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Abstract
Training large language models (LLMs) with open-domain instruction data has yielded remarkable success in
aligning to end tasks and human preferences. Extensive research has highlighted the importance of the quality
and diversity of instruction data. However, the impact of data complexity, as a crucial metric, remains relatively
unexplored from three aspects: (1)where the sustainability of performance improvements with increasing complexity
is uncertain; (2)whether the improvement brought by complexity merely comes from introducing more training tokens;
and (3)where the potential benefits of incorporating instructions from easy to difficult are not yet fully understood. In
this paper, we propose Tree-Instruct to systematically enhance the instruction complexity in a controllable manner. By
adding a specified number of nodes to instructions’ semantic trees, this approach not only yields new instruction
data from the modified tree but also allows us to control the difficulty level of modified instructions. Our preliminary
experiments reveal the following insights: (1)Increasing complexity consistently leads to sustained performance
improvements of LLMs. (2)Under the same token budget, a few complex instructions outperform diverse yet
simple instructions. (3)Curriculum instruction tuning might not yield the anticipated results; focusing on increasing
complexity appears to be the key. Code and data are released: https://github.com/xiuzbl/Tree-Instruct.
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1. Introduction

The latest generation of large language mod-
els (LLMs) has attracted significant attention due
to their immense potential in language technolo-
gies (OpenAI, 2022; Touvron et al., 2023; Wei
et al., 2023; Li et al., 2023). To enhance interac-
tive user requests and chat interfaces, these mod-
els undergo instruction-tuning using supervised
input-output pairs (Iyer et al., 2022; Jang et al.,
2023; Chung et al., 2022). This process enables
the model to comprehend the required style and
format for effective user interaction, showcasing
the knowledge and capabilities gained during pre-
training (Ouyang et al., 2022).

Consequently, the efficacy of instruction data
significantly influences LLMs’ abilities, shaping
users’ perceptions of their capabilities (Wang et al.,
2023g; Köpf et al., 2023; Chiang et al., 2023). Re-
cently, LIMA has demonstrated that with just 1000
carefully curated prompts and responses, an LLM
can achieve remarkably strong performance (Zhou
et al., 2023). This suggests that the scaling laws
of instruction tuning are not solely dependent on
data quantity but rather influenced by prompt di-
versity and quality. However, one critical and less-
explored aspect of evaluating instruction data is
complexity. There are at least three unanswered
questions related to complexity: (1) The scaling
law of instruction complexity: Intuitively, more
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complex instruction data might elicit more poten-
tial capabilities in LLMs to address intricate prob-
lems (Luo et al., 2023; Mukherjee et al., 2023).
WizardLM (Xu et al., 2023) introduce in-depth and
in-breadth evolving methods to rewrite prompts into
more complex and diverse versions, resulting in a
12.4% increase in LLMs’ win rate with the same
amount of data. Yet, whether WizardLM’s perfor-
mance improvement is due to complexity or merely
derived from diversity remains uncertain. More-
over, the ongoing enhancements in complexity are
yet to be explored. (2) The relationship between
complexity-induced performance improvement
and token quantity : Enhancing instance complex-
ity inevitably increases the number of tokens per
instance (Dai et al., 2021). While WizardLM ex-
hibits performance improvements with the same
instance quantity, it increases the number of to-
kens per instance. This raises the question of
whether complexity-induced improvement in LLMs
results from increased training tokens. As known,
enlarging LLMs’ pretraining token counts can lead
to better performance (Muennighoff et al., 2023; Tay
et al., 2022). (3) The effectiveness of complexity-
based curriculum instruction learning: Curricu-
lum learning is a strategy in machine learning that
starts with easy instances and gradually introduces
harder ones (Bengio et al., 2009). Its effectiveness
has been demonstrated in various NLP tasks like
machine translation (Zhou et al., 2020), dialogue
systems (Zhu et al., 2021), and question answer-
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ing (Sachan and Xing, 2016). However, its potential
efficacy in instruction tuning is still under-explored.

However, to answer the aforementioned ques-
tions, the key hurdle lies in finding a controlled
way to increase the complexity of instruction data
without introducing unwanted factors such as
diversity. WizardLM (Xu et al., 2023) employs an
in-depth evolving prompt like “Your objective
is to rewrite a given prompt into a
more complex version to make ChatGPT
and GPT4 a bit harder to handle.” to
complicate the existing instructions. Unfortunately,
although intended to enhance complexity, this
approach might inadvertently introduce diversity
by diverting from the initial instruction objectives.
This issue becomes particularly severe when
repeatedly employing in-depth evolving to achieve
varying levels of complexity. We study and analyze
the instructions before and after in-depth evolving
in Sec. 4.1. As illustrated in Fig. 2, the iteratively
evolved instructions append additional objec-
tives that deviate from the original instructions,
showcasing a greater diversity.

To address this concern, we propose Tree-
Instruct, which involves prompting LLMs to add
a specific number of new nodes to the semantic
tree of an existing instruction, as opposed to ma-
nipulating the text sequence directly, as done in
Self-Instruct (Wang et al., 2022a) or WizardLM (Xu
et al., 2023). We use the number of added nodes
to represent the introduced level of complexity. The
advantage of this approach lies in the fact that se-
mantic tree nodes lack any sequential order (Shiv
and Quirk, 2019). By enforcing LLMs to operate
on the semantic tree, this process becomes anal-
ogous to inserting new words into the middle of
the original instructions. This compels the models
to complicate while adhering to the structural con-
straints of the initial instruction rather than merely
appending new instructions. It can significantly miti-
gate the issue of straying from the primary theme of
the initial instruction. We leverage GPT-4 to assess
the consistency of evolved instructions with origi-
nal ones, and the results verify that Tree-Instruct
improves WizardLM’s consistency score from 0.56
to 0.69. Fig. 1 highlights how the number of added
nodes raises the complexity level of the samples.

With the help of Tree-Instruct, we have obtained
the following preliminary experimental conclusions:

(1) As the complexity of the instruction data
increases, the benefits of instruction tuning
continue to grow : Following LIMA(Zhou et al.,
2023), we attempt instruction tuning using 1,000
samples from Alpaca-GPT-4 as a base. We add 3,
6, and 10 nodes to the semantic tree of each sam-
ple, resulting in performance gains of 13%, 20%,
and 26%, respectively, across eight sub-skills such
as commonsense, writing, and coding, showing

consistent improvements. Furthermore, this scaling
law can be extended to more complex instruction
data. For instance, when fine-tuning around 6,000
conversations filtered from ShareGPT via Open-
Chat(Wang et al., 2023a) (showing excellent perfor-
mance in the open-source LLMs), we observe that
by increasing the complexity through Tree-Instruct
to around 1,100 users’ instructions, the winning rate
increases from 84.56% to 86.19% for AlpacaEval
benchmark1.

(2) The increase in complexity partly comes
from additional tokens, but a few complex in-
structions outperform diverse yet simple in-
structions, under the same token budget.: We
find that as the complexity increases, the number
of tokens also increases. Adding ten nodes in the
semantic tree increases the average token length
of instructions from 186 to 607. Hence, to make a
fair comparison, we increase the number of original
instructions from 1,000 to 4,000 to match the total
token quantity of our tree-instructed samples. Un-
der this setting, the performance gain from adding
ten nodes still achieves more than 15%. This in-
dicates that the improvement due to complexity is
partly attributed to the increased tokens, but in-
creasing the complexity of samples is equivalent
to the diversity achieved by four times the token
count of simple samples. Moreover, with an equal
number of instruction tokens, the evolution of Tree-
Instruct yields a 2% higher win rate than those from
three iterations of in-depth evolution of WizardLM,
demonstrating the superior efficacy of Tree-Instruct
in enhancing complexity.

(3) Curriculum instruction tuning may not be
effective; increasing complexity is all you need:
We implement curriculum learning by progressively
training the LLM on increasing levels of difficulty.
Initially, we train it on easy-level data with an addi-
tion of three nodes, followed by medium-level data
with six nodes, and ultimately on hard data with ten
nodes added. We observe that, when given the
same number of training steps, curriculum learn-
ing does outperform training with a mixed difficulty
of samples but still falls short compared to train-
ing solely on the added ten-node instruction data.
This indicates that, as sample complexity increases,
the significance of simpler samples diminishes sig-
nificantly, suggesting that repeating training with
complex samples may be sufficient.

2. Related Work

Large Language Models (LLMs), trained on exten-
sive textual datasets, have risen as premier solu-
tions for various NLP tasks (Zhao et al., 2023a). De-
spite their remarkable performance, these models

1https://github.com/tatsu-lab/alpaca_
eval
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Figure 1: The scaling law of instruction complexity. We experiment with enhancing the complexity of
semantic trees for 1,000 Alpaca instructions by adding extra 3, 6, and 10 nodes. We then evaluate models
fine-tuned on instruction data of varying complexities against text-davinci003 in terms of win rate on
AlpacaEval (Left). Additionally, we examine win rates on different subsets of AlpacaEval (Right). In the
left figure, we indicate above the stars the average token count for instructions of different complexity
levels. We also use WizardLM’s in-depth deepening as the baseline.

are not without their limitations. These limitations
encompass potential misunderstandings of human
instructions, the propensity to generate biased con-
tent, and the sporadic generation of hallucinated
information. Consequently, bringing LLMs in line
with human expectations has become a central fo-
cal point within the research community (Bai et al.,
2022; Song et al., 2023).

To attain this alignment, researchers need to
amass high-quality instructional data that authen-
tically mirrors human needs and expectations. A
rational starting point for data collection involves
the adaptation of existing NLP benchmarks into
natural language instructions, like T0 (Sanh et al.,
2021), PromptSource (Bach et al., 2022), Super-
NaturalInstruction (Wang et al., 2022b), Unnatural
Instructions (Honovich et al., 2022) and FLAN (Wei
et al., 2021; Longpre et al., 2023) are spearhead-
ing this strategy. These benchmarks encompass a
wide range of NLP tasks, spanning dialogue, rea-
soning, and coding, all unified under the realm of
language instructions. TÜLU(Wang et al., 2023e)
showcases that instructions from NLP tasks sig-
nificantly bolster the reasoning prowess of aligned
LLMs, where the diversity of tasks plays a pivotal
role in shaping the capabilities of LLMs.

Nevertheless, a notable trend in NLP datasets
is their propensity to emphasize particular skills,
consequently yielding instructions that possess a
somewhat confined scope. This constraint has the
potential to impede their capacity to meet the in-
tricate requirements of real-world applications. In
order to tackle these challenges, one possible ap-
proach is to formulate instructions via purposeful

human annotations. An exemplary precursor to
such a corpus is OpenAssistant (Köpf et al., 2023),
which comprises over 10k dialogues involving the
participation of 13k annotators from around the
world. Another remarkable venture into harness-
ing human-generated instructions through crowd-
sourcing is ShareGPT 2. This platform encourages
users to contribute and exchange their engaging
conversations with ChatGPT and GPT4.

While human annotation ensures both quality
and diversity, it becomes challenging to ensure the
quantity and complexity of instructional data due
to the highly expensive annotation process (Chen
et al., 2023c), and the distribution of difficulty lev-
els in human-created instructions tends to skew
towards being either easy (Luo et al., 2023). To ad-
dress this issue, Self-Instruct (Wang et al., 2022a)
leverages ChatGPT’s in-context learning capabil-
ity to generate a large volume of instructions from
a predefined set of human-annotated instructions
spanning diverse topics and task types. Building
upon this foundation, LIMA (Zhou et al., 2023) and
Alpagasus (Chen et al., 2023a) separately validate
the significant impact of data diversity and qual-
ity on instructional effectiveness. The selection of
thousands of high-quality and diverse instructional
examples proves more advantageous in achieving
better results compared to using the entire dataset.
Further increasing the number of instructions could
potentially induce a semantic shift in the LLMs (Al-
Shikh et al., 2023). Up to this point, three key met-
rics within the instructional data—diversity, quality,
and quantity—have been elucidated for their im-

22https://sharegpt.com/

2https://sharegpt.com/
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pact on tuning, though exploration into complexity
remains insufficient. While WizardLM (Xu et al.,
2023) demonstrates that evolving both the com-
plexity and diversity of instructions can lead to per-
formance enhancement, it does not deeply investi-
gate the individual importance of complexity. This
paper introduces a method, Tree-Instruct, which
enhances instructional complexity while simultane-
ously constraining thematic consistency to mitigate
variations in diversity. Our experiments preliminarily
establish a scaling law regarding complexity, show
that the improvement resulting from increased com-
plexity isn’t solely due to the introduction of more
training tokens and illustrate that LLMs only require
complex samples for instruction tuning, rather than
simple samples serving as foundational padding
for curriculum learning.

3. Tree-Instruct

Enhancing the complexity of natural language text
seems like a straightforward task for proficient
LLMs. For instance, WizardLM utilizes a simple text
prompt to complexify instructions as mentioned in
Sec. 1. However, due to the extensive pre-training
of LLMs on massive corpora, where models pre-
dict the next token based on the preceding context,
we’ve noticed that LLMs can often exploit the given
instruction by simply continuing the text beyond the
initial prompt to artificially amplify complexity. While
adding continuation constraints can enhance the
complexity of instructions, it simultaneously leads
them away from the core thematic focus. This di-
vergence expands the topic and domain, fostering
diversity that hinders our ability to solely assess
the impact of increased instruction complexity. We
leverage GPT-4 to automatically score the consis-
tency (range in 0 ∼ 1) of the instructions before and
after implementing in-depth deepening following
WizardLM. We found that it only gets a 0.56 align-
ment score. Furthermore, upon iteratively enhanc-
ing the instruction’s complexity, the guidance might
become ineffective, losing its original essence. For
instance, it might cease to present a question, ren-
dering it arduous for the LLM to generate a suitable
response. This phenomenon matches with obser-
vations made by WizardLM, which prompts them
to introduce the Elimination Evolving procedure.

To address this issue, we first consider what de-
termines the complexity of natural language text.
In linguistics and education, there is a lack of pre-
cise scientific consensus on determining the com-
plexity of the text. No single source can precisely
summarize a text’s complexity. Currently, a widely
accepted perspective suggests that qualitative mea-
sures of text complexity require an informed judg-
ment of text difficulty based on various factors. The
standards use factors like purpose, levels of mean-

ing, structure, language conventions, clarity, and
knowledge demands to measure text difficulty 3.
Among these, text structure is a more measurable
indicator, as we can convert text sequences into
tree structures using mature dependency or se-
mantic tree parsers (Solovyev et al., 2019). Tree
structures, prevalent in natural language represen-
tations, offer structural insights reflecting human
text comprehension (Hancke et al., 2012). Fur-
thermore, we can gauge text complexity accurately
by measuring the width and depth of trees, as a
deeper and wider grammar tree signifies more in-
tricate sentence structures (Chevalier et al., 2007;
Wang et al., 2013).

Inspired by the concept of tree complexity, we
propose Tree-Instruct, wherein LLMs directly add
a specific number of nodes to the semantic tree of
an instruction. This increases the tree’s width and
depth, thereby enhancing text structure complexity.
In detail, Tree-Instruct encompasses three steps:

Step 1: Tree Construction involves semantic
parsing, where a structured representation is cre-
ated from a natural language sentence. This pro-
cess yields a tree structure for an instruction. For
instance, given the instruction “Implementing effec-
tive strategies to curb environmental pollutants in
the atmosphere”, we derive an original tree struc-
ture Tree-1 as shown in the first tree of Fig. 2.

Step 2: Nodes Expansion operates on the ac-
quired tree structure, expanding it in depth or width
by adding new nodes, thus influencing the new
tree’s complexity. We only add meaningful nodes
representing nouns or verbs, since words like ad-
jectives or prepositions contribute little to tree com-
plexity. The second tree in Fig. 2 illustrates Tree-2
after adding ten nodes.

Step 3: Tree Sentenceization aims to make
LLMs revert the complex new tree structure (Tree-
2) back to fluent natural language instruction by
introducing connected words.

Additionally, we present all three steps into
a single prompt, guiding LLMs to implement
our requirements step by step without exter-
nal semantic parsing tools (see Block 3, where
“your_added_number” indicates the desired num-
ber of nodes we aim to add to the tree.) Espe-
cially we directly control the complexity by adjust-
ing “your_added_number”. Visually, with more
nodes added, the tree and the instruction become
more complex. This gradual increase results in a
tree with 3, 6, or 10 additional nodes, progressively
increasing the complexity of instructions, as shown
in Fig. 2. We also observe that adding nodes to the
semantic tree constructs a framework for the origi-
nal instruction. This approach prevents significant

3https://www.generationready.
com/wp-content/uploads/2021/04/
Beginners-Guide-to-Text-Complexity.pdf

https://www.generationready.com/wp-content/uploads/2021/04/Beginners-Guide-to-Text-Complexity.pdf
https://www.generationready.com/wp-content/uploads/2021/04/Beginners-Guide-to-Text-Complexity.pdf
https://www.generationready.com/wp-content/uploads/2021/04/Beginners-Guide-to-Text-Complexity.pdf
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Initial instruction:
Implementing effective strategies to curb environmental pollutants in the atmosphere.

Tree-10-nodes instruction:
Implement effective strategies to curb environmental pollutants in the atmosphere at different altitudes by
reducing emissions from industrial sources like factories and vehicles. Additionally, monitor these emissions
using specialized equipment and stringently enforce regulations to ensure industries adhere to best practices
and environmental standards.

S

NP

VBG 
Implementing

JJ effective

NN strategies

VP

VBZ to VP

VB curb

NP

JJ environmental NNS 
pollutants

IN in

NP

DT the

NN 
atmosphere

IN at

JJ different NNP altitudes

IN by

NP

VBG reducing NNS 
emissions IN from

NP

JJ industrial NNS sources

NP

NNS factories NNS vehicles

VP
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NN equipment
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WizardLM Deepening Evolve-iteration-3:
Investigating and formulating intricate methodologies, deeply anchored in cutting-edge quantum and classical 
scientific principles, to systematically and holistically reduce, monitor, and assess both primary and secondary 
atmospheric environmental pollutants. This approach is crucial for ensuring sustainable socio-economic 
progress while actively safeguarding and nurturing our planet's delicate ecological balance.

Figure 2: The instruction generated by different evolving methods: Tree-instruction after adding ten nodes
and WizardLM by iteratively deepening three times. We also demonstrate how Tree-Instruct enhances
the complexity of the original instruction’s semantic tree by introducing three nodes (orange), six nodes
(green), and ten nodes (purple).

deviations from the main topic. GPT-4’s automatic
assessment shows that our prompt modifications
maintain thematic consistency with a score 0.69.

4. Experiments

In this experiment, our primary objective is to ad-
dress four key research questions: (1) Can Tree-
Instruct, compared to WizardLM’s in-depth evolv-
ing, better maintain thematic consistency while
augmenting complexity? (2) Does increasing the
complexity of instructions through Tree-Instruct re-
sult in a greater unleashing of LLM’s latent po-
tential, i.e., will more intricate instructions yield
better outcomes? (3) Given the same token con-
straints, which approach is better suited for instruc-

tion tuning: employing complex yet limited instruc-
tion data or opting for simpler but more diverse
instructions? (4) Can curriculum-based instruction
tuning methods (from simpler to more complex in-
struction data) yield improvements similar to the
substantial enhancements observed in many previ-
ous NLP tasks?

Our primary experiments are conducted on Al-
paca GPT-4 dataset (Peng et al., 2023), which con-
tains a dataset of 52,000 instruction-following ex-
amples responded to by GPT-4 using prompts in
Alpaca (Taori et al., 2023). Following LIMA (Zhou
et al., 2023), we randomly select 1,000 instruction
samples to form Alpaca-1K, serving as the start-
ing point for our evolutionary process. We query
gpt-4 (OpenAI, 2023) to execute Tree-Instruct pro-
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Prompt for Tree-Instruct

You are an instruction rewriter. You need
to rewrite a given user instruction following
Procedures step by step. You MUST ONLY
return the NEW instruction you rewrite.

Procedure:
step-1: Parse the old “instruction” to a
TREE-1 through Semantic Parsing in the
natural language processing field.
step-2: EXPAND the above NEW
TREE-1 from depth or width by adding
“your_added_number” meaningful NEW
Nodes as nouns or verbs to form a NEW
TREE-2. The new nodes should be
constructed with detailed and pertinent
information.
step-3: Generate a totally NEW “instruction”
based on the expanded NEW TREE-2.

Old instruction: “your_instruction”

New instruction:

cess, thereby increasing the complexity of each
instruction within Alpaca-1K. In order to analyze
the scaling law, we introduce three levels of com-
plexity by augmenting the instructions by adding 3,
6, and 10 additional nodes to the semantic tree of
original instructions, respectively. This allows us to
observe the impact of these varying complexities
on the outcomes. For the modified instructions,
we employed gpt-4 once again to generate corre-
sponding responses. To validate our findings, we
replicate the results by applying the in-depth evolv-
ing with deepening prompt provided by WizardLM
to the same Alpaca-1K instructions.

To demonstrate the scalability of our discoveries
to larger datasets, we also conduct experiments
on the extensive OpenChat dataset, which com-
prises 6,206 conversations between humans and
GPT4, filtered from ShareGPT (Wang et al., 2023a).
We employ the pre-trained LLaMA2 (Touvron et al.,
2023) model as the initialization, fine-tuning it on
instruction-tuning datasets generated through dif-
ferent methods. Each GPU processes batches of
size 2 (for OpenChat evolved data, the batch size
is set to 8), and the maximum sequence length
was set to 4096. For optimization, we adopt the
AdamW (Loshchilov and Hutter, 2017) optimizer
with a learning rate of 1e-4 and a weight decay of
0.1, following the practices established by Open-
Chat. Using Deepspeed ZeRO-2 stage and 8 A100
GPUs, we train LLaMA2 for 10 epochs on Alpaca-
1K and 5 epochs on Openchat-6K data. During
inference, a temperature of 0.7 and a top-p value

of 0.9 are employed to evaluate all the methods
under comparison.

Evaluation Benchmarks We mainly evaluate
competing methods on two benchmarks: AlpacaE-
val and MT-Bench (Zheng et al., 2023). AlpacaEval
is an LLM-based automatic evaluation, comprising
805 diverse samples, each showcasing various
abilities. In AlpacaEval, responses from different
LLM methods are then compared to those from
text-davinci003 by GPT-4 auto-annotator. MT-
Bench consists of 80 high-quality multi-turn ques-
tions to test multi-turn conversation and instruction-
following ability, covering 8 common categories.

4.1. Tree-Instruct is Better for Instruction
Complexity Evolution

We start by investigating whether operating on
a tree, as opposed to a sequence, better aligns
with the intended objectives of the original instruc-
tion. Recent studies have introduced the LLMs-
as-evaluator paradigm, leveraging LLMs to assess
candidate samples, which closely approximates
human evaluative agreement (Chen et al., 2023b;
Fu et al., 2023; Ji et al., 2023; Zhang et al., 2023).
Consequently, we employ gpt-4 to gauge which
approach exhibits greater consistency with the ini-
tial instructions. As depicted in Figure 3, the result
indicates that employing Tree-Instruct, which en-
tails adding instructions with 6 additional nodes,
achieves a higher degree of alignment with the
original instructions in 63% of cases, compared
to WizardLM’s in-depth deepening that undergoes
modifications and generates instructions with sim-
ilar token quantities to Tree-6-nodes. This obser-
vation serves as evidence that the presence of a
tree structure constraint enables LLMs to more ef-
fectively modify instructions within the framework
of the original guidance, rather than diverging and
incorporating unrelated content. A case study in
Fig. 2 also indicates that WizardLM might produce
phrases deviated from the original instruction dur-
ing iterative evolution.

Figure 3: GPT-4’s comparison for the consis-
tency preservation between Tree-6-Nodes and Wiz-
ardLM’s in-depth deepening with respect to the orig-
inal instructions.

Furthermore, our findings demonstrate that Tree-
Instruct is more effective than in-depth evolving in
eliciting the capabilities of LLMs. We conduct evalu-
ations on the AlpacaEval set for both methods. The
evaluations are performed with gpt-4 as the eval-
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Method helpful-base self-instruction oasst koala vicuna Alpaca-Eval MT-Bench
Alpaca-1K 57.36 38.49 53.72 37.18 50.00 46.02 4.74
Tree-3-nodes 65.89 50.79 63.29 60.25 65.00 59.53 (+13.51) 6.10 (+1.36)
Tree-6-nodes 75.19 52.78 72.87 66.67 77.50 66.38 (+20.34) 6.27 (+1.53)
Tree-10-nodes 83.72 58.73 73.43 75.00 88.75 72.66 (+26.64) 6.43 (+1.68)

Table 1: Analysis of the relationship between instruction complexity and LLM’s ability. The numbers
represent the win rates vs. text-davinci003 on various subsets of AlpacaEval and MT-Bench scores.

uator, comparing the win rates of models against
text-davinci003. As depicted in Table 2, under
similar total token counts, Tree-Instruct exhibits a
win rate improvement of 2.2 points over WizardLM’s
in-depth deepening. We attribute this enhancement
to Tree-Instruct’s adeptness at closely tailoring in-
structions to the central topic, thereby introducing
complexity without deviation.

In contrast, in-depth evolving might deviate from
the original theme and introduce irrelevant con-
tent, resulting in instructions of inadequate diffi-
culty. Such instructions could potentially hinder
LLMs from generating appropriate responses, ren-
dering them less effective in the generation process.

Figure 4: Evaluation of models trained on Alpaca-
1K and evolved by adding various nodes vs. text-
davinci003 on categories of the Vicuna test set.

4.2. More Complexity, Better Capability
After demonstrating the effectiveness of Tree-
Instruct in enhancing sample complexity, we
present a scaling law pertaining to complexity, as
depicted in Fig. 1 and Table 1. As the number of
nodes gradually increases from Tree-3-Nodes to
Tree-6-Nodes and further to Tree-10-Nodes, the
model’s win rate on the AlpacaEval and scores
on MT-Bench benchmarks exhibit a remarkable

Method Win Rate (%) Total Token Size
Alpaca-1K 46.02 186,464
Alpaca-4K 55.85 757,042
WizardLM 64.20 556,981
Tree-3-Nodes 59.53 385,760
Tree-6-Nodes 66.38 546,731
Tree-10-Nodes 72.66 608,556

Table 2: Analysis of the scaling laws for complexity
and the relationship between win rate and token
count with experiments based on LLaMA2.

Method Win Rate Token
(%) Length

GPT4 95.28 1365
LLaMA2-Chat-70B 92.66 1790
Claude-2 91.36 1069
OpenChat-V3.1 89.49 1484
ChatGPT 89.37 827
Vicuna-33B 88.99 1479
OpenChat-LLaMA2 84.56 1730
OpenChat-LLaMA1 80.87 1632
UltraLM-13B 80.64 1087
WizardLM-13B 75.31 985
Tree-Instruct-LLaMA1 81.82 (+0.95) 1549
Tree-Instruct-LLaMA2 86.19 (+1.63) 1675

Table 3: Win rates of different methods vs. text-
davinci003 on the AlpacaEval leaderboard.

upward trend. This scaling law underscores the
significance of complexity within instruction data.

Additionally, we carry out a meticulous evalua-
tion for each skill/category within the Vicuna test
sets. These sets are divided into distinct skill
sets/categories, allowing for an intricate analysis
of the proficiency attained through instruction tun-
ing. Notably, Tree-10-Nodes outperforms Tree-6-
Nodes across a majority of categories, encompass-
ing Counterfactual, Roleplay, Knowledge, Generic,
and more. Similar trends are evident when com-
paring Tree-6-Nodes with the original instructions,
indicating that augmenting the complexity of Instruc-
tion data leads to a comprehensive enhancement
in the capabilities of the LLM.

Finally, given that our experimentation is based
on 1,000 instances, we extend our investigation to
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Method helpful-base self-instruction oasst koala vicuna Overall
Mix-difficulty-training 73.64 50.79 68.62 60.26 70.00 62.59
Hard-to-Easy Curriculum 71.31 56.75 66.49 67.95 71.25 65.05
Easy-to-Hard Curriculum 77.52 57.94 73.93 74.36 85.00 70.95

Table 4: Analysis of mixed difficulty training and curriculum learning. The numbers represent the win rates
vs. text-davinci003 on various subsets of AlpacaEval.

validate the effectiveness of Tree-Instruct across a
larger dataset using OpenChat. OpenChat-6K is
built upon 6,206 conversations between humans
and GPT-4, filtered from around 90K ShareGPT
conversations. It has notably achieved top rank-
ings with much less data as an open-source LLM.
Since OpenChat involves multi-turn conversations,
we specifically complexify instructions through Tree-
Instruct by adding three nodes on instructions from
single-turn and several last-turn conversations. We
ignore instructions that only contain generic and
meaningless terms like “stop” or “continue”. The
Tree-Instruct modification involves 1,147 conver-
sations. In this process, we replace the original
data with the evolved version, maintaining the same
number of training samples.

As delineated in Table 3, after the complexity
evolution of Tree-Instruct, we enhance OpenChat’s
performance from 80.87% to 81.82% based on
LLaMA1, from 84.56% to 86.19% on LLaMA2, un-
derscoring the sustained efficacy of our approach
across a larger volume of data. Here the token
length refers to the average number of words in
outputs generated by models.

4.3. Less but Complex is Better Than
More but Simple

While we have demonstrated that increasing the
complexity of instruction data can enhance the ca-
pabilities of LLMs, a new question arises: Is this
improvement merely due to the introduction of more
training tokens as complexity increases? Our anal-
ysis indicates that the average length of the original
Alpaca data, combining both input and output, is
186 tokens. Upon incorporating an additional 10
nodes, this count escalates to 607 tokens – equiv-
alent to a 3.26-fold increase in training data. With
this question in mind, we introduce a new baseline:
Alpaca-4K, trained with 4,000 samples (additionally
sampled 3,000 instances from the original Alpaca
data). As shown in Table 2, the total token count4
of Alpaca-4K surpasses that of Tree-10-Nodes by
24%. Despite this, with the same training steps, a
significant 16.8% performance gap in win rate re-
mains. Compared to Alpaca-1K, there is indeed a
9.8% improvement. This suggests that introducing

4Total token size refers to the average number of tok-
enized tokens for input-output pairs

more instruction tokens does enhance model perfor-
mance. Nonetheless, the effectiveness of diverse
yet simple instructions still falls short compared to
a smaller quantity of more complex directives.

4.4. Curriculum Learning May Be Not
Effective for Instruction Tuning

Now, armed with three sets of data featuring in-
creasing difficulty levels and aligned themes, we
can delve into an unanswered question in instruc-
tion tuning: Is it necessary to train LLM progres-
sively from easy to hard? As depicted in Table 4, we
embark on a trial, initially training on Tree-3-Nodes
data, followed by Tree-6-Nodes, and finally Tree-10-
Nodes. Each segment constitutes one-third of the
total training steps. We also devise two baselines:
one involving the combined training of all three dif-
ficulty levels and another wherein difficult samples
are trained prior to the easy ones.

Experimental results reveal that, compared to
mixed-difficulty training and training samples from
hard to easy, an easy-to-hard curriculum learning
approach truly enhances model performance. How-
ever, the performance gain from curriculum learning
still slightly underperforms exclusively training on
Tree-10-Nodes, the hardest dataset we construct.
This outcome slightly contrasts with previous ob-
servations of curriculum learning. We attribute this
variance to the fact that modern LLMs possess pa-
rameter counts several times larger than those of
earlier models like BERT (Devlin et al., 2019) or
T5 (Raffel et al., 2020). With this substantial pa-
rameter increase, LLMs are now capable of directly
learning from challenging samples, diminishing the
need for foundational exposure to simpler samples.
The more exposure to challenging samples, the
more the model’s capabilities are ignited.

5. Conclusion

In this study, we have undertaken a preliminary
exploration of the intrinsic relationship between in-
struction complexity and the ability of large lan-
guage models to follow human instructions. We
propose a controllable method for complicating in-
structions: Tree-Instruct. We conduct extensive
experiments to explore the unknown. The results
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reveal the following insights: (1) As the complex-
ity of the instruction data increases, the benefits
of instruction tuning continue to amplify. (2) The
rise in complexity is partly attributed to additional
tokens, yet a few intricate instructions outperform
a large number of simpler instructions, all within
the same token limit. (3) A curriculum-based in-
struction tuning, progressing from easier to harder,
might not yield the desired effectiveness; embrac-
ing increased complexity proves essential. We an-
ticipate that this exploration will supplement existing
knowledge regarding the aspects of quality, quan-
tity, diversity, and complexity of instruction data.
This contribution aims to assist future researchers
in constructing superior instruction data.

6. Limitations

We have conducted extensive experiments to study
three unexplored aspects targeting the complexity
of instruction-turning data: (1) the scaling law, (2)
the impact of additional training tokens, and (3) cur-
riculum learning. Kindly notice that, in Tree-Instruct,
responses adapted to original instructions are no
longer capable of fulfilling the needs of complex
instructions, which means that users need to regen-
erate responses. Moreover, due to constraints in
time and resources, such as computing resources
or accessing GPT-4, there are still some unexplored
questions: 1. Will instruction evolution ever reach a
point of convergence? 2. How can we adapt Tree-
Instruct for complex tasks, such as mathematics
or coding, that require intricate reasoning? 3. Are
larger language models still sensitive to the com-
plexity of instruction-tuning data? We plan to delve
into these areas in our subsequent research.

7. Ethical Statement

This paper studies the complexity of instruction-
tuning data for large language models and pro-
poses a novel method Tree-Instruct, to control the
complexity evolution. All the datasets and models
involved in this paper are publicly available. The
prompts we design are also harmless and unbi-
ased, leading to healthy and objective training data.
There are no direct ethical concerns in our study.
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