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Abstract
As Large Language Models (LLMs) become increasingly influential in reasoning tasks, ensuring their trustworthiness
and introspective self-awareness is critical. This research introduces the Think-Solve-Verify (TSV) framework, an
innovative strategy tailored to explore LLMs’ trustworthiness, introspective self-awareness, and collaborative reason-
ing. This method accentuates a model’s capability to construct introspective reasoning processes from answers and
ensure their trustworthiness. The reasoning with TSV consistently performs at or near the top across the majority
of datasets with a single interaction with LLM. Moreover, we refine the voting process of self-consistency within the
Chain-of-Thought (CoT) approach, leading to notable accuracy enhancements. In our evaluations, this approach
improved performance from 67.3% to 72.8% on the AQuA dataset. Furthermore, we delve into the model’s ability to
explain the given answers, highlighting the significance of discerning genuine comprehension from mere guesswork.
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1. Introduction

In the dynamic world of Natural Language Process-
ing (NLP), the evolution of large language mod-
els (LLMs) has been both swift and transformative.
Since 2022, spurred by the introduction and ex-
tensive application of prompt engineering, these
LLMs (OpenAI, 2023; Zeng et al., 2022; Du et al.,
2022; Touvron et al., 2023; Anil et al., 2023) have
exhibited prodigious advancements. It’s undeni-
able that their prowess in tasks like writing, trans-
lation, and information extraction has redefined
the bounds of what machines can achieve. How-
ever, for all their merits, these models reveal cer-
tain shortcomings when subjected to tasks that
demand intricate reasoning. To illustrate, flag-
ship models, such as the acclaimed GPT-4 (Ope-
nAI, 2023), clock in at a modest accuracy rate of
around 42% when tested on the MATH dataset
(Hendrycks et al., 2021). To address this prob-
lem, method like Chain of Thoughts (CoT) (Shi
et al., 2022; Wei et al., 2022; Zhang et al., 2022)
represent promising endeavors to navigate around
these challenges. By embracing a sequential rea-
soning approach, these models can deliver an-
swers with a higher degree of accuracy compared
to their direct-answer counterparts.

Yet, the quest for perfecting reasoning in LLMs is
multi-dimensional. While a plethora of techniques
such as Complex CoT (Fu et al., 2022), Tab CoT
(Ziqi and Lu, 2023), Auto CoT (Zhang et al., 2022),
and PHP (Zheng et al., 2023) strive to enhance rea-
soning precision, there’s a conspicuous absence
of focus on two paramount aspects: trustworthi-
ness and model self-awareness. Should humans

trust the content generated by LLMs, and do LLMs
have self-awareness comparable to humans?

Several solutions have been put forth by re-
searchers, encompassing methods like stepwise
verification (Ling et al., 2023), aligning outputs
to human standards using RLHF (Ouyang et al.,
2022; OpenAI, 2023), and enhancing model fi-
delity by integrating with external systems (Lyu
et al., 2023). Some scholars have explored the
fine-tuning of LLMs to verify both final solutions
and intermediary steps (Creswell and Shanahan,
2022; Paul et al., 2023; Cobbe et al., 2021).
Nonetheless, a significant portion of these studies
prioritize performance indicators, with a predom-
inant focus on predictive accuracy as the primary
benchmark for LLM evaluation. This approach has
resulted in an evident gap concerning trustworthy
AI, especially when it comes to the application of
prompt engineering within LLMs. Furthermore, to
the best of our knowledge, a comprehensive inves-
tigation into the self-awareness of these models is
conspicuously absent. The challenge of reliably
deriving correct solutions to mathematical reason-
ing questions amidst model output randomness re-
mains unsolved. Moreover, insights into the collab-
orative potential of various models remain in their
infancy.

Our paper makes three primary contributions:

• Introducing the TSV framework, as illustrated
to simulate human-like reasoning. By seg-
menting the reasoning process into thinking,
solving, and verifying stages, we allow LLMs
to improve their reasoning capabilities in a
structured manner.
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• Recognizing the paramount importance
of trustworthiness and introspective self-
awareness in LLMs, we delve deep into
assessing their self-cognition capabilities.
Through our research, we identify inherent
limitations and introduce mechanisms to
bolster their trustworthiness, ensuring they
are more dependable in reasoning tasks.

• Leveraging the TSV framework, we embark
on a comprehensive assessment of LLMs’
ability to generate coherent explanations
when they have known answers. Our em-
phasis is not just on the end result but also on
the entire reasoning trajectory, ensuring that
the model’s answer stems from genuine com-
prehension and not guessing or overfitting.

2. Related Work

2.1. Chain of Thoughts
To enhance a model’s reasoning performance, var-
ious strategies have been explored, such as Com-
plex CoT (Fu et al., 2022), Tab CoT (Ziqi and Lu,
2023), Auto CoT (Zhang et al., 2022), Faithful CoT
(Lyu et al., 2023), Least-to-Most prompting (Zhou
et al., 2022). Through the design and use of
prompts, these methods aim to enhance the ca-
pabilities of a single model, especially on mathe-
matical reasoning tasks. Our work goes beyond
mere predictive accuracy and integrates trustwor-
thiness, problem-solving process elucidation, and
model collaboration under the TSV umbrella.

2.2. Large Language Models’
Trustworthiness

Although LLMs perform excellently in various
tasks, they still produce illusory and untrustwor-
thy outputs. Some researchers have investigated
feedback and verification for LLMs (Chen et al.,
2023; Madaan et al., 2023; Weng et al., 2022;
Shinn et al., 2023). Some other researchers
have proposed that models should be aware
of their unknowns and uncertainties (Yin et al.,
2023). The ReAct model (Yao et al., 2022), for
instance, addresses issues via feedback loops.
However, there’s a discernible void in exploring
model cooperation and delving deeper into their
self-awareness. Our work discusses the trustwor-
thiness of LLMs in more depth and quantitatively
evaluates them based on a new TSV framework
and some new metrics.

2.3. Consistency in language models
Previous studies have highlighted the potential in-
consistency issues in language models (Adiwar-

dana et al., 2020; Camburu et al., 2018). How-
ever, Nye et al. (Nye et al., 2021) address this
by enhancing the logical consistency of samples
from a System 1 model, integrating a logical rea-
soning module inspired by System 2. Furthermore,
Wang et al. (Wang et al., 2022) introduce a novel
decoding strategy termed ”self-consistency”, aim-
ing to supplant the conventional greedy decoding
in chain-of-thought prompting. This innovation no-
tably augments the reasoning capabilities of lan-
guage models within the Chain-of-Thought (CoT)
framework. Building upon this, we further refine
the self-consistency voting mechanism to elevate
reasoning performance.

3. Method

3.1. Problem Formulation
A reasoning-based problem-solving task can be
formally defined as a tuple (Q,C, T, S, V,A). In this
tuple:

• Q denotes the target question,

• C provides the necessary context or back-
ground for addressing Q,

• T , S, and V represent the thinking, solving,
and verifying stages of our proposed frame-
work, respectively,

• A denotes the answer.

Drawing inspiration from (Ling et al., 2023), each
stage can be conceptualized as a sequence of to-
kens or steps, represented as S = (s1, s2, . . . , sm).
An LLM undertakes this sequence to navigate
through the problem-solving process. As shown
in Fig. 1, we use red initial highlighting to align the
formalization of the problem.

3.2. Motivation
The initial motivation for this paper came from ob-
serving phenomena like:

Case 1
Question: [Reasoning Problem]
LLM Response: [Response a]
User Feedback: [incorrect, please check.]
LLM: [Response b]
However, we found that often the LLM’s output in
checking is still incorrect, lacking the ability to rec-
ognize errors, which is the ”self-awareness” deficit
mentioned in the paper.

Case 2
Question: [Reasoning Problem]
LLM Response: [Incorrect Response]
However, if we proceed in two steps:
Question: [Reasoning Problem] + [Prompt to
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The problem-solving process may be wrong.
You need to check the logic and computational details for each step.When the check is finished:
 
#1 If there is something wrong in logic, please output this sentence as is: {the logic is wrong.}
#2 If there is something wrong in calculation, please output this sentence as is: {the calculation is 
wrong.}
#3 If there is nothing wrong, please output this sentence as is: {the logic is correct}, {the  
calculation is correct.}

Verify

Q:Assistants are needed to prepare 
for preparation. Each helper can 
make either 2 large cakes or 35 small 
cakes/hr. The kitchen is available for 
3 hours and 20 large cakes & 700 
small cakes are needed. How many 
helpers are required?

Question

Q:A jeep travels a certain distance  
taking 6 hours in  the forward journey. 
During the  return journey, it  increased  
its speed by 12km/hr and took 4 hours. 
What is the  distance travelled by the  
jeep?
A:Let 'x' be the distance and 'y' be the  
speed of the  forward journey. Then, 
we have 6y=x...So the answer is 144km.

Context

We need to determine how many helpers are required to make the required 
number of cakes within the given time frame. We know the productivity of  
each helper, the number of cakes needed, and the available time.

Think

Solution 1:
#1. Let's calculate the total number of large cakes that can be made by one...
#2. To make 20 large cakes, we would need 20 large cakes / 6 large cakes ...
...
#4. Therefore, the total number of helpers required is 4 + 7 = 11 helpers.

Solve

Solution 2:
#1. Let's calculate the number of helpers required separately for large cakes...
#2. For large cakes: Number of large cakes needed = 20...
...
#6. Therefore, 20 helpers are required to prepare cakes within 3 hours.

Solution n:
#1. Number of large cakes needed = 20 Number of small cakes needed =...
...
#6. Therefore, we need at least 7 helpers to prepare cakes within 3 hours.

 
#6. To determine the total number 
of helpers required, we take the  
maximum of the two numbers of 
helpers ...

 
#5. To ensure that both tasks can be 
completed within 3 hours, we would 
need a minimum of 4 + 4 = 8  
helpers ...

output

 

Selector Rethink
#Solution1            #Solution2
#Solution3            #Solution4 

...       √Answer

≤K

>K

...
LLMS

LLMS

Calculation ErroLogic Erro

Figure 1: The comprehensive pipeline of our proposed TSV (Think-Solve-Verify) method. Based on the
imitation of humans solving mathematical reasoning problems, we first use the thinking engine to think
about the problem and generate simple problem-solving ideas instead of answers. Based on a generative
thought process, we use multiple LLMs as solvers to solve the problem. After getting the answer, we
verify the answer and use the selection algorithm we designed to improve the trustworthiness of the
answer.

think, not solve]
LLM: [Thought Process]
Question: Please solve the problem based on this
thought process.
LLM: [Correct Response]

Based on such cases, we designed the TSV
framework. The existing work based on the Chain
of Thought (CoT) primarily aims to generate rea-
soning processes and answers for a given prob-
lem using a singular model. However, within our
defined framework, this is merely a process of pro-
ducing T , S, and A given Q and C. It becomes
evident that most current methods lack the verifi-
cation stage, represented by V in our framework.
This omission of verification underscores the inher-
ent lack of self-awareness in these methods, ham-
pering the trustworthiness of model outputs.

Beyond this, our framework reveals that generat-
ing T , S, and A from Q and C is just one of several
tasks. Given practical considerations for the appli-
cation of large language models, the evaluation of
the following abilities also emerges as crucial:

1. Model Self-awareness and Trustworthi-
ness: As the model provides an answer, it
should also assess the trustworthiness of that
response, delineating its capability bound-
aries. In essence, just like most humans, the
model should be cognizant of the problems it
can and cannot solve.

2. Collaboration among Models: The efficacy
of hybrid expert models in enhancing perfor-
mance has been well-documented (Si et al.,

2023). With different models having varying
parameters and computational costs, explor-
ing how they can collaboratively address prob-
lems is of prime importance. For instance, a
sophisticated model can be employed for the
thinking process, while simpler models exe-
cute the solving process.

3. Generating Solution Processes for Known
Answers: In many scenarios, especially in
education or proving mathematical conjec-
tures, the answer is already known. Here, the
focus shifts to elucidating the reasoning and
computation processes that lead to the known
answer. This essentially becomes an exer-
cise in explanation—where the emphasis is
not on the model’s answer but on its process
of arriving at that answer.

Although self-consistency methods based on
voting can enhance model performance and give
confidence in answers, our observations align with
the proverb that ’truth often resides with the mi-
nority’. This occurrence is more prevalent in high-
uncertainty problems. For example, in a high-
confidence scenario, the model might produce A :
90% and C : 10%, clearly indicating A as the an-
swer. However, in uncertain situations with results
like A : 40%, B : 30%, C : 10%, and D : 20%,
the correct answer becomes ambiguous. Our anal-
yses indicate that the most favored answers in
such scenarios aren’t invariably correct. Thus, hu-
man selection, albeit introducing new complexities,
can help navigate such situations. Given the ad-
vanced long-context processing capabilities of ex-
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Solution1:
#1. Let's calculate the total number of large cakes that can ......
...
#4. Therefore, the total number of helpers is 4 + 7 = 11 helpers.

Solution2:
#1. Let's calculate the number of helpers required separately for ...
...
#6. Therefore, 20 helpers are required to prepare cakes.

Solution3:
#1. Number of large cakes needed = 20, Number of small cakes...
...
#6. Therefore, we need at least 7 helpers to prepare cakes.

Solution4:
#1. Let's assume the number of helpers needed is 'x'. We...
...
#5. Therefore, we would need 10 helpers to make...within 3 hours.

Solution5:
#1. To calculate the number of helpers required, we need to ...
...
#4. Therefore, 7 helpers are required to prepare cakes.

Self-consistency
#Solution1: 11

#Solution2: 20

#Solution3: 7

#Solution4: 10

#Solution5: 7

 
Majority-

Based Voting 
Answer: Therefore, we would need 
7 helpers to make 20 large cakes an
d 700 small cakes in 3 hours.×

TVS Selector（ours）

#Solution2: 7

#Solution2: 20

#Solution1: 11

#Solution4: 10

The number of 
consistent answers is 
less than the threshold

Detailed 
Results

Rethink

Answer: 
#1.Number of helpers 
required for large ...
...
#5. Therefore, we  
need 10 helpers to  
prepare 20 large cakes
and 700 small cakes .

LLMS

#Solution5: 7 √

Figure 2: Illustration of our Enhanced Answer-Trustworthiness Calibration. Diverging from self-
consistency methods, our approach employs multiple solvers and a selection mechanism. The algorithm
ensures the selection of the answer by considering both the frequency of answers and the integrity of
solution processes.

isting LLMs, we propose leveraging them to sup-
plant this human decision-making step, as illus-
trated in Fig. 2.

3.3. Methodology
3.3.1. Model Self-awareness and

Trustworthiness

Given the need for model trustworthiness and the
challenges in fine-tuning large language models,
we employ a prompt-based method to verify out-
puts. As depicted in Fig. 1, we use both direct
verification and step-by-step verification. During
this verification, both thinking and solving results
are individually examined, resulting in two boolean
variables VT and VS . If both are true, the model’s
verification output Vo is true; otherwise, it’s false.
If the model’s output matches the answer A, Ao is
set to true, otherwise, it’s false.

Drawing parallels with confusion matrices in ma-
chine learning, we define a verification matrix us-
ing Vo and Ao:

True(Vo) False(Vo)
True(Ao) TT TF
False(Ao) FT FF

Where the first letter represents Ao and the second
Vo. For instance, TT means both Ao and Vo are
true. Similar to recall and precision metrics, we
define verification metrics:

1. Accuracy:

Accuracy =
TT + TF

TT + TF + FT + FF

This represents the standard model accuracy,
indicating the proportion of outputs where Ao

is true among all outputs.

2. Accuracyv:

Accuracyv =
TT + FF

TT + TF + FT + FF

This metric showcases the model’s self-
awareness performance, measuring the per-
formance of the verification output Vo aligns
with the predicted answer output Ao.

3. SAw (Self Awareness for Wrong Answers):

SAw =
FF

FT + FF

This quantifies the model’s capability to recog-
nize its incorrect answers, assessing whether
the model can identify when its own output is
erroneous.

4. SAc (Self Awareness for True Answers):

SAc =
TF

TF + TT

This gauges the model’s proficiency in recog-
nizing its correct answers, determining if the
model mistakenly classifies right answers as
wrong.

However, it’s essential to note that large language
models may have correct results but erroneous
processes. Because when this happens, the veri-
fier may indeed have found a process error, rather
than the verifier itself being wrong. Only when this
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situation doesn’t occur are the Accuracyv and SAc

metrics unbiased; otherwise, they should be used
judiciously. In this paper, on the premise that it has
no influence on the conclusion, we assume that
when the answer is correct, the process of solving
the problem is also correct, ignoring the impact of
the incorrect process of solving the problem.

To obtain answer trustworthiness and enhance
the trustworthiness of large language models, we
propose a calibration method based on the self-
consistency approach. As shown in Fig. 2, we
use N solvers to get the output. Unlike the tradi-
tional self-consistency method, we don’t solely rely
on voting to determine the answer; instead, we’ve
refined this process. The algorithm is as follows:

Algorithm 1 Algorithm for Enhanced Answer Trust-
worthiness Calibration
Require: Answers obtained from N different

solvers, A1, A2, . . . , AN

Require: Solution process from N solvers,
S1, S2, . . . , SN

Require: A threshold value, threshold
1: counter = Count occurrences of each answer

in A1, A2, . . . , AN

2: Sort counter in descending order based on
answer frequencies.

3: Calculate the total count of answers,
answer_count.

4: if counter[0] / answer_count ≥
threshold then

5: Set As to the most frequent answer.
6: else
7: Initialize the Selector as an LLM

with a long context and A1, A2, . . . , AN ,
S1, S2, . . . , SN .

8: Determine As using the Selector based
on all answers and solution processes.

9: end if
10: return The selected answer, As

3.3.2. Collaboration of LLMs

As illustrated in Fig. 1, we decouple the thinking,
solving, and verification processes, meaning dif-
ferent models can undertake each of these tasks.
This separation leverages the unique strengths of
each model. For instance, while the GPT-4 model
is sophisticated and computationally expensive, it
excels in reasoning. In contrast, the more cost-
effective GPT-3.5 model has its limitations. We
can employ the sophisticated model for the think-
ing phase, while simpler models handle the solv-
ing phase. This separation ensures a balance be-
tween computational cost and performance, and,
based on the TSV framework, different models are
tested for their collaborative efficacy.

3.3.3. Generating Solution Processes

While most current reasoning tasks have unknown
answers, there are scenarios, especially in edu-
cation or while proving mathematical conjectures,
where the answer is already known. In such situ-
ations, based on the TSV framework and prompt
engineering, we explore the capability of large lan-
guage models to generate reasoning and com-
putation processes for known answers. This ap-
proach emphasizes not the correctness of the
model’s answer, but the process it employs to ar-
rive at a known solution.

4. Experiments

4.1. Experimental Settings

4.1.1. Datasets

We use multiple popular datasets to evaluate our
model, including AddSub Hosseini et al. (2014),
MultiArith Roy and Roth (2016), ASDiv Miao et al.
(2020), SVAMP Patel et al. (2021), GSM8K Cobbe
et al. (2021), AQuA Ling et al. (2017) and MATH
Hendrycks et al. (2021).

Given OpenAI’s API constraints for GPT-4, ex-
haustive tests on large datasets like GSM8K and
MATH are inefficient. Without affecting the exper-
imental results, we randomly sampled 100 ques-
tions, testing them in 5 runs and averaging the
results. For smaller sets like AQuA, all data was
used.

Additionally, the motivation for choosing the
AQuA dataset for further evaluation includes: (1)
As seen in Table 1, the AQuA dataset shows the
poorest performance, making it easier to demon-
strate model differences. Although the MATH
dataset performs worse, most models have very
low performance on it, offering limited reference
value. (2) The AQuA dataset is not very large. Us-
ing a dataset with thousands or even tens of thou-
sands of complex mathematical reasoning prob-
lems would make human assessment costs unac-
ceptably high.

4.1.2. Models and Prompt

We use the OpenAI GPT-3.5 and GPT-4 model for
experiments (OpenAI, 2023; Brown et al., 2020;
Ouyang et al., 2022). For the stable reproduc-
tion of the experimental results, the models we
use are the GPT-3.5-0613 and GPT-4-0613 mod-
els. All models are employed via the OpenAI API
key. For more detailed prompts and model param-
eters, please refer to the Supplementary Material.
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AddSub MultiArith ASDiv SVAMP GSM8K AQuA Average

Standard 84.2 90.1 78.2 79.2 32.7 31.9 66.0
CoT (Wei et al., 2022) 89.1 98.3 81.2 82.2 75.2 59.8 81.0
Complex CoT (Fu et al., 2022) 85.5 97.5 81.2 81.0 82.8 57.4 80.9
PHP (Zheng et al., 2023) 85.3 98.0 82.6 83.1 85.1 60.6 82.5
Faithful CoT (Lyu et al., 2023) 88.4 95.3 81.7 83.0 75.8 53.5 79.6
TSV (Ours) 92.0 97.0 83.2 84.0 79.2 63.8 83.2

Table 1: Accuracy comparison of various models on mathematical reasoning datasets. Each column
represents a specific dataset or task, with the ’Average’ column showing the mean performance across
all datasets.

InterAlgebra Precalculus Geometry NumTheory Probability PreAlgebra Algebra Average

Standard 10.9 13.9 10.9 19.8 24.8 38.6 27.7 20.9
CoT 13.9 13.9 18.8 25.7 31.7 56.4 35.6 28.0
Complex CoT 14.6 16.8 22.3 33.4 29.7 53.8 49.1 31.4
PHP 17.1 16.1 25.4 35.1 33.7 57.7 51.1 33.7
Faithful CoT / / / / / / / 31.8
TSV (Ours) 22.8 23.8 34.7 31.7 32.1 61.4 58.4 37.8

Table 2: Extended accuracy comparison of various models across a diverse set of mathematical reason-
ing datasets. The table highlights the models’ capabilities in specific mathematical topics.

4.2. Reasoning Task: Given Q and C
For reasoning tasks provided with Question (Q)
and Context (C), The formalization of most exist-
ing work based on the CoT approach is: Given
Q and C, deduce T , S, and A. In the reasoning
tasks, the zero-shot approaches typically lack C,
while popular few-shot methods include context C.
In most existing works, the thinking and calculation
processes aren’t separated, and they don’t involve
a verification step. When Q and C are provided,
as shown in Fig. 1, our framework can infer prob-
lems similarly to other works, that is, given Q and
C, however, it resolves T , S, and A. We will use
the TSV framework to organize our experiments
results below.

4.2.1. Thinking and Solving

Based on our framework, we found that using a
single forward pass (model inference) for predic-
tions with few-shot methods surpasses most exist-
ing CoT approaches. The results are shown in Ta-
ble 1 and 2.

The TSV method consistently performs at or
near the top across the majority of datasets. This
indicates the robustness and effectiveness of the
approach. The PHP method, despite requiring
multiple rounds of interaction with the model, of-
fers competitive performance, especially when ob-
serving datasets in Table 1. However, the added
complexity and the requirement for multiple inter-
actions can be seen as a limitation, especially
when rapid results are needed. The TSV method,
which requires just a single interaction, achieves

similar or even better performance, highlighting its
efficiency. The baseline method exhibits varied
performance across datasets. While they show
moderate success in some datasets, their perfor-
mance significantly drops in others, emphasizing
the need for more advanced methods.

In conclusion, while multiple methods show
promise in addressing the challenges, TSV stands
out due to its efficiency (single interaction with
LLM) and consistently high performance. The re-
sults underscore the potential of TSV as a po-
tent tool for reasoning tasks, particularly when effi-
ciency and accuracy are paramount.

4.2.2. Verification and Model Fusion

As shown in Fig. 3, we observed that individ-
ual models without our TSV, when examining their
outputs, show deficiencies. Even when they are
wrong, the models still believe their thinking and
calculations are correct, revealing a lack of self-
awareness. The GPT-3.5 model lacks the capa-
bility to check its outputs in most cases when gen-
erating wrong answers and being asked to check
with a simple prompt. This suggests a flaw in the
model’s self-awareness. As shown in Fig. 3, we
observed that without using TSV, the model often
shows defects when checking its outputs. On most
datasets, the self-cognition indices of baseline
methods and CoT methods are lower than when
using TSV. Surprisingly, the baseline method on
the MATH dataset can to some extent detect errors.
Even if the model outputs are wrong, the models
still believe that their thinking and calculation are
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Figure 3: Comparative analysis of model performances across six reasoning datasets. The varying
methodologies are color-coded to provide clear differentiation. This visualization underscores the differ-
ential strengths of each approach across datasets.

correct, indicating that they lack self-awareness.
That is to say, after generating answers, the check-
ing tasks based on prompt engineering are chal-
lenging for large language models.

The Table 3 differences on GPT-4 and GPT-3.5
(AQuA). We can see that when the ”Break” is set
to ”Yes”, the model is allowed to split the steps and
verify each step. This is essential for understand-
ing the self-awareness of the model. When a break
is taken (i.e., processes are split and verified step-
by-step), the model’s self-awareness, as captured
by the Accuracyv metric, is generally higher. This
suggests that allowing the model to verify its steps
improves its self-consistency. However, counter-
intuitively, when no break is taken, there is an in-
crease in the model’s ability to recognize its mis-
takes, as indicated by the drop in SAw when com-
paring rows where Break is ’No’ versus ’Yes’.

The most evident observation is the discrepancy
in the SAw (Self Awareness for Wrong Answers)
metric across different configurations. When we
employ GPT-3.5 for both thinking and checking,
the SAw score is only 0.05, which suggests that
the model rarely recognizes its mistakes. This is
a significant shortcoming, as the model often be-
lieves its incorrect outputs are correct. On the
other hand, when we use GPT-4 for thinking and
GPT-3.5 for checking, the SAw score increases to

0.74, showcasing the added advantage of having
the GPT-4 model in the process. In addition to this,
model fusion can effectively use the capabilities of
different models. For example, after using GPT-4
for short thinking and generating prompts, the pre-
diction accuracy of the GPT-3.5 model increased
from 62% to 72%. Even the GPT-4 model is only
used for thinking, it improves the performance a
lot.

Break Think Check Acc. Accv SAw SAc

Yes v3.5 v3.5 0.62 0.56 0.05 0.13
Yes v4 v3.5 0.72 0.62 0.00 0.14
Yes v3.5 v4 0.62 0.74 0.74 0.26
No v3.5 v3.5 0.62 0.68 0.21 0.03
No v4 v3.5 0.72 0.74 0.07 0.00
No v3.5 v4 0.62 0.90 0.95 0.13

Table 3: Results from combining different versions
of GPT for thinking and checking, under varying
configurations with AQuA dataset. The table ex-
plores the interplay between breaking down the
reasoning steps, model versions for thinking and
checking, and the subsequent impact on accuracy
and self-awareness metrics. Specifically, ”Break”
indicates if the reasoning steps are broken down
for verification.
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In conclusion, the results emphasize the impor-
tance of splitting steps, which allows for better ver-
ification and consequently improved model self-
awareness. GPT-4’s involvement in the thinking
phase consistently boosts performance, underlin-
ing its enhanced capabilities compared to GPT-
3.5. However, even with these improvements, the
models’ overconfidence in their outputs, especially
when wrong, remains a significant challenge and
highlights the importance of developing models
with better self-awareness and introspection capa-
bilities.

N ACC ACCS ACCR ACCv SAw SAc

1 63.8 63.8 63.8 59.4 22.3 19.4
5 66.1 67.3 72.0 61.0 15.2 4.6
10 67.3 72.8 79.1 57.7 14.1 4.1
20 67.3 71.3 79.9 55.3 12.5 4.3

Table 4: Performance metrics of our approach
on the AQuA dataset across different numbers of
solvers. The column ”N” represents the number
of solvers used. Metrics such as the baseline ac-
curacy (ACC), the accuracy after using our selec-
tion algorithm (ACCS), the accuracy when drop-
ping outputs with low confidence (ACCR), and the
introspective accuracy (ACCv) are used to evalu-
ate the model’s performance and introspective ca-
pabilities.

4.3. Verification Task: Model
Trustworthiness

After completing the inference task, we need to
verify the results. However, the model’s self-
awareness flaw means it can’t discover vulnera-
bilities in its direct reasoning process, presenting
a challenge for the verification step. Thanks to
the self-consistency method, we can provide con-
fidence scores and enhance model performance.
Existing self-consistency is based on majority vot-
ing, naturally yielding a confidence level. For ex-
ample, if there are 8 answers out of 10 candidate
answers that are 10, then the answer is 10, and
the confidence is 80%. However, based on the
idea that ”truth is often in the hands of a few”, we
have improved this voting algorithm. As described
in the steps of Algorithm 1, we use a threshold of
0.5 and experiment on the representative AQuA
dataset. Table 5 offers a comprehensive view of
the relationship between the number of CoT paths
and accuracy on the AquA dataset. In the pur-
suit of enhancing model reliability, we conducted
a systematic evaluation of our methodology across
varying solver configurations, as delineated in Ta-
ble 4. The overarching trend observed is the am-
plification of model accuracy with the incremental

addition of solvers. Specifically, when the solver
count escalates from 1 to 20, the overall accuracy
demonstrates a subtle yet consistent augmenta-
tion, stabilizing at an optimal 67.3% for both 10
and 20 solvers. This saturation suggests a poten-
tial equilibrium, where the inclusion of additional
solvers might not provide substantial gains in over-
all accuracy.

Delving deeper into the post-algorithmic perfor-
mance ACCS , our methodology distinctly outper-
forms the baseline, especially with an ensemble
of 10 solvers, where it reaches a zenith of 72.8%.
This accentuates the prowess of our algorithm in
judiciously selecting outputs with heightened pre-
cision when furnished with an expansive solver
pool. Furthermore, the efficacy of our algorithm
becomes conspicuously evident when examining
the ACCR metric. As the solver ensemble ex-
pands, our algorithm exhibits an enhanced apti-
tude in effectively segregating less confident pre-
dictions, culminating in a peak accuracy of 79.9%
with 20 solvers for the discarded outputs. How-
ever, a point of introspection emerges when as-
sessing the model’s introspective accuracy ACCv.
The marginal decline from 59.4% to 55.4% as
solvers increase indicates potential areas for refin-
ing the model’s introspective capabilities. From a
self-awareness perspective, counterintuitively, the
decline in SAw from 22% to 12% as we transition
from a singular solver to a group of 20 underscores
our model’s dropping proficiency in identifying its
own errors. In stark contrast, the SAc remains rel-
atively invariant, hovering around 4% irrespective
of the solver count, signifying consistent model be-
havior in instances where it doubts its correct an-
swers.

In summary, our approach stands out by em-
ploying an ensemble of 10 solvers and achieving
state-of-the-art results on the AQuA dataset us-
ing a single prompt with the GPT-3.5 model. The
practical outcomes highlight both the performance
of our method in optimizing output selection and
its effectiveness in distinguishing dependable pre-
dictions. Nonetheless, additional scrutiny and en-
hancement are needed to delve into the introspec-
tive capabilities during the verification phase.

4.4. Explanation Task: Assessing the
Model’s Ability to Justify its
Answers

When evaluating the reasoning performance, for
multiple-choice questions or mathematical prob-
lems with unique solutions, answer verification
can often be accomplished through straightfor-
ward string processing methods like regular ex-
pressions. However, evaluating T and S poses its
set of challenges. A comprehensive assessment
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AQuA (%) GSM8K (%) SVAMP (%)
Method Logic Calc. Logic Calc. Logic Calc.

Base (S) 92.2 86.2 99.8 92.2 94.6 92.0
Base (H) 66.4 94.0 86.2 98.1 82.7 98.9
Break (S) 76.3 72.1 58.8 54.9 74.3 68.2
Break (H) 66.1 96.2 84.3 99.4 88.6 99.4

Table 5: Comparative performances of GPT-3.5
and human evaluators in explanation task. In the
’Method’ column, ’Base’ and ’Break’ represent no
breaking (baseline) and breaking the solution into
steps respectively. ’S’ stands for self-checking,
and ’H’ represents human-checking.

of T and S given A demands an intricate under-
standing of semantic information.

The advent of Large Language Models (LLMs)
has ushered in an era where automated evalua-
tions based on semantic understanding are be-
coming feasible. To ensure the rigor and validity
of our approach, we set human evaluations as our
benchmark. We then juxtaposed the performance
of ChatGPT in assessing the correctness of the
reasoning and problem-solving process.

Table 5 provides an insightful comparison be-
tween ChatGPT and human evaluators regard-
ing their ability to assess reasoning and problem-
solving processes. In the baseline GPT3.5 model,
without breaking the answers into steps, there is
a pronounced disparity between the model’s self-
assessment and the human evaluators’ assess-
ment. For example, in the AQuA dataset, the
model’s self-estimated logical accuracy stands at
92.2%, whereas human evaluators rate it substan-
tially lower at 66.4%. This pattern persists across
the GSM8K and SVAMP datasets, indicating that
the model might be overconfident about its logical
reasoning capabilities.

Introducing the ’break’ methodology, where so-
lutions are evaluated step-by-step, reveals a sig-
nificant shift in model self-assessment. While
the accuracy of human evaluators remains rela-
tively consistent or even slightly improved, espe-
cially in terms of logical reasoning, the model’s
self-assessed accuracy sees a significant decline,
especially in the GSM8K dataset. The ’break’
method indeed tempers the model’s tendency to
overestimate its capabilities. However, there’s a
catch. The process might inadvertently push the
model towards underestimating its outputs, espe-
cially evident in the calculation accuracy metric.
This shift from overestimation to potential under-
estimation reiterates the complexity of achieving a
balanced evaluation.

5. Conclusion

In this study, we embarked on a comprehensive
exploration of the capabilities and potential limita-
tions of LLMs, specifically focusing on their appli-
cation in mathematical reasoning. Our research
was anchored in the dual objectives of enhancing
model trustworthiness and evaluating the model’s
self-awareness.

Our findings underscored the inherent chal-
lenges faced by models in self-verification tasks.
We observed that while models displayed con-
siderable prowess in problem-solving, they often
lacked introspective capabilities, sometimes ex-
pressing unwarranted confidence in incorrect an-
swers. However, through systematic evaluations
and methodological refinements, we introduced
a calibration approach that significantly amplified
model accuracy and trustworthiness. In the realm
of explanation tasks, we highlighted the advance-
ments made by LLMs, emphasizing their poten-
tial in automated evaluations grounded in seman-
tic understanding. Though models like GPT-4 are
impressive, achieving comprehensive understand-
ing in AI is an ongoing journey. We aspire for our
research to guide future endeavors towards more
trustworthy and human-like AI models.
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