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Abstract
Entity linking is a well-established task in NLP consisting of associating entity mentions with entries in a knowledge
base. Current models have demonstrated competitive performance in standard text settings. However, when it comes
to noisy domains such as social media, certain challenges still persist. Typically, to evaluate entity linking on existing
benchmarks, a comprehensive knowledge base is necessary and models are expected to possess an understanding
of all the entities contained within the knowledge base. However, in practical scenarios where the objective is to
retrieve sentences specifically related to a particular entity, strict adherence to a complete understanding of all
entities in the knowledge base may not be necessary. To address this gap, we introduce TweetTER (Tweet Target
Entity Retrieval), a novel benchmark that aims to bridge the challenges in entity linking. The distinguishing feature
of this benchmark is its approach of re-framing entity linking as a binary entity retrieval task. This enables the
evaluation of language models’ performance without relying on a conventional knowledge base, providing a more
practical and versatile evaluation framework for assessing the effectiveness of language models in entity retrieval tasks.
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1. Introduction

Word Sense Disambiguation (Navigli, 2009, WSD)
and Entity Linking (Ling et al., 2015, EL) are two
long-standing tasks in language understanding. In
these tasks, the primary goal is to associate a given
word with either a specific sense in a sense in-
ventory (e.g., WordNet for WSD) or an entity in a
knowledge base (e.g., Wikipedia for EL). However,
relying on specific underlying inventories poses cer-
tain limitations on the types of models that can be
effectively evaluated. It assumes that the models
have the ability to store and process information
about the entire knowledge base, which may not
always be practical or feasible due to the sheer
size and complexity of such resources. Knowledge
bases such as Wikidata1 are composed of tens of
millions of entities, resulting in a substantial num-
ber of plausible choices for a given entity, many of
which might be either outdated or refer to unconven-
tional usage of the entity. The high granularity often
makes the task of entity linking too challenging or
even impractical, particularly in noisy settings such
as social media (Liu et al., 2013).

However, in realistic scenarios, understanding
the specific entity of interest is often sufficient to
retrieve relevant sentences from a text corpus. For
example, a company launching a new product with
an ambiguous name may seek to analyze its impact
on social media. In such cases, there is no require-
ment for a model to encode knowledge about all po-
tential candidate entities. Instead, the focus should

1https://www.wikidata.org/

P
Context Obama published his memoirs last year.

Definition Former president of the USA

N
Context I can’t wait to see the new Tom Hanks movie.

Definition Renowned physicist and Nobel laureate

Table 1: Example positive (P) and negative (N)
samples for two target entities (underlined).

be on retrieving information related to a particular
sense or instance of the entity, making it unneces-
sary to store knowledge about every possible entity
in the model.

To address these challenges, we propose an
alternative formulation for the standard EL task. In-
spired by the WiC-TSV dataset (Breit et al., 2021),
we put forward TweetTER (Tweet Target Entity Re-
trieval), a benchmark for entity linking in the noisy
domain of Twitter that does not rely on any spe-
cific knowledge base. Our benchmark stems from
TweetNERD (Mishra et al., 2022), a dataset for
conventional entity linking. However, the task in
our benchmark is re-framed as a simple retrieval
one: given an input tweet, a target entity, and its
definition, the objective is to determine whether the
provided definition matches the target entity men-
tioned in the input tweet (context). Table 1 shows
examples for each of the two possible classes (pos-
itive or negative) in this binary classification task.

Thanks to its re-framing of the original linking task
as a retrieval one, our benchmark enables a seam-
less evaluation of unsupervised and supervised

https://www.wikidata.org/
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techniques based on language models. We con-
duct an evaluation of different pre-trained language
models on the TweetTER benchmark in zero-shot,
few-shot and full fine-tuning settings. The results
show how language models can be successfully
applied on the task, which reinforces the practical
utility of the dataset, while also suggesting room
for improvement. In particular, the task proves chal-
lenging for in-context learning (ICL) approaches
based on large language models, while fine-tuning
of pre-trained encoder-based models tend to per-
form best overall.

2. TweetTER: The Dataset

In this section, we explain the construction process
of TweetTER. First, we describe the entity linking
dataset on which our benchmark is constructed
(Section 2.1). Then, we explain in detail the strategy
we followed to convert the entity linking task into
a retrieval one (Section 2.2). Finally, we present
the evaluation splits and statistics of the dataset in
Section 2.3.

2.1. TweetNERD
TweetNERD (Mishra et al., 2022) is a dataset for
named entity recognition and linking that comprises
over 340,000 instances.2 Each instance consists
of a tweet, a target phrase within the tweet, the start
and end span of the target phrase, and a Wikidata
item ID. The Wikidata item ID provides information
about the entity to which the target phrase refers
in the context of the tweet.

2.2. From Entity Linking to Retrieval
Using TweetNERD as the starting point, we perform
the following processing steps to re-formulate the
task and obtain TweetTER:

Pre-Processing. First, instances in the Tweet-
NERD dataset that had ambiguous3 or out-of-
knowledge base target phrases were removed.
Also, tweets starting with a user mention were
excluded from the dataset since they were likely
replies that might not provide sufficient context. Ad-
ditionally, tweets containing URLs, including those
with images, were also removed to focus solely
on the textual content. User mentions within the
remaining tweets were replaced with a generic

2Due to changes in the availability and privacy settings
of certain tweets, it was not possible to retrieve all the
340,000 tweet IDs included in the original TweetNERD
dataset.

3The ambiguous tag was used in the original dataset
for indicating instances that were not possible to disam-
biguate even given the context.

Processing step Instances

Original 475,990
Tweets available 399,524
Annotated 219,696
More than one possible candidate 203,751
URLs removed 130,789
Replies removed 77,742
Short tweets removed 72,965
Long target phrases removed 67,256
Low page views removed 60,483
Instances with duplicated tweets removed 39,103

Table 2: Number of instances remaining after each
processing step.

“@user” token unless the user was listed as a ver-
ified user.4 Moreover, instances with tweets con-
taining less than 7 words were discarded to ensure
an adequate amount of context for accurate clas-
sification. Similarly, instances with target phrases
longer than 3 words were removed. Finally, to avoid
redundancy and maintain diversity in the dataset,
duplicate tweets were dropped, retaining only a
single instance per unique tweet.

After completing the pre-processing, we were
left with 39,103 instances out of the initial 475,990
instances from TweetNERD. The detailed count of
remaining instances after each pre-processing step
is presented in Table 2.

Candidate generation. To obtain disambiguation
candidates for each target entity, up to 10 candi-
dates for each target word were obtained by query-
ing the Wikidata search API and selecting the top 10
results. These candidates would potentially match
the target word and serve as possible definitions.
Candidates with low page views, specifically less
than 1000, were eliminated based on the QRank
signal5. This step was aimed to reduce noise in the
dataset and prioritize candidates that were more
likely to provide reliable and commonly accepted
definitions.

Task reformulation. The remaining TweetNERD
instances were divided into different buckets based
on their tweet dates, with each bucket reserved
for creating various splits (e.g., train, validation,
test). Specifically, tweets for the training bucket
were chosen to be older than those of the valida-
tion and test buckets, imposing a temporal ordering

4The compilation of the verified user list occurred prior
to the introduction of Twitter Blue, making it a valuable
proxy for identifying well-known personalities on the plat-
form.

5https://github.com/brawer/wikidata-qrank

https://github.com/brawer/wikidata-qrank
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Train Validation Test OOD Academic

Number of samples 17,868 3,772 18,198 2,244 7,302
Number of unique targets 6,151 1,533 7,532 1,297 1,110
Average tweet length 131 123 132 131 92

Table 3: Statistics of the various splits of the TweetTER dataset.

in the dataset. This was done to ensure a more
realistic setting, which in turn would be more chal-
lenging as shown in similar Twitter-related tasks
(Ushio et al., 2022; Antypas et al., 2022). Also, to
ensure a balanced representation of both matching
and non-matching instances, in the training and
validation splits, for each tweet we create a single
positive instance and a single negative instance in
the respective buckets.

The test set was handled differently; to introduce
a more challenging evaluation, we generated both
a positive and a negative sample in half of the in-
stances within the test bucket. For the remaining
half, we either created a single positive or a single
negative instance per tweet. The rationale behind
this choice is to prevent the creation of predictable
patterns where each positive instance is consis-
tently paired with a negative instance, potentially
leading to biased model behavior. By mixing the
labeling approach, we aim to challenge systems to
genuinely predict the label of each instance rather
than exploiting predictable patterns.

For positive instances (matches), the definition
assigned was the one corresponding to the gold
Wikidata item ID of the target word. For negative
instances (non-matches), we randomly chose a
candidate definition from those having a token over-
lap similarity of no more than 0.9 with the gold
definition. This selection process aimed to provide
a diverse set of non-matching definitions that were
distinct from the correct definition.

2.3. Data Splits
In addition to the standard train/test/validation splits,
TweetNERD also includes Out-of-Domain (OOD)
and academic test splits (Mishra et al., 2022). The
OOD test split, consisting of 25,000 tweets, focuses
on tweets from a shorter time frame, deliberately
emphasizing entities that are more challenging to
disambiguate. The sampling process is designed
to reflect the diversity of potential candidates for
the mentioned entity. The academic test split, is
a subset of 30,000 tweets that are sampled from
existing academic benchmarks and have been re-
annotated to comply with TweetNERD guidelines.
Including this split adds temporal diversity and in-
corporates previously benchmarked datasets into
the evaluation of TweetNERD.

Table 3 provides an overview of the statistics

for the different splits within the dataset. In terms
of size, we aimed for a train/validation/test split
of 45/10/45. However, due to various processing
steps involved, the final sizes of the splits may vary,
as it is challenging to precisely track and maintain
consistent proportions throughout the entire pro-
cess. TweetTER is available through HuggingFace
Datasets.6

3. Evaluation

In order to get a better understanding of the chal-
lenging nature of the proposed task, we test a suite
of LMs on the TweetTER benchmark.

Evaluation Metrics. As a retrieval-inspired task,
we report standard information retrieval evaluation
metrics such as precision, recall and F1 on the
positive class, as well as accuracy.

3.1. Comparison systems

Supervised Evaluation. In this supervised setting,
we feed the concatenation of the context and defi-
nition, separated by the model’s separator token,
as input to each model. Following this, we take
the average embeddings of both the target phrase
sub-tokens and the definition sub-tokens. These
average embeddings serve as representations of
the respective elements. By taking the difference
between the two embeddings, we derive a result-
ing vector that captures the contextual relationship
between the target phrase and its definition. This
resulting vector is then fed into a classifier layer.
Finally, we fine-tune the entire architecture on the
training set of TweetTER. In our supervised config-
uration, we opt for relatively small language models.
This choice is in line with common practice for fine-
tuning scenarios, as practical constraints often limit
the use of larger models due to computational ex-
penses. Specifically, we utilize the BERT-large (De-
vlin et al., 2019), RoBERTa-large (Liu et al., 2019),
and RoBERTa-large-twitter models (Loureiro et al.,
2022), the latter being a RoBERTa language model
specifically trained on Twitter domain data.

6https://huggingface.co/datasets/cardiffnlp/
tweet_ter

https://huggingface.co/datasets/cardiffnlp/tweet_ter
https://huggingface.co/datasets/cardiffnlp/tweet_ter


16893

Zero-Shot Evaluation. For the zero-shot con-
figuration, we employed the capabilities of large
language models, namely InstructGPT (Ouyang
et al., 2022) and various sizes of Flan-T5 models
(Chung et al., 2022), which typically excel in zero-
shot applications, as opposed to smaller models
like RoBERTa, which need to be fine-tuned for spe-
cific tasks. To accomplish this, we adopt a straight-
forward approach of converting each sample into
a prompt using a predefined prompting template,
which is then passed as input to the model. Given a
test instance consisting of a tweet, a specific target
word within the tweet, and a candidate definition,
all components are integrated into the following
prompt:
Based on the tweet, is the definition of the
target correct?
Text: [Tweet]
Target: [Target Word]
Definition: [Candidat Definition]
Options: [Yes, No]

Subsequently, minimal regular expression pro-
cessing is applied to the resulting generation, in
order to derive the prediction label. In the few cases
where instances cannot be parsed into an accept-
able label, we select one of the two available op-
tions at random.

Few-shot Evaluation. In the few-shot setting, we
follow the same prompt template as in the zero-shot
configuration. However, we present three distinct
annotated positive and three negative instances to
the model, prior to introducing our query instance.
Also, similar to the zero-shot scenario, the reported
numbers are averaged over 3 different runs. For
each run, we utilize a different set of sampled few-
shot instances as examples provided to the model.

3.2. Analysis of Results
Table 4 shows the experimental results on the
TweetTER dataset. Given the balancedness of
the dataset (50% positive instances and 50% nega-
tive instances), performance is reported in terms of
accuracy. Furthermore, as a convention in the en-
tity retrieval setting, we report the precision, recall,
and F1 scores of the positive class for additional
insights.

Zero-Shot Versus Few-Shot. When comparing
zero-shot and few-shot systems, the differences
in their performance seem negligible. Specifically,
smaller models demonstrate inferior performance
in few-shot scenarios, whereas the top-performing
model, Instruct GPT, exhibits a slight improvement
in few-shot performance compared to zero-shot
settings. Regarding the inferior performance of
smaller models in few-shot setting, our assumption

is that the limited set of examples might lead to
biased behaviour, as the models are then tasked
with classifying entities from a diverse array of types
and domains, potentially undermining their ability
to generalize effectively across broader contexts.

ICL Versus Fine-Tuning. ICL systems are lag-
ging behind their fine-tuning counterparts. This
may imply that LLMs do not encapsulate sufficient
knowledge within their parameters. Consequently,
they might require an external knowledge base to
address their shortcomings.

To provide further support for this argument, we
partition the test instances into two categories:
those with target words present in the training
set and those without. For the segment with tar-
get words seen in the training data, the accuracy
of the best-performing zero-shot model is 82.7%,
whereas the best-performing fine-tuning model
achieves an accuracy of 90.1%. In contrast, for the
segment with target words unseen in the training
data, the respective accuracy figures are 76.7% for
the zero-shot model and 78.7% for the fine-tuning
model. This implies that having access to the addi-
tional data provided in the training set, gives fine-
tuning models a distinct advantage, an advantage
that is reduced when dealing with unseen target
words.

Human Versus Machine. As a proxy to measure
human performance on the task, we randomly se-
lected a representative sample of 180 instances
from the test set (referred to as the human subset
in the table) while maintaining the class balance.
Additionally, to measure human agreement, we fur-
ther narrowed down this group by sub-sampling 30
instances from the aforementioned 180. This sub-
sample was subsequently subjected to a secondary
annotator’s evaluation to measure the extent of
agreement between their respective annotations.

With the exception of RoBERTa-L, the results
suggest that LMs generally demonstrate lower per-
formance levels when contrasted with human anno-
tators (see Human row of Table 4), which suggests
that the task remains challenging for the majority of
the baselines. Moreover, there is a 83% agreement
between the two human annotators. However, this
percentage drops to 74% when comparing human
annotations against the best-performing fine-tuning
model and further to 73% when comparing human
annotations against the best-performing zero-shot
model. These numbers highlight the divergent pre-
diction processes between humans and LMs.

Prediction Bias. In the case of better performing
ICL systems, another notable observation is the
lower recall scores compared to higher precision.
This observation may indicate that when facing
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Test OOD Academic Human Subset

Acc P+ R+ F1+ Acc P+ R+ F1+ Acc P+ R+ F1+ Acc P+ R+ F1+
Tu

ni
ng BERT-L 76.7 84.2 65.7 73.8 74.0 79.5 64.7 71.3 91.1 94.2 87.5 90.7 78.3 88.1 65.6 75.2

RoBERTa-L 80.6 81.4 79.3 80.3 81.6 79.9 84.6 82.2 93.2 92.1 94.4 93.3 81.7 83.5 78.9 81.1
RoBERTa-T 81.3 78.1 86.9 82.3 80.1 74.8 90.8 82.1 93.2 89.1 98.5 93.6 75.0 71.0 84.4 77.2

Ze
ro

-s
ho

t Flan-T5-S 51.6 52.3 37.0 43.3 50.7 51.0 37.5 43.2 53.0 54.3 38.1 44.8 51.1 51.3 40.4 45.2
Flan-T5-B 63.3 61.7 70.6 65.8 62.3 59.8 75.6 66.8 74.2 70.9 82.2 76.1 60.7 58.6 72.6 64.9
Flan-T5-L 66.8 69.9 58.9 63.9 65.6 67.2 60.9 63.9 77.5 80.1 73.3 76.6 65.4 65.8 64.1 64.9
Flan-T5-XL 70.0 75.9 58.8 66.2 69.8 74.3 60.5 66.7 80.4 83.3 76.0 79.5 71.1 75.1 63.3 68.7
Instruct-GPT 78.3 87.4 66.0 75.2 79.0 84.0 71.6 77.3 85.7 89.0 81.5 85.1 77.4 83.5 68.5 75.1

Fe
w

-s
ho

t Flan-T5-S 51.1 51.7 34.4 41.3 50.1 50.3 34.0 40.5 52.3 53.8 33.0 40.9 49.8 50.2 30.4 37.5
Flan-T5-B 60.5 62.3 53.4 57.5 61.5 61.8 60.9 61.3 68.4 69.8 64.9 67.2 58.1 58.4 56.3 57.3
Flan-T5-L 64.2 65.5 60.3 62.8 65.6 66.8 62.4 64.5 74.8 75.2 74.2 74.7 65.6 65.8 65.2 65.5
Flan-T5-XL 67.1 76.6 49.2 59.9 67.5 75.8 51.5 61.3 77.5 83.8 68.3 75.2 66.7 73.8 51.9 60.8
Instruct-GPT 79.2 80.2 78.2 78.9 79.6 78.2 82.8 80.2 83.2 79.2 90.8 84.4 78.1 77.5 80.0 78.5

Human – – – – – – – – – – – – 80.6 81.6 81.6 80.2
All Positive 50.0 50.0 100.0 66.7 50.0 50.0 100.0 66.7 50.0 50.0 100.0 66.7 50.0 50.0 100.0 66.7

Table 4: Performance of different models in terms of accuracy (Acc), precision of positive class (P+),
recall of positive class (R+), and F1-score of positive class (F1+). The model sizes are denoted as S
(small), B (base), L (large), and XL (extra-large). Additionally, in “RoBERTA-T”, the letter T signifies that it
is a Twitter-specific version of the RoBERTA model.

challenging test instances, LLMs are more inclined
to predict a non-match, as it is more probable that
a given candidate definition does not accurately
represent the target word. This behavior is less
pronounced in fine-tuning systems.

Model Size. When it comes to the number of pa-
rameters, larger language models tend to exhibit
better performance in zero- and few-shot settings,
with the performance increasing consistently from
the smallest model (Flan-T5 small) to the largest
(Flan-T5-XL and Instruct-GPT). Smaller models
seem to face difficulties when employed in zero-
and few-shot scenarios. For instance, Flan-T5
small exhibits performance that closely resembles
a random baseline.

Pre-Training Domain. In terms of the pre-training
domain, it appears that RoBERTa-T (specifically
trained on Twitter data) expectedly achieves better
results than the regular RoBERTa model. Nonethe-
less, the difference is relatively small, with modest
gains of 1 and 2 percentage points in accuracy and
F1, respectively.

4. Conclusion

In this paper we have presented TweetTER, a new
task and benchmark for target entity retrieval on
Twitter. By transforming the problem from a tra-
ditional entity disambiguation setting to a more
retrieval-type one, we achieved two objectives.
First, we make the task more practical in line with

downstream applications, and second, we render
it more accessible for the usage and evaluation of
language models, while ensuring a similar type of
evaluation (Hauer and Kondrak, 2022). Additionally,
we presented an analysis of the performance of var-
ious language model-based systems on our newly
constructed benchmark. The results highlight the
potential of fine-tuned models in this task, while
exposing some limitations of LLMs in in-context
learning settings.

Limitations
For this paper, we constructed a dataset using Wiki-
data as the reference knowledge base, and for En-
glish only. This can limit the conclusions we can
take from the experiments (linked with Wikidata)
and how generalisable approaches can be to other
languages, especially in a domain as multilingual as
social media. The amount of experiments is limited
to a small number of models, mainly transformer-
based language models, and conclusions may only
applied to these specific models.

Ethics Statement
In this paper, we consider data from social media.
We follow both the license of the input TweetNERD
dataset as well as Twitter regulations for data stor-
age. Moreover, we perform preprocessing steps
for anonymizing the data (removing user names)
and removing links. We only work with aggregated
information and with information without user pro-
filing – for the experiments only the preprocessing
textual content is utilised.
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