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Abstract
Most data-to-text datasets are for English, so the difficulties of modelling data-to-text for low-resource languages are
largely unexplored. In this paper we tackle data-to-text for isiXhosa, which is low-resource and agglutinative. We
introduce Triples-to-isiXhosa (T2X), a new dataset based on a subset of WebNLG, which presents a new linguistic
context that shifts modelling demands to subword-driven techniques. We also develop an evaluation framework
for T2X that measures how accurately generated text describes the data. This enables future users of T2X to go
beyond surface-level metrics in evaluation. On the modelling side we explore two classes of methods — dedicated
data-to-text models trained from scratch and pretrained language models (PLMs). We propose a new dedicated
architecture aimed at agglutinative data-to-text, the Subword Segmental Pointer Generator (SSPG). It jointly learns
to segment words and copy entities, and outperforms existing dedicated models for 2 agglutinative languages
(isiXhosa and Finnish). We investigate pretrained solutions for T2X, which reveals that standard PLMs come up
short. Fine-tuning machine translation models emerges as the best method overall. These findings underscore the
distinct challenge presented by T2X: neither well-established data-to-text architectures nor customary pretrained
methodologies prove optimal. We conclude with a qualitative analysis of generation errors and an ablation study.

Keywords: Less-Resourced/Endangered Languages,Natural Language Generation,Evaluation Methodologies

1. Introduction

Data-to-text is the task of transforming structured
data (e.g. tables or triples) into text describing or
summarising the data (Gatt and Krahmer, 2017).
It is a valuable natural language generation (NLG)
task, as it enables the separate evaluation of the
text content (what to say) and its style (how to say
it) (Wiseman et al., 2017). The majority of data-to-
text datasets are in English or other high-resource
languages, so such nuanced NLG evaluation is not
possible for most low-resource languages.

Existing data-to-text models are designed for the
linguistic typology of English. This is evident in
that there are no studies on the role of subwords
in data-to-text. Subwords are not essential for En-
glish data-to-text because English is morphologi-
cally simple — words are adequate units for mod-
elling the complexity of datasets. Many examples
in data-to-text datasets are instances of common
templates. In English these are word-level tem-
plates (see Figure 1(a)). As a result, dedicated
models for data-to-text do not apply subword seg-
mentation, operating instead on word sequences
(Wiseman et al., 2017, 2018; Shen et al., 2020).

This is not feasible for agglutinative languages
like isiXhosa, where even simple templates are
subword-based (see Figure 1(b)). The problem
is compounded by the data scarcity of isiXhosa
– heldout test sets have high proportions of new
words, so subword modelling is essential. This

Data triple:
(South Africa, leaderName, Cyril Ramaphosa)
([ subject ], [ relation ], [ object ])

(a) English text and template:
Cyril Ramaphosa is the leader of South Africa
[ object ] is the [relation][ subject ]

(b) isiXhosa text and template:
uCyril Ramaphosa yinkokheli yoMzantsi Afrika
u[ object ] yin[relation] yo[ subject ]

Figure 1: Example from T2X, showing the need for
subword-based data-to-text modelling.

paper studies data-to-text for isiXhosa: we create
a data-to-text dataset with isiXhosa verbalisations,
develop a data-focused evaluation framework, and
investigate neural approaches for the task.

IsiXhosa is one of South Africa’s 12 official lan-
guages with over 8 million L1 speakers and 11
million L2 speakers (Eberhard et al., 2019). It is
part of the Nguni languages, a group of related lan-
guages that are highly agglutinative and conjunc-
tively written (morphemes are strung together to
form long words). We present and release Triples-
to-isiXhosa (T2X),1 the first data-to-text dataset
for any Southern African language. It was con-
structed by manually translating part of the English

1https://github.com/francois-meyer/t2x

https://github.com/francois-meyer/t2x
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WebNLG dataset and consists of triples of (subject,
relation, object) mapped to descriptive sentences.

Alongside the release of T2X, we conduct a
comprehensive investigation into neural data-to-
text methods for low-resource agglutinative lan-
guages. We explore two prevailing directions of
research: (1) LSTM-based encoder-decoder archi-
tectures designed to be trained from scratch for
data-to-text (Wiseman et al., 2017, 2018; Shen
et al., 2020), and (2) finetuning text-to-text pre-
trained language models (PLMs) (Kale and Ras-
togi, 2020; Nan et al., 2021; Ribeiro et al., 2021).

Data-to-text models trained from scratch are de-
signed for word-based templates, which is inad-
equate for agglutinative languages like isiXhosa.
We propose the subword segmental pointer gen-
erator (SSPG), a new neural model aimed at data-
to-text for agglutinative languages.2 It jointly learns
subword segmentation, copying, and text genera-
tion. Our model adapts the subword segmental ap-
proach of Meyer and Buys (2022) for sequence-to-
sequence modelling and combines it with a copy
mechanism. SSPG learns subword segmenta-
tions that optimise data-to-text performance and
copies entities directly where possible. We also
propose unmixed decoding, a new decoding algo-
rithm for generating text with SSPG.

We train SSPG on T2X and Finnish data-to-text
(Kanerva et al., 2019a) (another agglutinative lan-
guage). On both languages SSPG outperforms
baselines trained from scratch: on T2X it improves
chrF++ by 2.21 and BLEU by 1.11. These results
show that de facto models for data-to-text are not
well suited to the unique challenges posed by T2X.
Our experiments on pretrained models yield sim-
ilar conclusions. We finetune mT5 (Lewis et al.,
2020) and Afri-mT5 (Adelani et al., 2022), but nei-
ther surpasses SSPG. We only see gains from
pretraining when we turn to the unconventional
strategy of finetuning English → isiXhosa transla-
tion models on T2X. So as in the case of models
trained from scratch, well-established approaches
to finetuning PLMs are suboptimal for T2X.

In addition to reporting automatic metrics, we de-
velop an extractive evaluation framework for T2X
that measures how accurately models describe
data. Given output text, our framework estimates
how well it describes triple data. This allows us to
go beyond surface metrics like BLEU, evaluating
the content of generations. We apply this frame-
work to all our models, revealing tradeoffs between
model capabilities. Subword segmental models
copy entities more accurately, while standard sub-
word models verbalise relations more effectively.
Based on these findings, we qualitatively analyse
the types of errors made by different models.

2Code and trained models available at https://
github.com/francois-meyer/sspg.

2. Related Work

2.1. Neural Data-to-text
Traditionally data-to-text was framed as a series
of subtasks (Reiter and Dale, 1997) handled sep-
arately through pipeline architectures (McKeown,
1992). This has been combined with deep learn-
ing (Puduppully et al., 2019; Puduppully and La-
pata, 2021; Castro Ferreira et al., 2019). In our
work we approach data-to-text as a sequence-to-
sequence task for fully end-to-end learning. Such
approaches can be categorised into neural archi-
tectures trained from scratch and finetuned PLMs.

Neural architectures Data-to-text is a highly
structured NLG task, so there is room for exploit-
ing this by equipping models with task-informed in-
ductive biases. Wiseman et al. (2018) do this by
inducing latent templates and generating text con-
ditioned on these templates. Shen et al. (2020)
model the segmentation of text into fragments
aligned with data records. Both models are LSTM-
based encoder-decoder models that use attention
(Bahdanau et al., 2015) to incorporate a pointer
generator into their decoder (Vinyals et al., 2015).
This enables them to directly copy data tokens dur-
ing text generation (See et al., 2017).

PLMs Finetuning text-to-text PLMs, such as
BART (Lewis et al., 2020) and T5 (Raffel et al.,
2020), has produced state-of-the-art results for
data-to-text (Kale and Rastogi, 2020; Nan et al.,
2021; Ribeiro et al., 2021). There are very few
multilingual data-to-text datasets, so there has not
been much work on finetuning multilingual PLMs
like mBART (Liu et al., 2020) and mT5 (Xue et al.,
2021). In the instances where this has been tried,
such as for the Russian WebNLG dataset (Zhou
and Lampouras, 2020) and the Czech Restaurant
dataset (Dušek and Jurčíček, 2019), results have
been promising (Gehrmann et al., 2021).

2.2. Subword Segmentation
Subword segmenters like BPE (Sennrich et al.,
2016) and ULM (Kudo, 2018) operate separately
from models trained on their subwords - they are
applied in preprocessing. In the low-resource set-
ting this leads to inconsistent performance (Zhu
et al., 2019a) and oversegmentation (Wang et al.,
2021; Ács, 2019). Similar issues arise for mor-
phologically complex languages (Klein and Tsar-
faty, 2020; Zhu et al., 2019b). These problems can
be partially attributed to the separation of subword
segmenters and model training. If segmenters pro-
duce suboptimal subwords, models cannot over-
come this given insufficient training data.

Alternatively, segmentation can be cast as a
latent variable marginalised over during training
(Kong et al., 2016; Wang et al., 2017; Sun and

https://github.com/francois-meyer/sspg
https://github.com/francois-meyer/sspg
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Train Valid Test

WebNLG 1-triples 3 114 392 388
T2X triples 2 413 391 378
T2X verbalisations 3 859 600 888

Table 1: T2X dataset statistics

Deng, 2018; Kawakami et al., 2019). This leaves
segmentation to the model - it is a learnable pa-
rameter for optimising the training objective. This
has been used to learn subwords for MT (Kreutzer
and Sokolov, 2018; He et al., 2020; Meyer and
Buys, 2023) and low-resource language modelling
(Downey et al., 2021; Meyer and Buys, 2022).

3. Triples-to-isiXhosa (T2X)

WebNLG (Gardent et al., 2017) consists of RDF
triples from DBpedia paired with text verbalising
the triples. Each example is one or more triples
(up to seven) paired with a crowd-sourced verbali-
sation of one or more sentences. Multiple verbali-
sations are included for a large portion of the exam-
ples. The dataset has been expanded and trans-
lated into Russian, using machine translation and
manual post-editing (Castro Ferreira et al., 2020).
Recently translations have been released for Mal-
tese, Irish, Breton, and Welsh.3 These datasets
cover smaller subsets of WebNLG with up to 1,665
examples per language (about half the size of
T2X). Another data-to-text dataset, Table-to-Text in
African languages (TATA) (Gehrmann et al., 2022),
covers several languages including Swahili, which
is a Niger-Congo B language like isiXhosa. TATA
contains less than a thousand examples per lan-
guage, and generation requires high-level reason-
ing about the data; in contrast our dataset primarily
focuses on linguistic verbalisation ability. We are
unaware of existing data-to-text datasets for South-
ern African languages.

Our dataset, Triples-to-isiXhosa (T2X), is based
on the 1-triples in WebNLG version 2.1.4 The
choice to only include examples with single triples
was motivated by the goal of obtaining a corpus
covering a wide range of domains within the avail-
able annotation budget. The data covers 15 DB-
Pedia categories. Three categories (Astronaut,
Athlete and WrittenWork) are not included in the
training data, only in the validation and test sets.
Dataset statistics are given in Table 1 and exam-
ple data-text pairs from the dataset are provided in
Figure 1 and Tables 2 & 3. We publicly release the
full dataset for use by future researchers.

3https://github.com/WebNLG/2023-Challenge
4https://huggingface.co/datasets/web_nlg

Annotation First language isiXhosa speakers
who studied the language at university level were
presented with triples and English WebNLG ver-
balisations, and asked to provide isiXhosa trans-
lations which reflect the content of the triples
while phrasing the translations naturally. Anno-
tators discussed questions arising during the pro-
cess amongst each other, ensuring consistency
among annotations. The verbalisations are rela-
tively short, so translating them is an easy task
given the isiXhosa proficiency of our annotators.

In the training and validation sets, only one isi-
Xhosa verbalisation per triple is given for most do-
mains, while the test set has multiple verbalisa-
tions (up to 3) for most examples. Multiple verbali-
sations correspond to different ways of describing
the same data triple, capturing variations in phras-
ing for more nuanced evaluation. Equivalent ver-
balisations usually contain synonyms or different
word orderings, as shown in the Table 2 example.

Data (Germany, leaderName, Angela Merkel)

Text #1 Inkokeli yaseJamani ngu-Angela Merkel.
The leader of Germany is Angela Merkel.

Text #2 U-Angela Merkel yinkokeli yaseJamani.
Angela Merkel is the leader of Germany.

Table 2: An example T2X data triple mapped to two
isiXhosa verbalisations (with English translations).

Task difficulty T2X maps single triples to isi-
Xhosa verbalisations. Unlike WebNLG, it does
not contain examples with multiple triples. In that
sense it is a simpler task, not requiring combining
information from multiple triples, but in some ways
T2X is more challenging than existing datasets.
For example, E2E (Novikova et al., 2017) covers
one domain (restaurants). Much of the text follows
a limited set of templates (e.g “[RESTAURANT
NAME] is a [TYPE] restaurant in [AREA]”). T2X
covers 15 domains and 286 relation types. In this
sense T2X is quite challenging, since it would be
difficult to model the dataset with a template-based
approach. It requires some degree of generalisa-
tion and fluency, which is why learning-based ap-
proaches are more suitable.

T2X poses a different type of modelling chal-
lenge to English data-to-text datasets, because of
the agglutinative nature of the isiXhosa language.
In isiXhosa, morphemes are the primary units of
meaning, so effective subword modelling is cru-
cial. As shown in Figure 1, the underlying syn-
tactic schemas for isiXhosa data-to-text genera-
tions are inherently subword-based. For English,
a word-based model would cover most examples.
For isiXhosa, a subword-based model is essential
for even minimal text generation.

https://github.com/francois-meyer/t2x
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4. Subword Segmental Pointer
Generator (SSPG)

In addition to benchmarking existing models, we
propose SSPG to address the challenges of T2X.
SSPG adds to the line of work designing mod-
els trained from scratch for data-to-text. While
PLMs are widely used, dedicated data-to-text ar-
chitectures remain valuable for low-resource lan-
guages with few available high-quality pretrained
options. SSPG adapts the LSTM encoder-decoder
— LSTMs are well suited to such low-resource
tasks (Meyer and Buys, 2022) and persist as the
preferred neural architecture for data-to-text (Wise-
man et al., 2017, 2018; Shen et al., 2020). SSPG
extends subword segmental modelling (Meyer and
Buys, 2022), which was proposed as a modelling
technique for agglutinative languages. SSPG si-
multaneously learns how to (1) map data triples to
text, (2) segment text into subwords, and (3) when
to copy directly from the data.

4.1. BPE-based Data Encoder
The encoder is a standard neural encoder for data-
to-text: a bi-LSTM that processes data as flat-
tened sequences of BPE tokens. BPE is applied
to the data side of a data-to-text dataset. For ex-
ample, the triple (France, currency, Euro) could
be represented as the sequence “<s _Fra nce s>
<r currency r> <o _Euro o>”. Special tokens de-
limit the boundaries between subject, relation, and
object. BPE is sufficient for data-side segmen-
tation, since most data-to-text datasets in other
languages (T2X, Finnish Hockey, and translated
WebNLG variants) have English data records.

4.2. Subword Segmental Decoder
The decoder is subword segmental, i.e., it jointly
models the generation and subword segmentation
of the output text. We follow the dynamic program-
ming algorithm for subword segmental sequence-
to-sequence training outlined by Meyer and Buys
(2023), but modify their Transformer-based model
to be LSTM-based and extend it to copy subwords.

During training SSPG processes data-text pairs
(x, y), where x is a flattened triple of BPE tokens
x = x1, x2, ..., x|x| and y is an unsegmented se-
quence of characters y = y1, y2, ..., y|y|. We com-
pute the probability of the output text conditioned
on the input data as

p(y|x) =
∑

s:π(s)=y
p(s|x), (1)

where s is a sequence of subwords and π con-
catenates a sequence of subwords into its pre-
segmented character sequence. Therefore we are

Figure 2: SSPG forward pass for (France, cur-
rency, Euro) → “Imali yaseFransi yi-Euro” (“The
currency of France is the Euro”). At each charac-
ter the next subword probability is computed with
a mixture of a character-level decoder and a copy-
equipped lexicon model (Eq. 2).

marginalising over all possible subword segmenta-
tions of the output text y.

We model the probability of each subword se-
quence s with the chain rule, where each sub-
word probability is computed with a mixture of a
character-level decoder and a lexicon model as

p(si|y<j, x) = gjpchar(si|y<j, x)+
(1− gj)plex(si|y<j, x), (2)

where y<j is the character sequence up to the
character immediately preceding the next subword
si. The character model pchar is a character-level
LSTM and the lexicon model plex is a softmax distri-
bution over the subword lexicon, which consists of
the top |V | (a hyperparameter) most frequent char-
acter n-grams in training corpus. The coefficient gj
is computed by a fully connected layer. As shown
in Figure 2, decoder probabilities are conditioned
on the input data and the text history by passing
attention-based decoder output representations to
the subword mixture model components.

As shown in Figure 2, the output text history
is encoded with a character-level LSTM to be
tractable. This allows us to compute Eq. 2 at ev-
ery character position in the output text. We ex-
tract probabilities for all subsequent subwords up
to a specified maximum segment length and use
dynamic programming to efficiently compute Eq. 1,
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thereby summing over the probabilities of all pos-
sible subword segmentations of y.

If we train this model to maximise Eq. 1, it op-
timises subword segmentation for its data-to-text
task. This is the core idea of subword segmental
modelling. It is valuable in settings, such as ours,
where subwords are important enough to cast sub-
word segmentation as a trainable parameter.

4.3. Copying Segments
The model outlined so far jointly learns data-to-
text generation and subword segmentation. This
could be useful for low-resource, agglutinative lan-
guages, and we include it as a baseline called
subword segmental decoder (SSD). However, it is
missing an essential component of most data-to-
text models: the ability to copy entities from data,
as achieved by pointer generator networks. We
want to combine the strengths of subword segmen-
tal models and pointer generators.

We achieve this by including a conditional copy
mechanism (Gulcehre et al., 2016) in the lexicon
model plex. We introduce a binary latent variable
zj at each character j indicating whether the sub-
sequent subword si is copied from data (zj = 1) or
generated from the lexicon (zj = 0). We compute
the plex in Eq. 2 by marginalising out zj as

plex(si|y<j, x) (3)
= p(zj = 0|y<j, x)pgen(si|y<j, x)+

p(zj = 1|y<j, x)pcopy(si|y<j, x),

where pgen is a softmax layer over the lexicon and
pcopy is the attention distribution over the data to-
kens. The probabilities p(zj = 0|y<j, x) and p(zj =
1|y<j, x) can be viewed as mixture model coeffi-
cients (similar to gj in Eq. 2). They are computed
by a fully connected sigmoid layer, allowing SSPG
to learn (based on context) when it can rely on the
lexicon’s generation model and when it should look
to the source to copy BPE tokens directly.

4.4. Unmixed Decoding
Standard neural models have one subword vocab-
ulary, so beam search compares next-token prob-
abilities from that vocabulary. However, subword
segmental modelling uses a mixture model (Eq. 2),
so it is not obvious how to use this for decoding.
Meyer and Buys (2023) propose dynamic decod-
ing, which combines information from the two mix-
ture components (pchar and plex in Eq . 2). We ini-
tially used dynamic decoding to generate text with
SSPG, but this resulted in weak performance. Our
model’s validation performance improved drasti-
cally when we developed a new decoding algo-
rithm, which we call unmixed decoding.

We first describe the greedy version of the algo-
rithm. SSPG subword probabilities are a mixture
of three distributions: the character decoder, lexi-
con model, and copy mechanism. Unmixed decod-
ing extracts next-subword probabilities from the
three distributions separately and selects the next
subword with the highest separated (unmixed)
probability overall. At each decoding step we com-
pute the top next-subword probability from each
distribution as

p∗char = max
s

gpchar(s|·),

p∗gen = max
s

(1− g)p(z = 0|·)pgen(s|·),

p∗copy = max
s

(1− g)p(z = 1|·)pcopy(s|·),

where we omit the conditioning variables of Equa-
tions 2 and 3 for simplification. We store the can-
didate subwords s∗char, s∗gen, s∗copy corresponding to
these probabilities. We then generate the subword
corresponding to the highest probability among
p∗char, p∗gen, p∗copy. This process is repeated until the
next subword is the end-of-sequence token. It is
straightforward to combine unmixed decoding with
beam search by extracting the top k subword can-
didates from each mixture component (resulting in
3k initial candidates), ranking these probabilities,
and continuing with the top k subwords.

Each subword generated by unmixed decoding
is put forward by one of the mixture components.
During training SSPG learns in which contexts it
should use the character decoder, generate from
the lexicon, or copy a token from source. Unmixed
decoding leverages this information during gener-
ation. For example, when the model is confident
that the next subword should be copied from data,
p∗copy will be greater than p∗char and p∗gen, so the next
subword is generated by the copy mechanism.

5. Experimental Setup

5.1. Models
We benchmark T2X with existing models and
SSPG. Among our baselines, 3 are trained from
scratch (PG, NT, SSD) and 5 are finetuned (mT5-
base, mt5-large, Afri-mT5-large, BPE MT, SSMT).
We tune hyperparameters for all models as de-
tailed in Appendix A.

Pointer generator (PG) is an LSTM-based
encoder-decoder model with a copy mechanism.
This is commonly employed as a data-to-text base-
line (Wiseman et al., 2017; Kanerva et al., 2019b).

Neural templates (NT) (Wiseman et al., 2018)
learn latent templates for text. The LSTM-based
decoder uses a hidden semi-markov model to
jointly model templates and text generation.
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Data (a) (South Africa, capital, Cape Town) (b) (Christian Panucci, club, Inter Milan)

Ref Ikomkhulu loMzantsi Afrika liKapa. UChristian Panucci udlalela i-Inter Milan.
SSPG I-Cape Town likomkhulu laseSouth Africa. UChristian Panucci udlalela i-Inter Milan.
PG UCape Town likomkhulu lase-Afrika. UChristian Puucci udlalela i-Indter Milan.
BPEMT Ikomkhulu loMzantsi Afrika yiKapa. UChristian Panucci udlalela i-Inter Milan.

Data (c) (Ethiopia, leaderName, Mulatu Teshome) (d) (Canada, language, English)

Ref #1 UMulatu Teshome yinkokheli yase-Ethiopia. IsiNgesi lulwimi oluthethwa eKhanada.
Ref #2 Igama lenkokheli e-Ethiopia nguMulatu Teshome. Ulwimi lwesiNgesi luthethwa eKhanada.
SSPG UMulatu Teshome yinkokeli yase-Ethiopia. eCanada kuthetwa isiNgesi.
PG Inkokeli yase-Ethiopia nguMulatu Teshome. Ulwimi lwesiNgesi luthethwa eCanada.
BPEMT UMulatu Teshome yinkokeli yase-Ethiopia. IsiNgesi lulwimi oluthethwayo eCanada.

Table 3: Examples from T2X with model outputs. Subject verbalisations are bold and object verbalisa-
tions italicised to show that some entities should be copied directly while others should be translated.
Green and red show correctly and incorrectly generated entities according to our evaluation framework.

Subword segmental decoder (SSD) is SSPG
without a copy mechanism. We use dynamic de-
coding (Meyer and Buys, 2023) during generation.

mT5 (Xue et al., 2021) is the multilingual version
of T5 (Raffel et al., 2020), covering 101 languages,
including isiXhosa and Finnish.

Afri-mT5-base (Adelani et al., 2022) adapts
mT5-base for 17 African language (including isi-
Xhosa) through continued pretraining.

Bilingual pretrained MT (BPE MT & SSMT)
Low-resource languages like isiXhosa are
severely underrepresented in massively multilin-
gual pretraining, so finetuning these PLMs does
not guarantee good performance. Given the
absence of existing NLG datasets, no research
has investigated the effectiveness of pretraining
and finetuning models for isiXhosa text gener-
ation. To further explore pretraining we turn
to the only other publicly available pretrained
encoder-decoder models for isiXhosa: machine
translation (MT) models. We use bilingual MT
models from Meyer and Buys (2023) for English
→ isiXhosa and English → Finnish, finetuning
them on T2X and Finnish Hockey respectively.
We finetune 2 MT models for each translation
direction: a standard BPE-based model and
SSMT (subword segmental machine translation),
a model designed for agglutinative MT that jointly
learns translation and subword segmentation.

5.2. Evaluation
Text overlap We compute several automatic
metrics: BLEU (Papineni et al., 2002), chrF
(Popović, 2015), chrF++ (Popović, 2017), NIST
(Doddington, 2002), METEOR (Lavie and Agarwal,
2007), ROUGE (Lin, 2004), and CIDEr (Vedantam
et al., 2015). Data-to-text presents an opportunity

for more interpretable evaluation, such as quanti-
fying how accurately generations reflect data con-
tent. To achieve this we adapt the extractive evalu-
ation framework of Wiseman et al. (2017) for T2X.

Subject and object extraction In T2X (as in the
other WebNLG translations) the triples are in En-
glish. Some entities can be directly copied from
data (they are the same in English and isiXhosa),
but others should be translated to isiXhosa. For
example, in Figure 1 the name “Cyril Ramaphosa”
should be copied, but the country “South Africa”
should be translated to “Mzantsi Afrika”.

To correctly verbalise data entities in T2X mod-
els have to learn when to copy entities and when
to generate isiXhosa translations of entities. Some
models overcopy, including English words in the
output text where translations are required (see
SSPG generation in Table 3(a)). Other models
copy inaccurately, resulting in missing or partially
copied entities in the text (see PG generation in Ta-
ble 3(b)). We can quantify this by casting it as an
information retrieval problem: does a generation
contain the correctly verbalised entities?

For each example we check if the subject/object
should be directly copied to the output text. We do
this by checking if the entity string from the data
triple is present in the reference text. If it is, the
entity should be directly copied (like “Ethiopia” in
Table 3(c)). If it is not, the entity should be trans-
lated (like “South Africa” in Table 3(a)). Each data-
to-text example contains a binary decision for the
subject and object, i.e., to translate or to copy. We
test how well models learn this decision.

Relation prediction We cannot apply extraction
to relations, because they cannot be copied from
data. We follow Wiseman et al. (2017) in train-
ing a relation prediction model which we use to
estimate how well models capture relations. We
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Model chrF++ chrF BLEU NIST MET ROU CID

Trained from scratch

PG 46.24 51.09 18.90 4.32 19.84 37.48 1.32
NT 38.00 42.28 12.02 3.43 15.97 27.00 0.85
SSD 44.77 49.91 16.16 4.14 19.85 34.97 1.16
SSPG 48.45 53.46 20.01 4.51 21.92 38.68 1.38

mT5-base 41.45 46.40 14.32 3.87 20.66 33.75 1.06
Afri-mT5-base 42.42 47.64 16.11 4.02 20.49 34.10 1.15

Pretrained + finetuned mT5-large 46.92 52.05 19.87 4.63 23.13 39.26 1.41
BPE MT 56.05 61.53 27.56 5.62 27.24 47.49 1.88
SSMT 54.01 59.44 24.19 5.33 26.13 44.34 1.61

Table 4: T2X test results. Best scores per category are bold and best scores overall are underlined.

Subject Object Rel
Model P R F1 P R F1 acc

Trained from scratch

PG 71.30 63.37 67.10 77.39 74.40 75.86 75.38
NT 72.65 73.25 72.95 67.14 68.12 67.63 38.14
SSD 76.01 84.77 80.16 71.26 59.90 65.09 67.27
SSPG 74.83 88.07 80.91 75.42 85.99 80.36 70.57

mT5-base 70.27 85.60 77.18 73.79 73.43 73.61 53.45
Afri-mT5-base 70.90 86.18 77.80 74.07 75.47 74.77 65.01

Pretrained + finetuned mT5-large 70.78 89.71 79.13 75.22 82.13 78.52 69.37
BPE MT 74.81 83.13 78.75 77.09 84.54 80.65 87.69
SSMT 77.78 86.42 81.87 83.17 83.57 83.37 83.78

Table 5: T2X extractive results. Best scores per category are bold and best overall are underlined.

finetune AfroXLMR-large (Alabi et al., 2022) to pre-
dict relation types based on reference texts. The
model achieves 85% heldout accuracy, which is
high enough for estimating relation verbalisation
capabilities. We apply this predictor to test set gen-
erations of models. We compare these to the cor-
rect relations in the test set data to estimate how
accurately models describe relations.

5.3. Finnish Data-to-Text

To see if our findings generalise to another ag-
glutinative language we perform experiments on
Finnish data-to-text (to the best of our knowledge
Finnish is the only other agglutinative language
with a data-to-text dataset). The Finnish Hockey
dataset (Kanerva et al., 2019a) is based on arti-
cles about ice hockey games. It contains game
statistics and text spans that describe the corre-
sponding game event. The data records are more
complex than T2X (up to 12 records, depending
on event type), but the texts are single sentences.
Our models are trained on the 6,159 data records
that are aligned with single text spans.

6. Results

6.1. Automatic metrics

The automatic metrics for T2X are reported in Ta-
ble 4. SSPG outperforms the other dedicated data-
to-text models trained from scratch across all met-
rics. We attribute the low scores of NT to the
fact that BPE tokens are not ideal units for learn-
ing templates (NT is intended to learn word-level
templates, but this led to even worse performance
on T2X). Considering that PG outperforms SSD,
learning subword segmentation is secondary to
copying in terms of its importance. SSPG com-
bines both aspects to achieve strong performance
gains over PG, with increases of 2.21 on chrF++
and and 1.11 on BLUE. This establishes SSPG as
a valuable dedicated neural architecture for data-
to-text with agglutinative languages.

SSPG outperforms both mT5 variants on chrF++
and BLEU. We believe this is because mT5 is
not pretrained on sufficient isiXhosa text and is
intended primarily for less structured text-to-text
tasks. Interestingly, SSPG even outperforms Afri-
mT5. Adapted models like Afri-mT5 (e.g. Afro-
XLMR-large (Alabi et al., 2022)) are considered
strong pretrained baselines for African languages.
The fact that it comes up short shows that stan-
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Model chrF++ chrF BLEU NIST MET ROUGE CID

Trained from scratch

PG 37.57 37.98 19.24 4.54 22.74 43.41 2.10
NT 32.13 33.70 11.95 3.64 19.17 36.18 1.45
SSD 33.68 33.78 17.03 4.17 21.53 41.48 1.88
SSPG 40.12 41.00 20.87 4.63 23.97 44.52 2.13

Pretrained + finetuned

mT5-base 28.18 30.53 8.39 2.71 14.56 28.49 1.10
mT5-large 32.70 34.22 13.40 3.46 19.48 39.93 1.75
BPE MT 42.37 41.59 22.36 5.04 24.87 46.04 2.25
SSMT 36.59 38.52 15.54 4.03 21.62 38.99 1.62

Table 6: Finnish test results. Best scores per category are bold and best scores overall are underlined.

(b) Ref UWilliam M.O. Dawson wazalelwa...
PG IWilliam M. O. Dawson wazalelwa...

(a) Ref UNorbert Lammert yinkokeli yaseJamani.
PG UNorbu Lammert yinkokeli yaseJamani.

(c) Ref I-Dublin yinxalenye yeLeinster.
PG IDubler yinxalenye yeLeinster.

Table 7: PG output compared to reference texts.
Red shows where PG fails on subword copying.

dard pretrained solutions are not as reliable for low-
resource text generation. We only see gains from
pretraining whem we turn to the unconventional ap-
proach of finetuning MT models. The best model
overall is the finetuned English → isiXhosa BPE
MT model. This shows the value of pretraining +
finetuning for this task, but highlights the lack of
high-quality PLMs for isiXhosa. BPE MT outper-
forming SSMT shows that learning subword seg-
mentation for this task is only advantagous when
paired with a subword copy mechanism (our abla-
tion results in Section 6.3 confirm this).

Table 6 shows the results for the Finnish Hockey
dataset. The relative performance of models is
similar to T2X. SSPG is the best dedicated model,
while the finetuned English → Finnish BPE MT
model is again best overall. Both models outper-
form the benchmark established by Kanerva et al.
(2019a), with our best model (BPE MT) achieving
a BLEU score gain of 2.69 over their PG model.

Based on our results, finetuning a pretrained
MT model can be an effective approach to data-
to-text modelling for certain languages. For high-
resource languages finetuning text-to-text PLMs
might yield better results, but for many low-
resource languages MT models will be the best
pretrained option available. For extremely low-
resource languages with no available MT models,
SSPG is the best choice for training a data-to-text
model from scratch for agglutinative languages.

Model and decoding algorithm chrF++ BLEU

BPE +copy +beam search (PG) 48.25 18.81

Subword segmental models
+copy +unmixed decoding (SSPG) 49.41 20.35
+copy +dynamic decoding 43.21 14.16
–copy +unmixed decoding 47.11 16.87
–copy +dynamic decoding (SSD) 46.84 17.54

Table 8: T2X validation scores for ablations.

6.2. Extractive evaluation
Table 5 reveals a more mixed account of model
performance based on the data content of model
generations. Among the models trained from
scratch, SSPG achieves the highest F1 scores. Its
precision is lower than its recall, indicating some
overcopying, but not to such an extent that it un-
dermines its F1 scores. A comparison across all
the individual precision and recall scores suggests
that SSPG balances copying and translating bet-
ter than the other models trained from scratch — it
learns in which contexts to copy directly and when
to translate instead.

PG outperforms SSPG on relations, which
is based on descriptive isiXhosa text (e.g.
“yinkokheli” in Fig. 1 means “is the leader”). The
BPE subwords of PG are sufficient for modelling
these isiXhosa phrases. However, PG struggles
with the subword modelling of entities. isiXhosa
has many prefixes that indicate grammatical roles
(e.g. “uJohn” indicates singular personal proper
noun). T2X requires attaching these prefixes
to entities correctly. A qualitative analysis of
generations reveals that PG struggles with this
(see Table 7). SSPG does not seem to make
these types of mistakes. By jointly modelling
subword segmentation and copying, SSPG learns
to combine the two when required.

As in the automatic metrics, SSPG outperforms
mT5 but is outperformed by the MT models. SSMT
achieves the highest F1 scores for subjects and
objects, while BPE MT achieves the highest re-
lation accuracy. This reiterates our findings for
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the models trained from scratch: BPE subwords
are sufficient for descriptive isiXhosa phrases, but
modelling subword segmentaion allows SSMT to
model subword-based changes to entities.

6.3. Ablation study
Table 8 shows the effect of different components
on performance. A subword segmental encoder-
decoder without a copy mechanism (SSD) falls
well short of a BPE-based pointer generator
(PG). Adding the copy mechanism improves per-
formance but only if we use unmixed decoding,
which is crucial for leveraging the copying ability of
SSPG. While dynamic decoding is useful for high-
resource tasks like MT, unmixed decoding is better
suited for generating text with subword segmental
models trained on smaller datasets.

7. Conclusion

We have presented Triples-to-isiXhosa (T2X), a
new dataset for isiXhosa data-to-text. In addition
we have proposed SSPG, a new neural model
designed for agglutinative data-to-text. SSPG
outperforms other dedicated data-to-text architec-
tures on two agglutinative languages, isiXhosa
and Finnish. SSPG is a strong data-to-text model
for low-resource agglutinative languages without
existing high-quality pretrained models. In the face
of such resource scarcity we also explored fine-
tuning bilingual NMT models, which produced the
strongest results overall and should be further in-
vestigated as an alternative to PLMs. We publicly
release T2X and our SSPG implementation to facil-
itate further research on isiXhosa text generation.

8. Ethics Statement

The source of the triples in our T2X dataset is the
English WebNLG dataset. A large majority of the
content covers Western people, places and events.
The data content might also contain some biased,
outdated or factually incorrect statements. This
bias has a potentially negative impact on data-to-
text models for isiXhosa developed based on the
dataset, as some biases might be reflected the
the model output and models might perform worse
on non-Western people, places and events. Nev-
ertheless, due to the limited availability of struc-
tured data in isiXhosa we belief that there is still
a clear benefit to releasing this dataset to enable
further development of data-to-text approaches for
languages such as isiXhosa. Our model archi-
tecture, in particular through the copy mechanism,
supports generalization to named entities different
from those in T2X. Most of the relations covered by
the triples (and verbalised in the isiXhosa text) are

general enough. However, even with a copy mech-
anism our models sometime hallucinates and gen-
erate incorrect entities in the output, which limits
the current reliability of the models.

9. Limitations

Our experiments are limited to two datasets for two
languages. We cannot make claims about how
well SSPG will generalise to other languages and
differently structured data-to-text tasks. Our re-
sults are very similar across isiXhosa and Finnish
and the differences in performance between mod-
els are substantial enough that we can confidently
claim some generalisability, but only in a narrow
linguistic context (simple data-to-text datasets for
low-resource agglutinative languages). The limita-
tions regarding the T2X dataset are discused in the
ethics statement.

SSPG takes longer to train than PG because of
the additional computation required by its dynamic
programming algorithm for summing over latent
subword segmentations. The increase in training
time depends on the model’s maximum segment
length. Our final SSPG model has a maximum
segment length of 5 characters and took aprroxi-
mately 4 hours to train on a single NVIDIA A100,
as opposed to the 20 minutes training required for
our final PG model.
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Model lr dropout batch sz BPE size other

PG 1e-3 0.3 4 500
NT 0.5 0.3 4 500 discrete states: 10, max segment length: 20
SSD2T 1e-3 0.3 4 250 lexicon size: 250, max segment length: 5
SSPG 1e-3 0.5 4 1k lexicon size: 1k, max segment length: 5

mT5-base 1e-4 0.1 8 250k warmup updates: 0, lr scheduler: fixed
mT5-large 1e-4 0.1 8 250k warmup updates: 0, lr scheduler: fixed
BPE MT 1e-4 0.3 16 10k warmup updates: 500, lr scheduler: inverse sqrt
SSMT 1e-4 0.3 16 5k warmup updates: 0, lr scheduler: fixed

Table 9: Hyperparameter settings for our final T2X models, chosen based on validation chrF++ scores.
Some hyperparameters are the same for all our models trained from scratch, including the number of
LSTM layers in the encoder & decoder (1) and the size of the embedding & hidden layers (128).

for some of our baselines (NT and PG). However,
for all our models we observed improved valida-
tion performance when BPE was used for subword
segmentation before training. For NT and PG we
trained BPE with a shared vocabulary on the data-
to-text dataset. For SSD2T and SSPG we trained
it on the data half of the data-to-text dataset, since
we only use BPE to segment the data in these
cases. We tuned BPE vocabulary size separately
for each baseline over the range [250, 500, 1k, 2k,
5k] (see Table 9 for final vocabulary sizes). For
the pretrained baselines we used their pretrained
subword segmenters.
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