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Abstract
Few-shot named entity recognition (NER) is a challenging task that aims to recognize new named entities with
only a limited amount of labeled examples. In this paper, we introduce SSF, which is a streamlined span-based
factorization method that addresses the problem of few-shot NER. Our approach formulates few-shot NER as a
span-level alignment problem between query and support instances. To achieve this goal, SSF decomposes the
span-level alignment problem into several refined span-level procedures. The proposed approach encompasses
several key modules such as the Span Boosting Module, Span Prototypical Module, Span Alignment Module, and
Span Optimization Module. Our experimental results demonstrate a significant improvement over the previous
state-of-the-art performance. Specifically, compared to previous methods, our proposed approach achieves an
average F1 score improvement of 12 points on the FewNERD dataset and 10 points on the SNIPS dataset. Moreover,
our approach has surpassed the latest state-of-the-art performance on both datasets.

Keywords: Named Entity Recognition, Few-Shot Named Entity Recognition

1. Introduction

Named Entity Recognition (NER) is a fundamental
task in Natural Language Processing (NLP). It aims
to identify and categorize named entities in text,
such as person names, organizations, locations,
dates, and other entities. Prior approaches (Lam-
ple et al., 2016; Ma and Hovy, 2016; Chiu and
Nichols, 2016; Peters et al., 2017) have introduced
various deep neural architectures that demonstrate
promising results. However, these approaches re-
quire a large amount of labeled data, which is la-
borious and time-consuming to collect. As a result,
the challenge of few-shot NER (Ding et al., 2021;
Ziyadi et al., 2020; Hou et al., 2020) has emerged.
Few-shot NER involves learning to identify and cat-
egorize unseen entity classes from a limited num-
ber of labeled examples. This task has attracted
significant attention from the research community
in recent years.

Prompt-based techniques (Chen et al., 2022;
Cui et al., 2021) have been implemented to ad-
dress the challenges of few-shot NER. These tech-
niques have shown remarkable potential in exploit-
ing the knowledge embedded in pre-trained lan-
guage models (PLMs). In contrast to conventional
fine-tuning approaches, prompt-based methods
have shown superior performance in both cross-
domain and few-shot tasks. However, a drawback
of these methods is that their effectiveness is highly
dependent on the quality and design of the prompts
chosen, which can affect their stability. As a result,
the application of prompt-based techniques to few-
shot learning is challenging without a sufficiently
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large validation dataset.
Previous studies on few-shot NER have primarily

used token-level metric learning (Snell et al., 2017;
Fritzler et al., 2019; Yang and Katiyar, 2020; Hou
et al., 2020). Under this method, each query to-
ken compares with each entity class prototype or
support example token to label it based on their
distance. Although effective in some cases, this
approach tends to overlook the integrity of named
entities that might include multiple tokens that form
a text span instead of a single word. Furthermore,
defining prototypes for the ’O’ class, which repre-
sents non-entities, is often challenging because
of the large vocabulary’s high frequency of com-
mon words that usually don’t share common fea-
tures. As a result, inaccuracies in few-shot NER
can occur when attempting to accurately identify
and classify noisy prototypes.

To address these limitations, we propose SSF, a
streamlined span-based factorization method that
formulates few-shot NER as a span-level alignment
problem between the support set and the query
set.

Specifically, the SSF methodology factorizes the
span alignment problem into four main span-level
procedures. One of the main modules in the SSF
methodology is the Span Boosting Module, which
enhances the span representation by combining
information from contiguous spans within the same
sentence and the interplay between the query
and support set using Localized Span Attention
and Trans-Span Attention. Another module in the
SSF methodology is the Span Prototypical Module,
which consolidates the span vectors for each class
in the support set and forms them into a prototype
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representation. The Span Alignment Module in the
SSF methodology aligns the enhanced span repre-
sentation from the Span Boosting Module with the
prototype representation from the Span Prototypi-
cal Module. To address conflicts between predicted
spans in the alignment paradigm at the span-level,
the SSF methodology includes the Span Optimiza-
tion Module, which utilizes the Adaptive Soft-Beam
Non-Maximum Suppression algorithm (ASBNMS).
We conducted extensive experiments on two widely
recognized benchmarks: FewNERD (Ding et al.,
2021) and SNIPS (Coucke et al., 2018). The ex-
perimental results show a significant improvement
in performance compared to the previous state-of-
the-art methods. Our proposed approach achieves
an average F1 score improvement of 12 points on
the FewNERD dataset and 10 points on the SNIPS
dataset. In summary, our main contributions are:

• We proposed the SSF methodology, which is a
streamlined span-based factorization method
that solves the problem of few-shot NER using
four main modules.

• We presented the adaptive soft-beam non-
maximum suppression algorithm to address
conflicts in span predictions.

• Our methodology achieves unprecedented
levels of performance compared to previous
state-of-the-art approaches, as demonstrated
by extensive experimentation on two widely
recognised benchmarks.

2. Task Formulation

Given a sequence X = {x1, x2, . . . , xn} with N
tokens, NER aims to assign each token xi a cor-
responding label yi ∈ Y ∪ {O}, where Y is the
entity type set and O denotes the non-entity la-
bel. This paper focuses on the standard N-way
K-shot setting for the few-shot NER task, as out-
lined in Ding et al. (2021). An illustrative example
of a 2-way 1-shot episode is provided in Table 1.
During the training phase, we construct episodes
denoted by Etrain = {(Strain,Qtrain,Ytrain)}
utilizing labeled data from the source domain.
The support set Strain = {(x(i), y(i))}N×K

i=1 com-
prises N×K labeled examples, while the query
set Qtrain = {x(j), y(j)}N×K′

j=1 unlabeled exam-
ples. Entity classes are denoted by Ytrain with
a cardinality of N. During the testing phase, we
evaluate our model’s ability to generalize to novel
domains by constructing new episodes Snew =
{(x(i), y(i))}N×K

i=1 in a similar fashion to the training
data. In the few-shot NER task, we aim to equip
our trained model with the capability to leverage
the support set Snew = {(x(i), y(i))}N×K

i=1 of a new

episode (Snew,Qnew,Ynew) ∈ Enew to predict la-
bels for the query set Qnew = {x(j)}N×K′

j=1 . Here,
Ynew denotes the set of entity classes associated
with Snew and Qnew with a cardinality of N. Notably,
the entity classes in Ytrain and Ynew are disjoint.
∀ Ytrain,Ynew, Ytrain ∩ Ynew = ∅.

Target Types Y [person-actor], [art-film]

Support set S

(1) Brad Pitt[person-actor] is an ac-
complished and talented film ac-
tor.
(2) Titanic[art-film] is a classic and
beloved romantic drama film.

Query Set Q
Tom Cruise starred in Top Gun,
a classic ’80s action movie.

Expected output

Tom Cruise[person-actor] starred in
Top Gun[art-film] , a classic ’80s
action movie.

Table 1: An example of the 2-way 1-shot setting
where different entity classes are distinguished by
contrasting colors.

3. Methodology

Our SSF framework aims to resolve the challenge
of aligning spans in few-shot NER by decomposing
the problem into a series of targeted procedures
designed to achieve precise span matches. Figure
1 provides a graphical representation of the inno-
vative architecture underlying the SSF framework.

3.1. Span Initialization Module

This module is designed to generate span repre-
sentations for a given task E = {(S,Q,Y)}. To
achieve this, we employ BERT (Devlin et al., 2019)
as our encoder and use the function fθ to obtain
contextualized representations h = {hi}Li=1 for all
tokens in a sentence x = {xi}Li=1 that belong to
sets S and Q.

h = fθ(x) (1)

Here, h ∈ RL×d represents the output at the last
layer of the encoder, where d denotes the embed-
ding size. To represent a span T= (l, r) within a
sentence x, where l and r represent the start and
end positions of the span within the sentence, we
derive its initial representation T(l,r) by concatenat-
ing two hidden states and applying a weight matrix
W. Specifically, we concatenate the hidden state of
the first token hl with that of the last token hr, then
multiply the concatenated vector with the weight
matrix W.

T(l,r) = [hl;hr]W (2)

We enumerate spans in the sentence with a maxi-
mum length of L, where L is a hyperparameter used
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Figure 1: The model architecture of SSF. We only enumerate spans with lengths less than 2 for clarity.

to control the number of O-class spans, in order to
reduce memory consumption and processing time.

3.2. Span Boosting Module

Through our research, we have found that incor-
porating information from other spans within the
same sentence or across multiple sentences can
enhance the accuracy of the model. In addition to
examining the interactions between the query and
the support set, we introduce the span boost mod-
ule, which enhances the span representation by
exploiting these contextual factors. The span boost
module not only enhances model performance, but
also provides a more sophisticated and nuanced
representation for few-shot NER.

3.2.1. Localized Span Attention

Within a sentence, the semantic content of a par-
ticular span can often be deduced by examining
its relationship to other spans. Given all the span
representations of a sentence S ∈ RB×d, where
B is the number of spans. We denote the i-th row
of S as si, which represents the i-th span in the
sentence.

Hi = si + PEi (3)

ŝi = MultiheadAttention(Hi, Hi, Hi) (4)

To obtain the final LSA enhanced feature ˆouti,
we utilize a Feed Forward Neural network (FFN)
(Vaswani et al., 2017) that incorporates Residual
Connection (He et al., 2016) and Layer Normaliza-
tion (Ba et al., 2016).

outi = LayerNorm(si + ŝi) (5)

outi = LayerNorm(FFN(outi) + outi) (6)

ˆouti = outiWlsa + b (7)

Here, PEi denotes the i-th learnable position en-
coding. Wlsa represents the weight matrix for the
linear transformation, and b denotes the bias term.

3.2.2. Trans-Span Attention

After implementing the LSA module, certain mea-
sures were taken to ensure that the spans of
the query sentences and support sentences were
aligned, which facilitated seamless localized span
interactions. To enhance the query spans, we pro-
pose using Trans-Span Attention (TSA). The span
representations of the query sentences, Q, as well
as those of the support set, S, which have both
been improved by the LSA module, are given by
Q ∈ RBq×d and S ∈ RBs×d. We use q̄i to denote
the i-th row of Q, and s̄j to denote the j-th row
of S. Finally, we obtain the final TSA-enhanced
representation of q̄i and s̄j by following the steps
below:

ŝj = MultiheadAttention(s̄j , q̄i, q̄i) (8)

outj = ŝjWs + b (9)
Finalj = LayerNorm(outj + ŝj) (10)

q̂i = MultiheadAttention(q̄i, s̄j , s̄j) (11)
outi = q̂iWq + b (12)

Finali = LayerNorm(outi + q̂i) (13)
The final TSA-enhanced representation of s̄j and
q̄i are represented by Finalj and Finali, respec-
tively.

3.3. Span Prototypical Module

3.3.1. Instance Query Span Attention

Our research has shown that different support
span intervals have varying impacts on a query
span. Additionally, the exchange of information
between the support spans reveals noticeable dis-
parities. Regarding the i-th class that comprises
m annotated spans with boosting representations
S̄i = [s̄1i , ..., s̄

m
i ] within the support set, IQSA pro-

cures the corresponding prototypical representa-
tion z̄mi for a specified query span q̄mi as follow:{

am = Softmax(q̄mi S̄T
i ),

z̄mi =
∑m

n=1 α
n
i s

n
i

(14)
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3.3.2. O-Type Division and Prototypical Span
Attention

Representing O-Type spans using prototypical net-
works presents a significant challenge due to their
diverse semantics and large quantities. A single
prototypical vector may not be sufficient to cap-
ture all the subtleties of these spans. To over-
come this issue, it is essential to consider the
boundary information for each span. By dividing O-
Type spans into three sub-classes based on their
boundaries, we can better account for their diverse
semantics. This approach provides a more com-
prehensive representation of the data and allows
us to gain insights into the nuances of different
sub-classes. Moreover, this framework can be
extended to accommodate even more complex se-
mantic structures of O-Type spans. Specifically,
suppose we have a sentence with L annotated
spans [(l1, r1), ..., (ln, rn)]

L
i=1, where ln and rn rep-

resent the left and right boundaries of the n-th
annotated span. For each of the remaining spans
(lo, ro), we assign it a sub-class Osub as follows:

Osub =

 O1, ∀i, s.t. ro < li ∨ lo > ri
O2, ∃i, s.t. lo ≥ li ∧ ro ≤ ri
O3, Others

(15)

where O1 denotes the span that does not overlap
with any entities, e.g. "won an" in support exam-
ple of figure 1 and O2 represents the span that is
the sub-span of an entity, e.g. "matt" in support
example of figure 1. After O partition, we get the
prototypical representation of each Osub , thus for
a query span q̄mi , we have 3 sub-class representa-
tions Zo

m = [zo1
m , zo2

m , zo3
m ] for the class O. Then, we

utilize Prototypical Span Attention (PSA) to achieve
the final O representation as follow:

am = Softmax(q̄mi Zo
m) (16)

z̄mi =

3∑
n=1

αn
i Z

on
m (17)

3.4. Span Alignment Module

The n-th query span, denoted as wn, is processed
by the previous span modules to obtain its en-
hanced representation w̄n and corresponding pro-
totypical vectors An = (aon, a

1
n, ..., a

N
n ). Subse-

quently, we predict the type of wn in relation to
the support set, represented by ak, with a certain
probability.

p(xn = ak|wn) =
exp(−L2(w̄n, a

n
k ))∑

k′ exp(−L2(w̄n, ank′))
(18)

Here, L2 refers to the Euclidean distance. Cross-
entropy is used as the loss function:

L = − 1

Bw

Bw∑
n=1

log p(y∗n|wn) (19)

where y∗n is the gold label of wn and Bw is the
number of spans in the query.

3.5. Span Optimization Module

During the inference process, the span align-
ment module may output overlapping or conflict-
ing spans. To address this issue, we propose an
optimization module that incorporates Soft Non-
Maximum Suppression (SoftNMS) (Bodla et al.,
2017; Shen et al., 2021) into the beam search
algorithm, which we call Adaptive Soft-Beam Non-
Maximum Suppression (ASBNMS).

Algorithm 1 ASBNMS
Require: Predicted entity sets entity_sets
Ensure: List of non-overlapping entities final_entities
1: Initialize final_entities to an empty list
2: for entity_set in entity_sets do
3: Sort entity_set by descending decay score
4: Initialize beam_list with a new BeamNode from

entity_set
5: Initialize all_beams to an empty set
6: while there are updates to beam_list do
7: Initialize current_beams to an empty list
8: Set updated to False
9: for each beam in beam_list do

10: Get valid_tuples from Expand(entity_set)
11: if valid_tuples is empty then
12: Add beam to current_beams
13: else
14: for each valid in valid_tuples do
15: Create a new BeamNode new_beam

from valid
16: if new_beam is not in all_beams then
17: Add new_beam to current_beams
18: Insert new_beam into all_beams
19: end if
20: end for
21: end if
22: end for
23: Remove duplicates from current_beams
24: Update beam_list with current_beams if differ-

ent from the previous list
25: end while
26: Add the best result from beam_list to

final_entities
27: end for
28: return final_entities

This algorithm provides a nuanced and fine-
grained approach to conflict resolution, resulting in
more accurate and reliable predictions. The ASB-
NMS algorithm expands all beam states at each
step, followed by pruning of the newly generated
states according to the prescribed beam capacity.
For a beam state S containing non-overlapping
spans {li, ri, scorei, yi}Li=1, we calculate the de-
cayed score scoredecayi for each non-overlapping
span si = (li, ri, scorei, yi).
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λi =

T∑
t=1

wiH(si, st) (20)

H(si, st) = I(θi−1 < IoU(si, st) ≤ θi) · f(si, st)
(21)

f(si, st) =
min(ri − li, rt − lt)

max(ri − li, rt − lt)
(22)

scoredecayi = scorei ∗ e−λi (23)

The indicator function is denoted by I. The
f(si, st) function is to calculate the ratio of lengths
between spans. The overlap ratio of two spans,
IoU(si, sj), is calculated as the size of their inter-
section divided by the size of their union:

IoU(si, sj) =
|{li, ..., ri} ∩ {lj , ..., rj}|
|{li, ..., ri} ∪ {lj , ..., rj}|

(24)

We partition the value of IoU into multiple intervals,
with θ being the interval boundary value and a
hyperparameter. We also assign weight wi to each
interval and finally get λi. Our goal in incorporating
this module into the system’s architecture is to
enhance the model’s performance and robustness.

4. Experiments

4.1. Settings

4.1.1. Datasets

We have selected two widely-used N-way K-shot
benchmarks for assessing the performance of our
SSF: FewNERD 1Ding et al. (2021) and SNIPS
Coucke et al. (2018). The FewNERD dataset is
annotated with a hierarchy of eight coarse-grained
entity types such as "Location", and 66 fine-grained
entity types including "Location-GPE". The dataset
consists of two tasks: Intra and Inter. In the In-
tra task, all entities in the train, development, and
test sets belong to different coarse-grained types.
On the other hand, in the Inter task, the train,
development, and test sets may share coarse-
grained types while maintaining mutually disjoint
fine-grained entity types. The SNIPS dataset of-
fers a diverse set of seven domains, each de-
signed to facilitate slot-filling tasks. The sampling
task of SNIPS employs a N-way K-shot approach,
whereby all classes in the support set are endowed
with K annotated examples. Each domain con-
tained within SNIPS presents two distinctive few-
shot slot-filling settings: the 1-shot and the 5-shot
configurations.

1https://github.com/thunlp/Few-NERD

4.1.2. Evaluation

For evaluation on FewNERD, we employ
episode evaluation as in Ding et al. (2021) and
calculate micro F1 score over all test episodes.
For evaluation on SNIPS, we calculate micro F1
score within each episode and then average over
all episodes as in Hou et al. (2020). For all results,
we report the mean and standard deviation based
on 5 runs with different seeds.

4.1.3. Baselines

For FewNERD, we compare the proposed ap-
proach with ProtoBERT (Ding et al., 2021), NNShot
(Yang and Katiyar, 2020), StructShot (Yang and
Katiyar, 2020), CONTaiNER (Das et al., 2022),
ESD (Wang et al., 2022b), DecomposedMeta (Ma
et al., 2022), SpanProto (Wang et al., 2022a),
MSDP (Dong et al., 2023), MeTNet (Han et al.,
2023), and PromptNER (Zhang et al., 2023). For
SNIPS, we compare the proposed approach with
TransferBERT (Hou et al., 2020), MN+BERT (Hou
et al., 2020), L-TapNet+CDT (Hou et al., 2020),
Retriever (Yu et al., 2021), ConVEx (Henderson
and Vulić, 2021), and Ma2021 (Ma et al., 2021a).

The baselines compared on the FewNERD
dataset are all from the FewNERD leaderboard
2.

4.1.4. Implementation Details

We use bert-base-uncased from huggingface
library as our base encoder following Ding et al.
(2021). We use AdamW as our optimizer with a
learning rate of 5e-4 at both the training and fine-
tuning in testing time for all experiments. We set
the dropout ratio to 0.1. The dimension of span
representation d and the maximum span length L
is set to 100 and 5. We set max_o_num to 100,
which is the maximum number of O-type spans.
We choose five random seeds from {6, 12, 3407,
42, 9999} and report the averaged results with
standard deviations. We use grid search for hy-
perparameter setting, the search space is shown
in Table 4. The total model has 110M parameters
and trains in ≈240min on an A100 GPU.

4.2. Main Results

Table 2 and Table 3 present the main results of
our proposed method compared to other baselines.
Based on these results, we make the following ob-
servations: 1) SSF achieves the best performance,
significantly outperforming the baselines. Com-
pared to DecomposedMeta, the overall average re-
sults for FewNERD-INTRA and FewNERD-INTER

2https://paperswithcode.com/dataset/
few-nerd

https://github.com/thunlp/Few-NERD
https://paperswithcode.com/dataset/few-nerd
https://paperswithcode.com/dataset/few-nerd
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Models
Intra Inter

1 ∼ 2 shot 5 ∼ 10 shot
Avg.

1 ∼ 2 shot 5 ∼ 10 shot
Avg.5 way 10 way 5 way 10 way 5 way 10 way 5 way 10 way

ProtoBERT 20.76±0.84 15.04±0.44 42.54±0.94 35.40±0.13 28.44 38.83±1.49 32.45±0.79 58.79±0.44 52.92±0.37 45.75
NNShot 25.78±0.91 18.27±0.41 36.18±0.79 27.38±0.53 26.90 47.24±1.00 38.87±0.21 55.64±0.63 49.57±2.73 47.83
StructShot 30.21±0.90 21.03±1.13 38.00±1.29 26.42±0.60 28.92 51.88±0.69 43.34±0.10 57.32±0.63 49.57±3.08 50.53
CONTaiNER 40.40 33.82 53.71 47.51 43.86 56.1 48.36 61.90 57.13 55.87
ESD 36.08±1.6 30.00±0.70 52.14±1.5 42.15±2.6 40.09 59.29±1.25 52.16±0.79 69.06±0.80 64.00±0.43 61.13
DecomposedMeta 49.48±0.85 42.84±0.46 62.92±0.57 57.31±0.25 53.14 64.75±0.35 58.65±0.43 71.49±0.47 68.11±0.05 65.75
SpanProto 54.49±0.39 45.39±0.72 65.89±0.82 59.37±0.47 56.29 73.36±0.18 66.26±0.33 75.19±0.77 70.39±0.63 71.30
MSDP 56.35±0.28 47.13±0.69 66.80±0.78 64.69±0.51 58.74 76.86±0.22 69.78±0.31 84.78±0.69 81.50±0.71 78.23
MeTNet 55.79±0.23 47.18±0.89 65.41±0.35 60.71±0.17 57.27 74.42±0.61 67.91±0.68 76.28±0.32 71.96±0.35 72.64
PromptNER 55.32±1.03 50.29±0.61 67.26±1.02 60.42±0.73 58.32 64.92±0.71 62.28±0.39 72.64±0.16 70.13±0.67 67.49
SSF (Ours) 60.80±0.75 50.31±0.45 74.09±0.55 61.69±0.55 61.72 83.21±0.80 75.87±0.50 91.24±0.30 85.95±0.50 84.06

Table 2: F1 scores with standard deviations on FewNERD. The best results are in boldface.

Models We Mu Pl Bo Se Re Cr Avg.

1-
S

H
O

T

TransferBERT 55.82±2.75 38.01±1.74 45.65±2.02 31.63±5.32 21.96±3.98 41.79±3.81 38.53±7.42 39.06±3.86

MN+BERT 21.74±4.60 10.68±1.07 39.71±1.81 58.15±0.68 24.21±1.20 32.88±0.64 69.66±1.68 36.72±1.67

ProtoBERT 46.72±1.03 40.07±0.48 50.78±2.09 68.73±1.87 60.81±1.70 55.58±3.56 67.67±1.16 55.77±1.70

Ma2021 - - - - - - - 69.3(unk)

L-TapNet+CDT 71.53±4.04 60.56±0.77 66.27±2.71 84.54±1.08 76.27±1.72 70.79±1.60 62.89±1.88 70.41±1.97

ESD 78.25±1.50 54.74±1.02 71.15±1.55 71.45±1.38 67.85±0.75 71.52±0.98 78.14±1.46 70.44±0.47

SSF (Ours) 85.59±1.50 69.25±0.75 83.48±0.65 74.48±2.29 84.40±0.45 79.44±0.66 94.64±1.31 81.64±0.47

5-
S

H
O

T

TransferBERT 59.41±0.30 42.00±2.83 46.07±4.32 20.74±3.36 28.20±0.29 67.75±1.28 58.61±3.67 46.11±2.29

MN+BERT 36.67±3.64 33.67±6.12 52.60±2.84 69.09±2.36 38.42±4.06 33.28±2.99 72.10±1.48 47.98±3.36

ProtoBERT 67.82±4.11 55.99±2.24 46.02±3.19 72.17±1.75 73.59±1.60 60.18±6.96 66.89±2.88 63.24±3.25

Retriever 82.95(unk) 61.74(unk) 71.75(unk) 81.65(unk) 73.10(unk) 79.54(unk) 51.35(unk) 71.72(unk)

ConVEx 71.5(unk) 77.6(unk) 79.0(unk) 84.5(unk) 84.0(unk) 73.8(unk) 67.4(unk) 76.8(unk)

Ma2021 89.39(unk) 75.11(unk) 77.18(unk) 84.16(unk) 73.53(unk) 82.29(unk) 72.51(unk) 79.17(unk)

L-TapNet+CDT 71.64±3.62 67.16±2.97 75.88±1.51 84.38±2.81 82.58±2.12 70.05±1.61 73.41±2.61 75.01±2.46

ESD 84.50±1.06 66.61±2.00 79.69±1.35 82.57±1.37 82.22±0.81 80.44±0.80 81.13±1.84 79.59±0.39

SSF (Ours) 91.05±0.70 77.90±0.65 89.52±1.50 94.87±0.57 95.13±0.20 87.99±0.48 96.54±0.30 90.35±0.39

Table 3: F1 scores and standard deviations are presented for seven domains of the SNIPS dataset. The
best results are highlighted in boldface. The term ’unk’ denotes methods for which deviations have not
been reported in the corresponding paper. A comparison is made between 1-shot and 5-shot settings for
the baselines, as ConVEx and Retriever do not provide 1-shot results in their publications.

learning rate [5e-5, 1e-4, 3e-4, 5e-4,1e-2]
seed [6, 12, 3407, 42, 9999]
dropout [0.1,0.2,0.3,0.4,0.5]
bert learning rate [5e-6, 1e-5, 2e-5, 3e-5, 5e-5]
span dimension [50, 100, 150, 200]
beam size [1, 2, 3, 4, 5, 6, 7]
θ [0,0.1,0.3,0.5,0.7,1]

Table 4: The searching scope of hyperparameters.

show an improvement of 8.51 and 18.31 in F1
score, respectively. 2) Compared to a similar span-
based method, SpanProto, our approach demon-
strates better results in both FewNERD-INTRA and
FewNERD-INTER, leading by 5.06 and 12.76 in
average F1 score, respectively. This highlights the
superior performance of our method compared to
similar span-based methods. 3) In the 5-way 5∼10
shot setting on FewNERD-INTER, SSF achieves
an F1 score of 91.24, significantly outperforming
other methods. 4) For the SNIPS dataset, our

method achieves an average F1 score of 81.64 in
the 1-shot setting and 90.35 in the 5-shot setting,
significantly outperforming previous state-of-the-art
methods.

4.3. Ablation Study

In order to validate the contributions of different
components in the proposed approach, we perform
ablation studies by removing each component of
the SSF individually: 1) Ours w/o Localised Span
Attention, where we remove the localised span at-
tention component. As a result, the span cannot be
aware of other spans within the same sentence. 2)
Ours w/o Trans Span Attention, where we remove
the trans span attention component. As a result,
the span cannot be aware of other spans within
the other sentence. 3) Ours w/o Instance Query
Span Attention, where we attain the prototypical
representation for each class through averaging.
4) Ours w/o O-type Division and Prototypical Span
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Ablation Models F1

SSF 91.24±0.30

Ours w/o Localized Span Attention 83.10±0.4

Ours w/o Trans-Span Attention 80.6±1.5

Ours w/o Instance Query Span Attention 84.2±0.6

Ours w/o O-type Division 81.7±1.3

Ours w/o ASBNMS 85.3±1.4

Table 5: The effect of our proposed mechanisms
on the validation set of FewNERD (inter, 5 way
5∼10 shot). We report the average result of 5 dif-
ferent runs with standard deviations. w/o denotes
without.

Attention, where we directly attain the prototypical
representation of the O-class, excluding the sub-
classifications of the O-type spans. 5) Ours w/o
ASBNMS, where we remove the ASBNMS algo-
rithm.

As shown in Table 5, the results demonstrate
that: 1) The superiority of the TSA module over
its LSA counterpart is evident, due to its ability
to augment span representation beyond the con-
straints of isolated sentences. Unlike LSA, which
can only enhance span representation within the
boundaries of a single sentence, TSA is able to
enhance it across multiple sentences, thereby pro-
viding greater access to and integration of diverse
information. 2) Upon removing IQSA to attain the
prototypical representation of a class through aver-
aging, the average F1 score experiences a 7-point
decrease. Failure to account for the sub-classes of
O-type spans leads to an additional 9.54 decrease
in average F1 score. This exemplifies the necessity
of such constituents, which are able to enhance
performance. 3) The final outcome obtained in the
absence of ASBNMS underscores the importance
of our post-processing algorithm in this span-level
few-shot NER framework.

4.4. Error Analysis

Following the error analysis methodology of Wang
et al. (2022b), we undertook an error analysis on
two distinct categories, namely false positive with
incorrect span boundaries (FP-Span) and false
positive with correct span boundaries but incorrect
types (FP-Type). The former refers to extracted
entities with incorrect span boundaries, while the
latter describes entities that possess accurate span
boundaries but are classified with erroneous en-
tity types. As demonstrated in Table 6, our SSF
model outperforms other strong baselines and has
significantly fewer false positive predictions. Inter-
estingly, the FP-Type errors remain notably lower
than those of rival models, thereby substantiating

Methods Total F1 FP-Span FP-Type

ProtoBERT 30.4k 44.44 86.70% 13.30%
NNShot 21.7k 54.29 84.70% 15.30%
StructShot 14.5k 57.33 80.00% 20.00%
ESD 9.4k 66.46 72.80% 27.20%
Ours 6.5k 83.21 89.90% 10.10%

Table 6: Error analysis of 5-way 1∼2 shot on
FewNERD-INTER. ’Total’ denotes the total wrong
prediction of two types.

Figure 2: The t-SNE visualization displays span
representations using 5-way, 5∼10 shot episode
data from FewNERD-INTER. The points are color-
coded to denote entity spans with different types,
while the circle represents the prototype region.
Instances of false positives are indicated by black
markings.

the efficacy of our framework. Remarkably, the
span-level prototype networks exhibit exceptional
performance in classifying entity types.

4.5. Visualization

We visualize the representations learned by SSF in
the 5-way 5∼10 shot setting on FewNERD-INTER.
We created a visualization using the t-SNE algo-
rithm (Van der Maaten and Hinton, 2008), which
is shown in figure 2. Upon examination, it be-
comes apparent that the SSF method effectively
clusters span representations of the same entity
class while dispersing those belonging to different
classes. Thus, compared to other baseline models,
the proposed SSF method is better able to assign
an appropriate entity classification to a query span.
It does this by measuring the similarities between
the span representation and the prototype of each
entity class.

5. Related Work

Few-Shot Learning and Meta-Learning Re-
cently, the field of Natural Language Processing
has shown a growing interest in few-shot Learning
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(Han et al., 2018; Geng et al., 2019; Chen et al.,
2019; Brown et al., 2020; Schick and Schütze,
2021; Gao et al., 2021). Few-shot learning is a
complicated problem that seeks to develop mod-
els that can quickly adapt to different tasks with
minimal labelled data. The basic concept behind
meta-learning is to facilitate the efficient acquisi-
tion of novel skills by the model. Some common
meta-learning algorithms for few-shot learning in-
clude optimisation-based learning (Kulkarni et al.,
2016), metric-based learning (Snell et al., 2017),
and augmentation-based learning (Wei and Zou,
2019), among others.

Few-Shot NER Few-shot NER aims to identify
and classify entity types based on low-resource
data. Existing few-shot NER methods can be
roughly categorized into two types: prompt-based
and metric-based meta-learning, which approach
either token-level (Fritzler et al., 2019; Hou et al.,
2020; Yang and Katiyar, 2020; Tong et al., 2021)
or span-level classification (Yu et al., 2021; Wang
et al., 2022b). The first type mainly focuses on
exploring the general pre-trained language model
knowledge for NER via prompt learning (Cui et al.,
2021; Ma et al., 2021b; Zhang et al., 2022; Chen
et al., 2022; Cui et al., 2022). Cui et al. (2021) pro-
posed template-based BART, which treated origi-
nal sentences as the source sequence, and state-
ment templates filled by candidate spans as the
target sequence. By introducing templates, this
method outperforms traditional sequence label-
ing in few-shot scenarios, but it would be time-
consuming to enumerate and classify all candi-
date spans. LightNER (Chen et al., 2022) inte-
grates continuous prompts into the self-attention
matrix and develops a semantically informed an-
swer space, replacing label-specific layers. The
subsequent category aims to acquire a feature
space with strong generalisability in the source do-
main before classifying test samples using nearest
class prototypes (Snell et al., 2017; Fritzler et al.,
2019; Ji et al., 2022) or neighbour samples (Das
et al., 2022; Yang and Katiyar, 2020). It is notewor-
thy that currently, state-of-the-art few-shot named
entity recognition methods rely on prototypical net-
works.

6. Conclusion

This study presents a streamlined span factoriza-
tion approach for few-shot NER. The proposed
technique, SSF, treats few-shot NER as a span-
level alignment problem and decomposes it into
four modules designed to improve the accuracy
of the span alignment. The study achieves signifi-
cant improvements over previous state-of-the-art
results.

Limitations

Our SSF model can only be applied to few-shot
NER tasks. In the future, we plan to extend it
to other NER scenarios, such as few-shot cross-
lingual NER.

Ethical Considerations

Our contribution to this work is purely methodolog-
ical. Specifically, we have devised a span-based
prototypical network to augment the performance
of few-shot NER. Thus, our contribution does not
entail any direct negative social repercussions.
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