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Abstract
To efficiently train quality estimation of text simplification on a small-scale labeled corpus, we train sentence difficulty
estimation prior to fine-tuning the pre-trained language models. Our proposed method improves the quality estimation
of text simplification in the framework of transfer fine-tuning, in which pre-trained language models can improve
the performance of the target task by additional training on the relevant task prior to fine-tuning. Since the labeled
corpus for quality estimation of text simplification is small (600 sentence pairs), an efficient training method is
desired. Therefore, we propose a training method for pseudo quality estimation that does not require labels for quality
estimation. As a relevant task for quality estimation of text simplification, we train the estimation of sentence difficulty.
This is a binary classification task that identifies which sentence is simpler using an existing parallel corpus for text
simplification. Experimental results on quality estimation of English text simplification showed that not only the quality
estimation performance on simplicity that was trained, but also the quality estimation performance on fluency and
meaning preservation could be improved in some cases.
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1. Introduction

Text simplification (Alva-Manchego et al., 2020) is
the task that paraphrases complex expressions into
simpler ones while preserving their meaning. Auto-
matic sentence simplification contributes to learn-
ing and reading support for children (De Belder and
Moens, 2010) and language learners (Petersen and
Ostendorf, 2007) as well as improves the perfor-
mance of other natural language processing tasks
such as relation extraction (Miwa et al., 2010) and
machine translation (Štajner and Popovic, 2016).

The quality of text simplification models has been
evaluated by human evaluation in terms of flu-
ency, meaning preservation, and simplicity, and
by automatic evaluation such as SARI (Xu et al.,
2016) and BLEU (Papineni et al., 2002) based
on reference sentences and readability metrics
such as FKGL (Kincaid et al., 1975). However,
human evaluation has problems with cost and re-
producibility, while automatic evaluation has a low
correlation with human evaluation (Sulem et al.,
2018; Tanprasert and Kauchak, 2021). In addition,
when text simplification models are used in the real
world, users often do not have reference sentences,
so automatic evaluation based on reference sen-
tences such as SARI cannot be used. Therefore,
reference-less quality estimation (QE) for text sim-
plification (Štajner et al., 2016; Kajiwara and Fujita,
2017; Martin et al., 2018; Alva-Manchego et al.,
2021) has been studied.

Existing QE methods for text simplification (Kaji-
wara and Fujita, 2017; Martin et al., 2018) trained
machine learning models with feature extraction us-
ing evaluation metrics based on word embeddings
and word matching ratio. Although it is expected

that the QE performance can be improved by em-
ploying context-aware deep learning models, this
is difficult due to the small-scale of the labeled data
for this task. Two existing datasets for QE of text
simplification, QATS1 (Štajner et al., 2016) targets
models based on statistical machine translation
and Simplicity-DA2 (Alva-Manchego et al., 2021)
targets models based on neural machine transla-
tion, both consisting of about 600 sentence pairs,
which is small-scale to sufficiently train QE models
based on deep learning.

To address this problem, we train the relevant
task (pseudoQE) prior to QE training. This facil-
itates efficient training on a small-scale labeled
corpus for QE of text simplification. As a pseudo-
QE task, we propose the related task of identify-
ing complex and simple sentences using an exist-
ing large-scale parallel corpus for text simplifica-
tion (Jiang et al., 2020). Experimental results on QE
of English text simplification using the Simplicity-
DA dataset (Alva-Manchego et al., 2021) showed
that QE performance on simplicity was improved.
Moreover, beyond expectations, some deep learn-
ing models showed improvements in fluency and
meaning preservation.

2. Related Work

2.1. Quality Estimation for Simplification
Text simplification as a sequence-to-sequence task
has been studied based on monolingual parallel

1https://qats2016.github.io/
2https://github.com/feralvam/

metaeval-simplification

https://qats2016.github.io/
https://github.com/feralvam/metaeval-simplification
https://github.com/feralvam/metaeval-simplification
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Figure 1: Overview of the proposed method. In both fine-tuning tasks, the latter sentence is evaluated.

corpora consisting of complex and simple sen-
tences (Coster and Kauchak, 2011; Xu et al., 2015).
In the early 2010s (Specia, 2010; Wubben et al.,
2012; Narayan and Gardent, 2014; Štajner et al.,
2015; Kajiwara and Komachi, 2016), text simplifi-
cation based on phrase-based statistical machine
translation (Koehn et al., 2003) has been studied.
Since the late 2010s (Nisioi et al., 2017; Zhang and
Lapata, 2017; Dong et al., 2019; Kriz et al., 2019;
Nishihara et al., 2019), following the success of
neural machine translation (Sutskever et al., 2014;
Bahdanau et al., 2015; Luong et al., 2015), text
simplification based on recurrent neural networks
has been studied. In recent years (Zhao et al.,
2018; Kajiwara, 2019; Martin et al., 2020; Maddela
et al., 2021; Yanamoto et al., 2022), text simplifi-
cation based on the Transformer model (Vaswani
et al., 2017) has become mainstream, as have
other sequence-to-sequence tasks such as ma-
chine translation.

QE is a task of estimating the quality of the out-
put sentences from the input and output sentence
pairs. Previous QE studies for text simplification
have trained machine learning models, such as
support vector machine and ridge regression, on
QATS dataset (Štajner et al., 2016) for evaluating
text simplification models based on statistical ma-
chine translation. Kajiwara and Fujita (2017) per-
formed QE as a classification model of Good, OK,
and Bad based on word embeddings-based feature
extraction (Mikolov et al., 2013). Martin et al. (2018)
performed feature extraction based on machine
translation evaluation metrics such as BLEU (Pa-
pineni et al., 2002) and readability metrics such
as FKGL (Kincaid et al., 1975) for both regression
and classification QE. Alva-Manchego et al. (2021)
constructed the Simplicity-DA dataset for evaluat-
ing text simplification models based on deep learn-
ing. Unlike QATS, which targets text simplification
models based on statistical machine translation,
Simplicity-DA targets recent text simplification mod-
els, but like QATS, it is small-scale, at about 600
sentence pairs. Efficient training methods are de-
sired for high-quality QE from small-scale labeled
corpora.

2.2. Transfer Fine-Tuning
In recent natural language processing, transfer
learning approaches, in which pre-trained models
such as masked language models (Devlin et al.,
2019; Liu et al., 2019; He et al., 2021) are fine-tuned
on the target task, have achieved high performance
in a variety of applications (Wang et al., 2019). Its
performance can be further improved by training
on a task with similar characteristics to the target
task before fine-tuning, which is called transfer fine-
tuning (Arase and Tsujii, 2019). Masked language
modeling at the sentence level for the summariza-
tion task (Zhang et al., 2020) and reconstruction of
round-trip translations for the paraphrase genera-
tion task (Kajiwara et al., 2020) have been reported
to be effective as pre-training with similar charac-
teristics to the target task, respectively. Transfer
fine-tuning is also effective for classification and
regression tasks. For example, additional training
to classify paraphrases between pre-training and
fine-tuning can improve the performance of sen-
tence similarity estimation (Arase and Tsujii, 2019).
However, effective additional training methods have
not been identified in transfer fine-tuning for the QE
of text simplification task.

3. Proposed Method

In this study, we train QE models for text simpli-
fication by fine-tuning a pre-trained model in two
steps as shown in Figure 1. While labeled corpora
for QE of text simplification are available only on
a small-scale, our additional task does not require
QE labels and uses only existing parallel corpora
for text simplification, allowing it to be trained on
a large-scale. Following previous studies (Štajner
et al., 2016; Kajiwara and Fujita, 2017; Martin et al.,
2018), we train each QE model on the aspects of
fluency, meaning preservation, and simplicity.

3.1. Pre-training
We employ the Transfomer encoder (Vaswani et al.,
2017) for our QE model. To train efficiently from a
small-scale labeled corpus, we first pre-train our QE
model on a large-scale raw corpus. Although QE
models can be pre-trained on any task, this study
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Task Dataset Type Sentences

pseudoQE

Wiki-Auto Train 488,332
Turk Corpus Dev 2,000

Newsela-Auto Train 394,300
Dev 43,317

QE Simplicity-DA
Train 400
Dev 100
Test 100

Table 1: Corpus size

employs masked language modeling and uses pre-
trained models such as BERT (Devlin et al., 2019).

3.2. Fine-tuning on Relevant Task
To address the low-resource problem in QE for text
simplification, we train the pre-trained model on the
pseudo-QE task before fine-tuning it on the QE-
labeled corpus. As shown in the center of Figure 1,
sentence pairs of complex and simple sentences
are concatenated and input into the QE model to
train a binary classification of whether the latter
sentence is more complex or simpler. Since such
a task of sentence difficulty estimation is similar to
the task of QE for simplicity, this additional train-
ing of pseudo-QE can be expected to improve the
performance of QE for simplicity of text simplifica-
tion. Note that our pseudo-QE training does not
require manually labeled QE labels, and only an
existing parallel corpus for text simplification (e.g.,
Wiki-Auto (Jiang et al., 2020) or Newsela (Xu et al.,
2015)) is required, which allows for large-scale train-
ing at low cost.

3.3. Fine-tuning on Target Task
For our QE model fine-tuned on the relevant task
in the previous section, we finetune it on the actual
QE task using sentence pairs of input sentences
and output sentences of the text simplification sys-
tem, as shown in the right side of Figure 1. We
expect that QE models that can be evaluated at a
coarse level by training in the pseudo-QE task can
be evaluated at a finer level by fine-tuning on the
actual QE task.

4. Experiment

This experiment evaluates sentence-level QE of
English text simplification on the Simplicity-DA
dataset (Alva-Manchego et al., 2021). We trained
each regression model on the aspects of fluency,
meaning preservation, and simplicity. The perfor-
mance of QE models was automatically evaluated
using the Pearson correlation between predicted
scores and human labels.

F M S
Kajiwara-17 0.405 0.670 0.373
Martin-18 0.462 0.680 0.320
BERT 0.766 0.638 0.482
+ pseudoQE (Wiki) 0.739 0.710 0.503
+ pseudoQE (News) 0.679 0.734 0.470
RoBERTa 0.790 0.779 0.543
+ pseudoQE (Wiki) 0.741 0.738 0.517
+ pseudoQE (News) 0.746 0.764 0.568
DeBERTa 0.716 0.734 0.473
+ pseudoQE (Wiki) 0.754 0.728 0.522
+ pseudoQE (News) 0.682 0.766 0.519

Table 2: QE performance by Pearson correlation
coefficient. F: Fluency, M: Meaning preservation,
and S: Simplicity. Values that are improved over
the baseline model are in bold, and the highest
performance is highlighted by underlining.

4.1. Setting
Data Table 1 shows the number of sentence pairs
for the datasets used in this experiment. For the
pseudo-QE task, we used two parallel corpora,
Wikipedia and Newsela, which are commonly used
for training English text simplification models. For
Wikipedia, we used Wiki-Auto3 (Jiang et al., 2020)
for training and Turk Corpus4 (Xu et al., 2016)
for validation. For Newsela, we used Newsela-
Auto3 (Jiang et al., 2020) for both training and
validation. For fine-tuning on the QE task, we
used Simplicity-DA dataset2 (Alva-Manchego et al.,
2021). This dataset consisted of 600 sentence
pairs, randomly divided into 400 for training and
100 each for validation and evaluation.

Model We began training QE models from three
pre-trained models: BERT5 (Devlin et al., 2019),
RoBERTa6 (Liu et al., 2019), and DeBERTa7 (He
et al., 2021). We implemented each model using
HuggingFace Transformers (Wolf et al., 2020). For
each pre-trained model, we trained three QE mod-
els: baseline, which fine-tunes only QE task, pseu-
doQE (Wiki), which applies our proposed method
with Wikipedia, and pseudoQE (News), which ap-
plies our proposed methods with Newsela.

For the pseudo-QE task, we trained three epochs

3https://github.com/chaojiang06/
wiki-auto

4https://github.com/cocoxu/
simplification

5https://huggingface.co/
bert-base-uncased

6https://huggingface.co/roberta-base
7https://huggingface.co/microsoft/

deberta-base

https://github.com/chaojiang06/wiki-auto
https://github.com/chaojiang06/wiki-auto
https://github.com/cocoxu/simplification
https://github.com/cocoxu/simplification
https://huggingface.co/bert-base-uncased
https://huggingface.co/bert-base-uncased
https://huggingface.co/roberta-base
https://huggingface.co/microsoft/deberta-base
https://huggingface.co/microsoft/deberta-base
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of cross-entropy loss minimization with a batch size
of 1,024, a learning rate of 5e-5, and the optimiza-
tion method AdamW (Loshchilov and Hutter, 2019).
The model in the epoch with the highest accuracy
on the validation data was then used for the fine-
tuning of the QE task. For the QE task, we trained
for mean squared error minimization with a batch
size of 32 and the optimization method AdamW.
Training stopped when the Pearson correlation in
the validation data stopped improving for 10 epochs.
Four learning rates were tried: 5e-5, 4e-5, 3e-5,
and 2e-5, and we used the model with the high-
est Pearson correlation on the validation data. For
all models, we train five times each with changing
random seeds and report the average score of the
three models excluding the maximum and minimum
values.

Comparative Model We compare the perfor-
mance of two existing methods based on machine
learning with our method based on deep learning.
The Kajiwara-17 model (Kajiwara and Fujita, 2017)
was implemented using scikit-learn.8 The Martin-
18 model (Martin et al., 2018) was implemented
using their implementation.9

4.2. Result
Experimental results are shown in Table 2. For all
pre-trained models, the proposed method (+pseu-
doQE) was able to improve QE performance on
simplicity in at least one of the domains. Since
the proposed method added training related to the
QE of simplicity, we expected to improve the QE
performance on simplicity. However, beyond our
expectations, the QE performance on fluency of
DeBERTa and meaning preservation of BERT and
DeBERTa were also improved.

4.3. Analysis
Figure 2 shows the change in QE performance
when the amount of training data for the pseudo-QE
task is reduced to 250,000, 125,000, 50,000, and
25,000 sentence pairs. We found that for all pre-
trained models, the impact of the proposed method
peaks at 50,000 to 100,000 sentence pairs of train-
ing. Therefore, there is no need to prepare a large-
scale parallel corpus for text simplification with
more than 100,000 sentence pairs. Since parallel
corpora for text simplification on the scale of tens of
thousands of sentence pairs are available for lan-
guages other than English, such as Italian (Brunato
et al., 2016) and Japanese (Maruyama and Ya-
mamoto, 2018; Katsuta and Yamamoto, 2018), our

8https://scikit-learn.org
9https://github.com/facebookresearch/

text-simplification-evaluation
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Figure 2: Analysis of training data size and QE
performance.

method may be applicable to QE of text simplifica-
tion in other languages.

We observe the number of sentence pairs in the
parallel corpus for text simplification used for ad-
ditional training for each model. For BERT, the
proposed method can outperform the QE perfor-
mance of the baseline when using a parallel corpus
of 50,000 sentence pairs or more. For DeBERTa,
the proposed method can outperform the QE per-
formance of the baseline even with a parallel cor-
pus of 25,000 sentence pairs. Although RoBERTa
achieves the highest performance, there is a large
variation in performance for each experiment.

5. Conclusion

To efficiently train QE models for text simplifica-
tion with small-scale labeled corpora, we proposed
transfer fine-tuning, in which pre-trained models
are additionally trained with a pseudo-QE task prior
to fine-tuning. As a pseudo-QE task, the proposed
method trains a binary classification that identifies
which sentence is simpler using a general parallel
corpus for text simplification without QE labels.

Experimental results on English text simplifica-
tion showed that the proposed method not only
improves QE performance on simplicity, but also
improves fluency and meaning preservation, de-
pending on the pre-trained model. Our detailed
analysis reveals that a parallel corpus of text sim-
plification for additional training is enough on the
scale of tens of thousands of sentence pairs. This is
the size of the corpus also accessible in languages
other than English.

Our future work includes designing additional
training methods that focus on fluency and meaning
preservation, as well as working on quality estima-
tion of text simplification in non-English languages.

https://scikit-learn.org
https://github.com/facebookresearch/text-simplification-evaluation
https://github.com/facebookresearch/text-simplification-evaluation
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