schema Linking Prediction (LSLP ). The top part of the figure
shows ULP and the bottom part shows SLP. For brevity, we do not show all the relationships and the
masked language modeling objective (LMLM ) here.

2.2. Pre-training Objectives

In this section, we propose two innovative
pre-training objectives ULP (Utterance Linking
Prediction) and SLP (Schema Linking Prediction)
with the aim of effectively capturing intricate syntax
relations within utterances and establishing refined
schema linking relations in context-dependent text-
to-SQL scenarios. In the subsequent section, we
will provide a comprehensive exposition of the de-
tails of the aforementioned pre-training objectives.
The overall model architecture is depicted in Figure
2.

2.2.1. Utterance Linking Prediction

To address the challenge of coreference resolu-
tion and ellipsis in context-dependent text-to-SQL
scenarios, we propose Utterance Linking Predic-
tion (ULP) in a self-supervised manner to cap-
ture intricate syntax relations within utterances in
context-dependent text-to-SQL scenarios and ad-
dress coreference and ellipsis issues in multi-turn
dialogues.

Longer Contextual Reference Modeling. Pre-
vious models (Yu et al., 2021b) either could not
model long-distance contextual dependencies or
could not accurately model coreference relation-
ships within the long context. Theoretically, TP-Link
can model referential relationships between the cur-
rent utterance and historical utterances in contexts
of any length, thereby enhancing the model’s ability
to learn referential relationships in long contexts.

Label ULP SLP Meaning

No-Match ! No syntactic linking relation.

Partial-Match ! Local-match relation.

Exact-Match ! Global-match relation.

Identity ! - The same word.

Coreference ! - Coreference relation.

Generic - ! "⋆" relation(SQL keyword).

Table 1: Supervised Labels and their meaning for
ULP and SLP Tasks.

Finer-grained Coreference Resolution. For-
mally, we first utilize the coreference resolution
tool NeuralCoref† to resolve the word-level syn-
tactic relationships between the present utterance
ut and the entirety of utterances Ht = {u1, ..., ut},
resulting in the acquisition of supervised labels of
ULP task. The proposed syntactic relationships
are shown in Table 1. As shown in Figure 2, there
is a coreference relationship between "his" and
"youngest teacher".

At t-th turn, the goal of ULP task is to predict
the word-level syntactic relationships between Ut

and Ut given all the utterances Ut and database
schema S. That is, at the t-th turn, the input It of
the ULP task is as:

It =
[
{u1, . . . , ut}; {s1, . . . , sm}

]
(1)

which m denotes the total number of
†https://github.com/huggingface/neuralcoref

https://github.com/huggingface/neuralcoref
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schema items across all tables. Then we
can get the output representation Ht =[
h1
t , ..., h

|u1|
t , ..., h

|u1|+...+|ut|
t , ..., h

|u1|+...+|sm|
t

]
,

which |·| denotes the total number of tokens of utter-
ances and schema items, and from this, we extract
the token-level representation of all the utterances,
denoted as Hu

t =
[
h1
t , ..., h

|u1|
t , ..., h

|u1|+...+|ut|
t

]
.

Then, we aggregate subwords of each word
to map tokens to words, obtaining word-level
representations Huw

t =
[
hw1
t , ..., h

wn1
t , ..., h

wnt
t

]
.

Next, we calculate the matrix multiplication of Huw
t

and Huw
t

⊤ as the heuristic representation and
predict the word-level syntactic relationships, the
functions are as follows:

P (ut) = softmax(W2(H̃
uw
t ) + b2) (2)

H̃uw
t = Huw

t ×Huw
t

⊤ (3)
Huw

t = LayerNorm(GELU((W1(H
uw
t ) + b1))) (4)

Huw
t = SubwordAggregation(Hu

t ) (5)

where Wi and bi are trainable parameters. We use
attentive pooling function (Lin et al., 2017) for the
implementation of subword aggregation.

Finally, the pre-training loss function of ULP task
is defined as the cross-entropy between the heuris-
tic representation H̃uw

t and the gold word-level syn-
tactic relationship labels Y u

t :

LULP = − 1

n2

n∑
i=1

n∑
j=1

Y j
i logP (ut)

j
i (6)

which n denotes the total number of words of the
whole utterances and i, j denotes the i-th and j-th
word of the utterances, respectively.

2.2.2. Schema Linking Prediction

In context-dependent text-to-SQL scenarios,
schema linking relationships are used to determine
which table or column names in the database
schema correspond to the entities or relationships
mentioned in the natural language utterance.
However, considering the redundancy issue, not all
schema linking information is useful. We propose
a refined Schema Linking Prediction (SLP) task to
capture finer-grained schema linking relationships.
We use SQL tree edit distance as structural
similarity to filter schema linking relationships,
which allows pre-trained language models to learn
more accurate schema linking knowledge, further
enhancing performance.

More accurate schema linking. Formally, our
initial step involves the resolution of comprehensive
schema linking relationships between utterances
and database schema items at t-th turn. To ad-
dress the issue of redundant schema linking re-
lationships in context-dependent text-to-SQL sce-
narios, we propose a methodology to obtain re-
fined schema linking relationships by measuring

SQL structure similarity. Concretely, we employ the
tree-based edited distance algorithm (Pawlik and
Augsten, 2016) to compute the SQL structure simi-
larity between the current utterance and historical
utterances given the current SQL qt and histori-
cal SQLs {q1, ..., qt−1}. Mathematically, we parse
SQL qt and {q1, ..., qt−1} to tree-based structure Gt

and {G1, ..., Gt−1}, then compute the SQL struc-
ture similarity of Gt and Gi, i ∈ [1, t− 1] as:

fsimilarity(Gt, Gi) = APTED(Gt, Gi) (7)

where APTED denotes All Path Tree Edit Distance,
we refer the readers to Pawlik and Augsten (2016)
for the implementation details. And intuitively, when
the SQL structure similarity is lower, it indicates
a higher level of redundancy in the schema link-
ing relationships. Therefore, we refined the en-
tire schema linking relationships according to the
SQL structure similarity with a similarity threshold α.
This refinement process ultimately yields the final
SLP task labels. The proposed schema linking rela-
tionships are shown in Table 1. As shown in Figure
2, although "hometown" in the utterance should
ideally have an "ExactMatch" relationship with the
column name "hometown" in the schema, it has
been labeled as "NoMatch" due to the low similarity
between G3 and G1 falling below the threshold α.

Finer-grained schema linking. Similar to
ULP task, we predict the refined schema link-
ing relationships according to the heuristic rep-
resentation H̃s

t between the utterances repre-
sentation Hu

t and schema representation Hs
t =[

h
|u1|+...+|ut|+1
t , ..., h

|u1|+...+|sm|
t

]
, the functions are

as follows:

P (ut, s) = softmax(W4(H̃
sw
t ) + b4) (8)

H̃sw
t = Huw

t ×Hsw
t

⊤ (9)
Hsw

t = LayerNorm(GELU((W3(H
sw
t ) + b3)))

(10)
Hsw

t = SubwordAggregation(Hs
t ) (11)

where Wi and bi are trainable parameters.
Finally, the pre-training loss function of SLP task

is defined the cross-entropy between the heuristic
representation H̃sw

t and the gold schema linking
labels Y s

t :

LSLP = − 1

n · k

n∑
i=1

k∑
j=1

Y j
i logP (ut, s)

j
i (12)

where n denotes the total number of words in the
whole utterances, k denotes the number of columns
in the schema, i denotes the i-th word of utterances
and j denotes the j-th column of schema.

2.2.3. Masked Language Modeling

Masked Language Modeling (MLM) is a pretraining
task in BERT (Devlin et al., 2019), aiming to learn
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the contextual modeling ability of natural language
text. To enhance the generalization ability of pre-
trained language models, we retain the MLM task
during the pretraining phase. Specifically, given
the t-th turn of dialogue input It, the MLM task
randomly selects a token and replaces it with a
[MASK] token. Finally, it predicts the original token
of [MASK] token based on context. We apply the
original 15% probability of masking operations from
BERT. The loss for the MLM task is denoted as
LMLM, and this loss function primarily minimizes
the cross-entropy of the [MASK] tokens.

2.2.4. Joint Pre-training Objective

Following STaR (Cai et al., 2022), when integrat-
ing the loss functions of the three tasks, we do
not directly use a weighted linear sum of these
three loss functions. Instead, it takes into account
the homoscedastic uncertainty of each loss func-
tion (Kendall et al., 2018), avoiding the need to
spend a significant amount of time fine-tuning the
weights of the loss functions. The summation for-
mula for the loss functions based on homoscedastic
uncertainty is as follows:

Ljoint =
1

2δ21
LULP +

1

2δ22
LSLP +

1

2δ23
LMLM

+log(1 + δ1) + log(1 + δ2) + log(1 + δ3)

(13)

where δ1, δ2, δ3 represent the observation noise pa-
rameters of the model.

3. Experimental Setup

3.1. Downstream Datasets
We conduct experiments on two prominent context-
dependent semantic parsing benchmarks: (1)
SParC (Yu et al., 2019b) is a cross-domain multi-
turn text-to-SQL dataset, which encompasses
4, 298 question turns, featuring a substantial corpus
of approximately 12k+ natural language questions,
each meticulously annotated with its corresponding
SQL expression in the form of question-SQL pairs.
(2) CoSQL (Yu et al., 2019a) is a conversational
text-to-SQL corpus, which comprises a comprehen-
sive collection of 30k+ turns plus 10k+ annotated
SQL queries. Both CoSQL and SParC contain 200
complex databases spanning 138 distinct domains.
Notably, CoSQL is particularly a more challeng-
ing benchmark due to its alignment with real-world
application scenarios compared to SParC.

3.2. Baseline Models
We present a comparative analysis of various mod-
els to demonstrate the effectiveness of TP-Link.
The models compared are primarily classified into

two categories: semantic parsing methods and tab-
ular knowledge pre-trained language models.

We first compare TP-Link against previous
context-dependent parsing systems: EditSQL
(Zhang et al., 2019), GAZP (Zhong et al., 2020),
IGSQL (Cai and Wan, 2020), RichContext (Liu
et al., 2020), IST-SQL (Wang et al., 2021), R2SQL
(Hui et al., 2021), DELTA (Chen et al., 2021), RAT-
SQL (Wang et al., 2020),PICARD (Scholak et al.,
2021),UNIFIEDSKG (Xie et al., 2022), RASAT (Qi
et al., 2022), HIE-SQL (Zheng et al., 2022), CQR-
SQL (Xiao et al., 2022), MIGA (Fu et al., 2022).

Since TP-Link mainly focus on pre-training im-
provements for context-dependent parsing mod-
els, we compare the performance of different pre-
training model variants with the same downstream
model. Specifically, the pre-trained models for com-
parison are as follows: BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), GraPPa (Yu et al.,
2021a), SCoRe (Yu et al., 2021b), STaR (Cai
et al., 2022).

Furthermore, we also compare the performance
of TP-Link with ChatGPT (Liu et al., 2023), one
of the most powerful zero-shot models in context-
dependent text-to-SQL scenarios.

3.3. Implementation Details
In the pretraining phase, we initialize our pretrained
language model using the ELECTRA (Clark et al.,
2020). We retained the Replaced Token Detection
(RTD) task from ELECTRA as part of the masked
language modeling task to further enhance the
model’s performance. The objective of this task
is to improve the language understanding ability
of the pretrained language model and prevent mis-
leading predictions in downstream tasks. Next, we
continually pre-train the ELECTRA on a synthetic
text-to-SQL corpus consisting of 480k examples,
following the methodology introduced by Cai et al.
(2022). As a result, we obtain our proposed TP-
Link.

Phrase Params Value

Pre-training

Model ELECTRA
Mask Rate 0.15
Max Squence Length 256
Optimizer Adam
Learning Rate 1e− 6
Gradient Clipping 1
Batch Size 30
Structure Similarity α 0.5

Fine-tuning Model LGESQL
Batch Size 100

Table 2: Some of the parameters and values used
during pre-training and fine-tuning.

In the downstream phase, we choose the
LGESQL (Cao et al., 2021) as the downstream
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Model SParC CoSQL

QM(%) IM(%) QM(%) IM(%)

Previous Parsing Systems.

EditSQL + BERT (Zhang et al., 2019) 47.2 29.5 39.9 12.3
GAZP + BERT (Zhong et al., 2020) 48.9 29.7 42.0 12.3
IGSQL + BERT (Cai and Wan, 2020) 50.7 32.5 44.1 15.8
RichContext + BERT (Liu et al., 2020) 52.6 29.9 41.0 14.0
IST-SQL + BERT (Wang et al., 2021) 47.6 29.9 44.4 14.7
R2SQL + BERT (Hui et al., 2021) 54.1 35.2 45.7 19.5
DELTA + BART (Chen et al., 2021) 58.6 35.6 51.7 21.5
RAT-SQL + SCoRe (Wang et al., 2020) 62.2 42.5 52.1 22.0
T5-3B + PICARD (Scholak et al., 2021) - - 56.9 24.2
UNIFIEDSKG (Xie et al., 2022) 61.5 41.9 54.1 22.8
RASAT + PICARD (Qi et al., 2022) 66.7 47.2 58.8 27.0
HIE-SQL + GraPPa (Zheng et al., 2022) 64.7 45.0 56.4 28.7
CQR-SQL + ELECTRA (Xiao et al., 2022) 67.8 48.1 58.4 29.4
MIGA (Fu et al., 2022) 67.3 48.9 59.0 29.8

Zero-shot Models.

ChatGPT (Liu et al., 2023) 37.6 20.1 37.9 13.0

Pre-trained Models.

LGESQL 52.4 31.3 41.2 15.0
w. BERT (Devlin et al., 2019) 59.8 40.5 50.7 20.8
w. RoBERTa (Liu et al., 2019) 61.6 41.2 51.9 20.8
w. GraPPa (Yu et al., 2021a) 62.5 42.4 52.6 21.5
w. SCoRe (Yu et al., 2021b) 62.3 43.6 52.3 22.5
w. STaR (Cai et al., 2022) 66.9 46.9 59.7 30.0
w. TP-Link 68.0 (↑ 0.2 / 1.1) 50.0 (↑ 1.1 / 3.1) 60.7 (↑ 1.7 / 1.0) 31.7 (↑ 1.9 / 1.7)

Table 3: Experimental results of various methods in terms of question match (QM) accuracy and interaction
match (IM) accuracy on both SParC and CoSQL dev datasets. “-” means that the results are not accessible.
The indicators in the parentheses represent the improvements of our model in comparison to the best
results from the previous parsing system and pre-trained models, respectively. All percentage changes in
this paper are reported as absolute values.

inference model which performs well in single-turn
text-to-SQL semantic parsing tasks. Following that,
we replace the original ELECTRA in LGESQL with
our pre-trained TP-Link, followed by fine-tuning on
the downstream datasets. In this paper, the param-
eters of the downstream LGESQL are kept mostly
consistent with the original model, except for the
direct concatenation of the current utterance and
historical utterances as part of the input. Further-
more, to thoroughly validate the effectiveness of
our model, we conduct additional combined ex-
periments with other pre-trained language models
based on LGESQL as the foundational downstream
model. Table 2 lists some of the parameters and val-
ues used during model pre-training and fine-tuning
phrase.

3.4. Evaluation Metrics

We use two evaluation metrics to intuitively demon-
strate the performance of our model. One is the
Question Match Accuracy (QM), which indicates
whether the SQL query generated by the model
matches the actual SQL query exactly. The other
metric is the Interaction Match Accuracy (IM), which
accounts for the QM score of each question in a
multi-turn dialogue interaction.

4. Experiment

4.1. Main Result

The final results are shown in Table 3. TP-Link
represents the model proposed in this paper. Some
experimental results are referenced from STaR (Cai
et al., 2022) and MIGA (Fu et al., 2022). For the
results of ChatGPT, we directly utilize the inference
results from Liu et al. (2023) to recalculate the QM
and IM metrics.

Specifically, compared to methods in previous
advanced parsing systems, TP-Link has achieved
significant and consistent improvements in both QM
and IM. On the SParC dataset, QM and IM have
improved by at least 0.2% and 1.1% respectively,
and on the CoSQL dataset, QM and IM have im-
proved by at least 1.7% and 1.9%. When consider-
ing a unified downstream model, TP-Link has also
demonstrated notable improvements compared to
various pre-trained models. On the SParC dataset,
QM and IM have improved by at least 1.1% and
3.1%, and on the CoSQL dataset, there have been
improvements of at least 1.0% and 1.7% respec-
tively. The SOTA results highlight TP-Link’s strong
performance in multi-turn text-to-SQL tasks.

When compared to zero-shot ChatGPT, TP-
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Figure 3: A hard case on CoSQL dataset. TP-Link gives the correct predictions while STaR fails.

Model
SParC CoSQL

QM(%) IM(%) QM(%) IM(%)

TP-Link 68.0 50.0 60.7 31.7
w/o ULP 66.3 (↓1.7) 46.9 (↓3.1) 59.4 (↓1.3) 30.4 (↓1.3)
w/o SLP 66.0 (↓2.0) 46.7 (↓3.3) 58.8 (↓1.9) 29.4 (↓2.3)
w/o ULP & SLP 65.3 (↓2.7) 45.6 (↓4.4) 57.0 (↓3.7) 27.3 (↓4.4)

Table 4: Ablation study of pretraining objectives in
terms of QM and IM on the dev sets of both SParC
and CoSQL.

Link’s QM and IM on SParC improve by 30.4% and
29.9% respectively, and on CoSQL, QM and IM im-
prove by 22.8% and 18.7% respectively. The results
demonstrate the difficulty of context-dependent text-
to-SQL task, as well as the gap in zero-shot perfor-
mance compared to fine-tuning, thereby indicating
the superiority of TP-Link.

In summary, TP-Link consistently outperforms
other models in comparisons, demonstrating its
effectiveness and generalizability.

4.2. Ablation Study

4.2.1. Effectiveness of Pretraining Objectives

In order to independently validate the effectiveness
of the two pretraining objectives proposed in this
paper, we conducted ablation experiments on the
pretraining objectives, and the results are shown
in Table 4. We performed ablation experiments for
Utterance Linking Prediction (ULP, i.e. , w/o SLP
experiment), and Schema Linking Prediction (SLP,
i.e. , w/o ULP experiment) based on SQL tree edit
distance. Results thoroughly validate that each pre-
training objective has a standalone improvement ef-
fect, and the best experimental results are achieved
when all pretraining objectives are used simultane-
ously.

Model
SParC CoSQL

QM(%) IM(%) QM(%) IM(%)

TP-Link 68.0 50.0 60.7 31.7
w. SLP 66.3 (↓1.7) 46.9 (↓3.1) 59.4 (↓1.3) 30.4 (↓1.3)
w. SLP(full) 65.5 (↓2.5) 45.3 (↓4.7) 58.5 (↓2.2) 28.7 (↓3.0)

Table 5: Ablation study about refined schema link-
ing information of TP-Link in terms of QM and IM
on the dev sets of both SParC and CoSQL.

4.2.2. Effectiveness of Similarity Filtering

To thoroughly validate the effectiveness of SQL
structure similarity filtering, we conduct relevant
ablation experiments. The results are shown in Ta-
ble 5, where full indicates the usage of complete
schema linking information, i.e. , no schema linking
filtering based on similarity thresholds α. The re-
sults demonstrate a significant improvement when
applying SQL similarity filtering compared to not
using it, indicating the presence of considerable
redundancy in schema linking during multi-turn di-
alogues, which has a substantial impact on perfor-
mance. This experiment validates the necessity
and effectiveness of the similarity filtering method.

4.3. Case Study
Figure 3 illustrates a hard case on CoSQL. In the
second turn, STaR did not understand what "that"
referred to and treated "Nigeria" as the comparison
object. However, "Nigeria" itself is not comparable,
the comparable entity is the "population". TP-Link
successfully understood that "that" referred to the
"population" and consequently arrived at the cor-
rect answer. In the third turn, STaR had lost the in-
formation about "Asia" and mistakenly considered
"Nigeria" as a continent. On the other hand, TP-
Link could comprehend that "those countries" re-
ferred to the results from the previous turn, thereby
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Figure 4: The results of TP-Link and baselines on
CoSQL dev sets (a) by varying the difficulty levels
of the data and (b) by varying the conversation
turns.

inheriting the SQL statement from the previous turn
and correctly generating the SQL for the current
turn, accurately identifying "Nigeria" as a country.

4.4. Discussion
To further validate the effectiveness of the proposed
TP-Link, we compare the performance of TP-Link
with some baseline methods under different inter-
action turns and SQL difficulties.

4.4.1. Comparison of Different SQL Query
Difficulty Levels

We also conducted comparative experiments on
SQL query statements of different difficulty levels,
as shown in Figure 4(a). The experimental re-
sults indicate that in the case of [hard] and [extra
hard] difficulty levels of SQL generation, TP-Link
demonstrates best performance, which suggests
that TP-Link can effectively handle the generation
of more challenging SQL query statements, high-
lighting the effectiveness of schema linking model-
ing.

4.4.2. Comparison of Different Dialogue
Turns

We conduct comparative experiments, as depicted
in Figure 4(b), to compare the performance across
various dialogue turns. The experimental results
indicate that TP-Link outperforms other models
in longer dialogue turns (e.g.turn=3 or turn≥4),
which suggests that our model is more effective in
generating SQL queries in longer dialogue turns,
demonstrating the effectiveness of fine-grained ut-
terance linking and schema linking.

5. Related Work

Context-free Text-to-SQL Context-free text-to-
SQL refers to the process of taking a natural lan-
guage utterance and a database schema as in-
put and generating a SQL query as output. Cur-
rently, the mainstream dataset for context-free

text-to-SQL tasks is Spider (Yu et al., 2018), of
which each question corresponds to a SQL state-
ment. Generally, there are two mainstream ap-
proaches for context-free text-to-SQL tasks. One
is graph-based parsers, e.g.RAT-SQL (Wang et al.,
2020), LGESQL (Cao et al., 2021), S2SQL (Hui
et al., 2022). The other is T5-based parsers,
e.g.PICARD (Scholak et al., 2021), T5-SR (Li et al.,
2023b), which have achieved impressive perfor-
mance on Spider. Recently, Binder (Cheng et al.,
2023) utilizes Codex (Ouyang et al., 2022) for trans-
forming natural language into SQL/Python and
other programming languages, which requires only
a small amount of annotation to adapt to various
programming languages. Zhao et al. (2022) pro-
pose a data synthesis framework aiming to improve
the quality of the generated natural language ques-
tion to enhance performance. Recent study (Liu
et al., 2023) indicates that even without using any
training data, ChatGPT still possesses strong text-
to-SQL capabilities. DIN-SQL (Pourreza and Rafiei,
2023) achieves SOTA performance on the Spider
using GPT-4 through in-context learning (Brown
et al., 2020; Min et al., 2022).

Context-dependent Text-to-SQL Nevertheless,
context-free text-to-SQL struggles to handle com-
plex queries in a single statement. Users often
prefer interactive dialogues, where they can grad-
ually achieve their goals using context. Context-
dependent text-to-SQL semantic parsing (Yu et al.,
2019a,b) enables users to achieve their goals
through multi-turn conversations, continuously re-
fining their questions based on query results during
the dialogue. Following that, a series of methods
emerged to address this task. Based on a copying
mechanism, EditSQL (Zhang et al., 2019) consid-
ers the information from the SQL query of the pre-
vious turn when predicting the SQL query for the
current turn of dialogue. R2SQL (Hui et al., 2021)
introduces a memory decay mechanism to simulate
the changes in the database schema within the di-
alogue flow. In addition, some methods draw inspi-
ration from dialogue system’s dialogue state track-
ing(DST) modules. ISTSQL (Wang et al., 2021)
treats the database schema as the dialogue state,
which enhances the effectiveness by tracking the
database schema state and SQL keyword state.
CQR-SQL (Xiao et al., 2022) simplifies the schema
linking information fused with downstream parsing
models by rewriting multi-turn dialogues. MIGA (Fu
et al., 2022) integrates referential relationship infor-
mation and schema linking information through a
multi-task approach. BIRD (Li et al., 2023a) pro-
poses a more challenging benchmark for large-
scale cross-domain text-to-SQL tasks.
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6. Conclusion

In this paper, we propose TP-Link, a novel tabu-
lar pretraining framework for multi-turn text-to-SQL,
incorporating two novel pretraining objectives. Ut-
terance linking prediction models syntactic rela-
tionships in multi-turn dialogues, enabling the pre-
trained language model to learn syntactic knowl-
edge in advance, which addresses issues of coref-
erence and ellipsis that exist in multi-turn dialogues.
Schema linking prediction filters accurate schema
linking relationships based on tree-based edit dis-
tance and SQL structural similarity, allowing pre-
trained language models to learn precise schema
linking knowledge and address redundancy issues
in the schema linking relations. Extensive experi-
ments demonstrate that our model achieves new
state-of-the-art results on downstream datasets
SParC and CoSQL.

Limitations

Since the emergence of large language models
(LLMs) like GPT-3(Brown et al., 2020), there has
been a trend towards using LLMs to accomplish
various natural language processing tasks with in-
context learning. The proposed TP-Link relies on
supervised data and is challenging to directly ex-
tend to LLMs. Recent study (Liu et al., 2023) also
demonstrates the potential of LLMs in handling
multi-turn text-to-SQL task under zero-shot scenar-
ios. In future work, we plan to expand our method
to larger-scale models, and further into zero-shot
scenarios.
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