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Abstract
Hate speech detection has become an urgent task with the emergence of huge multimodal harmful content (e.g.,
memes) on social media platforms. Previous studies mainly focus on complex feature extraction and fusion to learn
discriminative information from memes. However, these methods ignore two key points: 1) the misalignment of image
and text in memes caused by the modality gap, and 2) the uncertainty between modalities caused by the contribution
degree of each modality to hate sentiment. To this end, this paper proposes an uncertainty-aware cross-modal
alignment (UCA) framework for modeling the misalignment and uncertainty in multimodal hate speech detection.
Specifically, we first utilize the cross-modal feature encoder to capture image and text feature representations in
memes. Then, a cross-modal alignment module is applied to reduce semantic gaps between modalities by aligning
the feature representations. Next, a cross-modal fusion module is designed to learn semantic interactions between
modalities to capture cross-modal correlations, providing complementary features for memes. Finally, a cross-modal
uncertainty learning module is proposed, which evaluates the divergence between unimodal feature distributions to to
balance unimodal and cross-modal fusion features. Extensive experiments on five publicly available datasets show
that the proposed UCA produces a competitive performance compared with the existing multimodal hate speech
detection methods.
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1. Introduction

The proliferation of social media has revolutionized
the way ideas are shared and propagated, foster-
ing the exchange of opinions across individuals,
diverse cultures, and social communities at an un-
precedented pace. While offering unparalleled con-
venience to users, social media platforms have also
become conduits for the rapid dissemination of hate
speech, especially in the wake of significant events
like the Russian-Ukrainian conflict and COVID-19
(Pramanick et al., 2021a). Hate speech directly or
indirectly attacks people based on the race, religion
or other characteristics, and disseminates discrim-
inatory statements toward social groups through
platforms (Kiela et al., 2020). Such hate speech is
sowing the seeds of disunity, fuelling violence and
criminality in conflict areas. Therefore, detecting
and curbing hate speech is a particularly urgent
research issue.

Early works on hate speech detection mainly fo-
cus on analyzing text content (Waseem and Hovy,
2016; Kim et al., 2010; Malmasi and Zampieri,
2017), where the logical and semantic coherence
are typically verified based on trivial indicators such
as grammatical errors. Nowadays, there are vari-
ous forms of hate speech (such as memes) widely
present on social media platforms, and the above
unimodal approaches are no longer sufficient to
effectively respond. Memes, a prevalent form of
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user-generated content on social media platforms,
have emerged as a popular means of expressing
hate sentiment. Typically, a meme is an image em-
bedded with a short piece of text that is humorous
in nature. Nevertheless, what may appear as an
innocuous meme can swiftly morph into a vessel
for multimodal hate speech through the strategic
combination of images and text, particularly in the
context of contemporary political and socio-cultural
divisions. The diverse and interactive nature of mul-
timodal information renders conventional unimodal-
based detection methodologies insufficient for iden-
tifying hate speech. Therefore, combining multiple
modal information for reasoning is the critical factor
in detecting multimodal hate speech.

Recent multimodal hate speech detection studies
focus on innovative fusion technologies (Kiela et al.,
2020; Lee et al., 2021) and fine-tuning large-scale
pretrained multimodal models (Das et al., 2020;
Lippe et al., 2020; Muennighoff, 2020; Velioglu and
Rose, 2020; Zhang et al., 2020; Zhou et al., 2021).
Besides, some works also attempt to utilize data
augmentation (Zhu, 2020; Cao et al., 2022) and
ensemble strategies (Yang et al., 2022, 2023). De-
spite the above studies have produced the promis-
ing progress, there are still the following limitations:
1) The misalignment of image and text. Most works
focus on capturing critical features such as entities
and demographic information, while ignoring the
issue of misalignment in memes. 2) The uncer-
tainty between modalities. Existing methods ex-
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cessively rely on multimodal fusion features, where
the inherent uncertainty between modalities has
not been explicitly considered, resulting in inferior
performance. And the inherent uncertainty is di-
rectly reflected in the contribution degree of each
modality to hate sentiment.

Non-Hateful

Hateful

Hateful

Hateful

Figure 1: Examples illustrate two challenges en-
countered by current research works. Left: the
misalignment between images and texts. Right:
the inherent uncertainty between modalities.

The misalignment and uncertainty are widely
present in multimodal hate speech. We show some
representative samples in Figure 1. In the left part,
the misalignment of image and text in memes is
illustrated. The top meme expresses discrimina-
tion against the disabled, but only when the leg in
the text corresponds to the prosthetic limb in the
image can the model accurately identify the hate
tendency in it. Similarly, for the meme below, only
by aligning the Asians in the text with the exagger-
ated eye-opening movements in the image can the
potential hate of nationality be identified. The above
cases show that the misalignment between images
and texts caused by the modality gap should be
taken seriously. In the right part, the inherent un-
certainty between modalities is illustrated. The text
in the top meme tells an incredible story but con-
tains an image of two smiling people. The text and
image present strong cross-modal uncertainty due
to completely opposite sentiment tendencies. The
multimodal fusion features can provide additional
discriminative information and a more comprehen-
sive representation of memes, thereby identifying
hate information against religion in memes. On the
contrary, the text and image in the meme below
express consistent sentiment tendency, which is
able to identify the meme as non-hateful. However,
the introduction of the cross-modal fusion features
may cause interaction between black in the text
and woman in the image, which makes the model
wrongly classify it as sexist. The above cases in-
dicate that when the cross-modal uncertainty is

weak, the unimodal feature representation is suffi-
cient to identify the hate tendency. Instead, when
cross-modal uncertainty is strong, cross-modal fu-
sion features can provide essential complementary
information for memes. Therefore, the misalign-
ment and uncertainty should be formulated in a
unified manner to further discriminate hate speech
in memes.

To alleviate the issues mentioned above, this pa-
per proposes an uncertainty-aware cross-modal
alignment (UCA) framework for multimodal hate
speech detection. Specifically, we first utilize the
cross-modal feature encoder to capture image and
text feature representations of memes. Then, a
cross-modal alignment module is applied to reduce
semantic gaps between modalities by representing
subspace alignment. Next, a cross-modal fusion
module is designed to learn semantic interactions
between modalities to capture cross-modal corre-
lations. Finally, a cross-modal uncertainty learning
module is proposed to estimate the uncertainty be-
tween modalities by learning from the distributional
divergence of unimodal features.
The main contributions are summarized as follows:

• An uncertainty-aware cross-modal alignment
(UCA) framework is proposed for modeling the
misalignment and uncertainty between modal-
ities in multimodal hate speech detection.

• The uncertainty between modalities is as-
sessed by gauging the divergence of feature
distributions, enabling adaptive control over
the balance of cross-modal and unimodal fea-
tures in memes.

• Extensive experiments on five publicly avail-
able datasets demonstrates that the proposed
UCA yields competitive performance when
compared to existing multimodal hate speech
detection methods.

2. Related Work

2.1. Unimodal Hate Speech Detection
As social media platforms continue to flourish, the
automated detection of hate speech has garnered
substantial attention from research communities in
data mining, information retrieval, and natural lan-
guage processing. Researchers from diverse fields
have delved into this challenging task (Fortuna
et al., 2018), contributing numerous benchmark
datasets (Mandl et al., 2019; Ross et al., 2017).
Previous methods predominantly rely on feature
engineering (Malmasi and Zampieri, 2018; Mehdad
and Tetreault, 2016; Waseem and Hovy, 2016; Kim
et al., 2010; Malmasi and Zampieri, 2017) to extract
and organize low-level features, such as n-grams
and emotional features. Currently, DNN-based
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methods have achieved comparable performance
by aggregating potential semantic features (Zhang
et al., 2018; Tekiroğlu et al., 2020). Furthermore,
some studies have considered the bias and inter-
pretability of hate models. For example, Vaidya et
al.(Vaidya et al., 2020) enhance model interpretabil-
ity and mitigate unintended bias by employing multi-
task learning to predict text toxicity alongside target
group labels. Mathew et al.(Mathew et al., 2021)
utilize dataset rationales as supplementary infor-
mation for fine-tuning BERT (Devlin et al., 2019)
to tackle bias and enhance explainability. Despite
the significant experimental progress and commer-
cial applications of existing hate speech detection
methods, they primarily focus on text-based hate
speech and overlook the prevalent multimodal pat-
terns prevalent in contemporary social media.

2.2. Multimodal Hate Speech Detection
Multimodal hate speech detection represents an
emerging classification task geared towards identi-
fying negative content, encompassing hate speech,
harmful rhetoric, offensive language, and sarcasm.
The surge in studies focusing on multimodal hate
speech detection can be attributed to the availabil-
ity of datasets containing hateful memes released
in recent years. Notably, Facebook introduced
the Hateful Memes Challenge (Kiela et al., 2020),
prompting researchers to discern harmful cate-
gories such as nationality and religion. Previous
research endeavors have explored classical dual-
stream models, amalgamating visual and textual
features extracted from image and text encoders via
attention-based mechanisms and other fusion tech-
niques to classify hate speech (Suryawanshi et al.,
2020; Kiela et al., 2020; Das et al., 2020; Kiela et al.,
2020; Lippe et al., 2020). Recent studies have also
ventured into leveraging data augmentation (Zhou
et al., 2021; Zhu, 2020; Lee et al., 2021; Cao et al.,
2022) and ensemble strategies (Yang et al., 2022,
2023) to improve the hate speech classification
performance.

With the development of hate speech detection
communities, Pramanick et al.(Pramanick et al.,
2021a) have expanded the spectrum of hateful cat-
egories by introducing two new benchmarks re-
lated to COVID-19 and US politics. Concurrently,
MOMENTA has been proposed, leveraging intra-
modal attention to systematically analyze the local
and global perspectives of input memes (Praman-
ick et al., 2021b). Suryawanshi et al.(Suryawanshi
et al., 2020) have also curated an offensive dataset
comprising abusive messages targeting individuals
or minority groups. Building upon this dataset, Lee
et al.(Lee et al., 2021) propose the DisMultiHate
model to disentangle visual and textual represen-
tations of memes, facilitating better understanding.
Furthermore, we have found that sarcasm and hate

speech have similar expressions, tending to utilize
race, gender, and other factors to attract attention.
For sarcasm speech detection, Cai et al.(Cai et al.,
2019) construct a dataset from image-text tweets
and propose a hierarchical fusion model. Building
upon this dataset, several models have been de-
veloped to uncover implicit associations between
images and texts in sarcasm (Xu et al., 2020; Pan
et al., 2020). Liang et al.(Liang et al., 2021, 2022)
deploy a heterogeneous graph structure to learn
the sarcastic features from both intra- and inter-
modality perspectives. However, the above works
overlook the misalignments between image and
text caused by the persistent modality gap, as well
as the inherent uncertainty arising from the varying
contributions of each modality to hate sentiment
in memes. Therefore, we propose an uncertainty-
aware cross-modal alignment framework to model
the image-text misalignments and the uncertainty
between modalities, adaptively aggregating uni-
modal and multimodal feature representations to
discriminate hate speech in memes.

3. Methodology

3.1. Task Definition

In the task of multimodal hate speech detection,
each meme comprises an image I and a text seg-
ment T , represented as a sequence of words. Both
the visual and textual modalities are associated
with a class label y. Our objective is to devise a
classification model capable of predicting the label
of a given meme (hateful or non-hateful) by effec-
tively integrating information from both the visual
and textual modalities.

3.2. Model Overview

In this section, we describe the proposed
uncertainty-aware cross-modal alignment (UCA)
framework for hate speech detection in detail. As
illustrated in Figure 2, the architecture of UCA con-
tains five key components: 1) Cross-modal fea-
ture encoder, which captures the image and text
features by the modal-specific encoder; 2) Cross-
modal alignment module, which reduces semantic
gaps between modalities by representing subspace
alignment; 3) Cross-modal fusion module, which
learns semantic interactions between modalities to
capture cross-modal correlations and provide com-
plementary features for memes; 4) Cross-modal un-
certainty learning module, which estimates the un-
certainty between modalities by leveraging the dis-
tributional divergence of unimodal features; 5) Hate
speech detector, which concatenates unimodal and
cross-modal features as inputs to identify whether
memes are hateful.
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when your human says 
"who' s a good girl?" 
and you already know              
              it's you"
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ŷ

 Hate Speech Detector 

Figure 2: The illustration of the proposed UCA framework.

3.3. Cross-Modal Feature Encoder
CLIP (Radford et al., 2021) is a visual-linguistic
model pretrained on a vast dataset of 400 mil-
lion image-text pairs sourced from the Internet,
leveraging contrastive learning. This pretraining
equips CLIP with remarkable zero-shot capabili-
ties, enabling it to effectively capture semantics for
image-text inputs. Numerous studies (Gu et al.,
2022; Li et al., 2022) have demonstrated CLIP’s
exceptional ability to generalize across various do-
mains. Hence, our feature encoders are initialized
from CLIP. The image feature is represented as
I = v1, v2, ..., vi ∈ Ri×1024, while the text feature is
represented as T = t1, t2, ..., tj ∈ Rj×768.

3.4. Cross-Modal Alignment Module
Multimodal hate speech exhibits metaphorical prop-
erties, necessitating a deeper semantic under-
standing where aligning features across different
modalities serves as the cornerstone. CLIP facil-
itates the establishment of similarity between the
feature spaces of images and their corresponding
text captions. However, in the dataset used for pre-
training, image and text pairs typically convey iden-
tical semantics, which may not hold true for hate
speech. To enhance the learning of semantic rela-
tionships between image and text feature spaces in
memes, we introduce a trainable projection layer at
the output of CLIP’s image and text encoders. The
projection layer consists of a fully-connected feed-
forward layer followed by a non-linear rectification
linear unit (ReLU) as follows:

pvi = ReLU(Wvvi + bv), (1)
ptj = ReLU(Wttj + bt), (2)

where pvi ∈ R256 and ptj ∈ R256 are the vectors
projected from the image representation I and the

text representation T , respectively. Wv, bv, Wt, and
bt are learnable parameters of the projection layers.

Domain adaptation (Long et al., 2015) has
demonstrated remarkable proficiency in aligning
feature distributions, primarily through two ap-
proaches. Firstly, there are statistic moment
matching-based methods such as Maximum Mean
Discrepancy (MMD) and Kullback-Leibler (KL) di-
vergence (Long et al., 2017, 2018; Zhu et al., 2019).
Secondly, there are adversarial learning-based
methods, including domain adversarial adaptation
(Ganin et al., 2016; Hoffman et al., 2018). In our
framework, we leverage Central Moment Difference
(CMD) (Zellinger et al., 2017) to align the feature
distributions. CMD evaluates the discrepancy be-
tween the distributions of two representations by
comparing the differences in their corresponding
order-wise moments. As the CMD distance de-
creases, the two distributions become more sim-
ilar. Compared to MMD or KL-divergence meth-
ods, CMD explicitly matches higher-order moments
without requiring costly distance and kernel matrix
computations. Additionally, compared to adversar-
ial training methods, the CMD formulation is more
straightforward, as it does not involve a discrimina-
tor with additional parameters.

Consider bounded random samples X and Y
with probability distributions p and q respectively,
defined on the interval [a, b]N . The Central Moment
Discrepancy regularizer, denoted as CMDK , is de-
fined as an empirical estimate of the CMD metric,
expressed as:

CMDK(X,Y ) =
1

|b− a| ∥E(X)−E(Y )∥2

+

K∑
k=2

1

|b− a|k ∥Ck(X)− Ck(Y )∥2 ,
(3)



16977

where E(X) = 1
|X|

∑
x∈X x is the empirical ex-

pectation vector computed on the sample X and
Ck(X) = E((x−E(X))k) is the vector of all the kth

order sample central moments of the coordinates
of X. The CMD loss between each image and text
is calculated as follows:

Lalign = CMDK(pv, pt). (4)

3.5. Cross-Modal Fusion Module
Cross-modal fusion plays a crucial role in capturing
semantic interactions between different modalities,
offering complementary features essential for hate
speech detection. This becomes especially signifi-
cant when image and text feature representations
exhibit conflicting sentiment tendencies within the
same memes. Therefore, we have devised the
cross-modal fusion module to discern and learn the
correlations between modalities. Newly proposed
architectures for vision tasks leverage Multilayer
Perceptron (MLP)-based models. These models,
such as MLP-mixer (Tolstikhin et al., 2021) and
ResMLP (Touvron et al., 2022), substitute MLPs for
the traditional self-attention mechanism, resulting in
significant reductions in computational costs while
maintaining high performance. Typically, these
models feature two independent MLPs—one pro-
cessing the sequential length and the other han-
dling the channel size. More recently, CubeMLP
(Sun et al., 2022) has been introduced to effectively
process multimodal features. Drawing inspiration
from CubeMLP, we adopt three MLPs to compre-
hensively mix features along the sequential, modal-
ity, and channel axes.

Specifically, we concatenate the unimodal fea-
tures to form a multimodal tensor D ∈ RS×M×C ,
where S represents the sequential length, M de-
notes the number of modalities, and C signifies
the size of feature channels. Subsequently, the
multimodal features are fed into stacked three MLP
units for mixing. Each MLP unit comprises two fully-
connected layers followed by a nonlinear activation
GELU (Hendrycks and Gimpel, 2016), designed
to mix the multimodal features along its respec-
tive axis. A residual connection is employed in the
unit according to (Touvron et al., 2022). Taking
the first sequential-mixing MLP as an example, the
tensor D ∈ RS×M×C can be conceptualized as
a collection of vectors D∗,m,c ∈ RS×1×1, where
(m, c) ∈ {(1, 1), (1, 2), ..., (2, 1), (2, 2), ..., (M,C)}.
Here, D∗,m,c represents the vector corresponding
to the mth modality and cth channel. Each fully-
connected layer within the sequential-mixing MLP
unit can be expressed as:

FCS(D∗,m,c) = WSD∗,m,c + bS , (5)

where WS ∈ RS×S′ and bS ∈ RS′ represent two
matrix-represented learnable parameters. S′ de-
notes the reduced dimensionality along the S-axis,

which serves as a hyperparameter. All D∗,m,c in-
stances share the parameters WS and BS . Conse-
quently, the entire sequential-mixing MLP can be
delineated as:
U∗,m,c = LayerNorm(FCS(GELU(FCS(D∗,m,c)))

+D∗,m,c),
(6)

where the output tensor U ∈ RS′×M×C can be
viewed as a collection of vectors U∗,m,c ∈ RS′×1×1.

Similar to the first MLP unit operating along the
S-axis, the output V ∈ RS′×M ′×C of the second
MLP unit along the M -axis can be interpreted
as a collection of vectors Vs,∗,c ∈ R1×M ′×1.
Likewise, the output G ∈ RS′×M ′×C′ of the third
MLP unit along the C-axis can be seen as a
set of vectors Gs,m,∗ ∈ R1×1×C′ . Here, M ′ and
C ′ represent reduced dimensions along the
M -axis and C-axis, respectively. Notably, (s, c) ∈
{(1, 1), (1, 2), ..., (2, 1), (2, 2), ..., (S′, C)} and
(s,m) ∈ {(1, 1), (1, 2), ..., (2, 1), (2, 2), ..., (S′,M ′)}.
Finally, the modality-mixing MLP and the channel-
mixing MLP can be represented as:

Vs,∗,c = LayerNorm(FCM (GELU(FCM (U∗,m,c)))

+ U∗,m,c),
(7)

Gs,m,∗ = LayerNorm(FCC(GELU(FCC(Vs,∗,c)))

+ Vs,∗,c),
(8)

where G ∈ RS′×M ′×C′ is the mixed cross-modal
feature representation.

3.6. Cross-Modal Uncertainty Learning
Module

The multimodal hate speech detection task aims to
obtain a comprehensive feature set from the input
data. One distinctive aspect of this task is the intrin-
sic uncertainty between modalities, stemming from
the varying contribution degrees of each modality
to hate sentiment. This uncertainty impacts the effi-
cacy of cross-modal fusion representations. To ad-
dress this challenge, we introduce the cross-modal
uncertainty learning module.

We assess the Kullback-Leibler (KL) divergence
between unimodal distributions approximated by
two modality-specific variational encoders (Chen
et al., 2022). The derived uncertainty score is then
utilized to dynamically regulate the contribution of
cross-modal and unimodal features in hate speech
detection. Initially, we conceptualize the unimodal
features (pv and pt) from a generative standpoint,
where the features are extracted by sampling from
a latent space with isotropic Gaussian priors. A
fundamental assumption underlying our approach
is that the disparity in the distributions of unimodal
features reflects the information gap between differ-
ent modalities. Consequently, the uncertainty can
be estimated by divergences computed across the
feature spaces. Formally, the corresponding vari-
ational posterior for a unimodal observation is de-
noted as q(z|p) = N [z|µ(p), σ(p)], where the mean
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µ and variance σ are obtained from the modality-
specific variational encoder. Furthermore, for each
data sample n comprising aligned image feature
pvn and textual feature ptn, the variational posteriors
for both modalities are expressed as follows:

q(zvn | pvn) = N [zvn |µ(pvn), σ(pvn)], (9)
q(ztn | ptn) = N [ztn |µ(ptn), σ(ptn)]. (10)

Then, we obtain the variational posterior distribu-
tions for both modalities by averaging the variational
posteriors for each data sample. This allows us to
capture the overall distribution of both modalities
across the entire dataset for the purpose of mod-
eling the uncertainty. For the visual modality, we
have:

q(zv) = Epv [q(z
v | pv)] = 1

N

N∑
n=1

q(zvn | pvn), (11)

where zv is the latent variable for the visual modality,
and N is the total number of data samples. Simi-
larly, for the textual modality, we have:

q(zt) = Ept [q(z
t | pt)] = 1

N

N∑
n=1

q(ztn | ptn), (12)

where zt is the latent variable for the textual modal-
ity. The uncertainty of different modalities in data
sample n can be quantified by the average KL diver-
gence between unimodal distributions, given by:

λ1
n =

(
DKL

[
q(zvn || pvn) || q(ztn || ptn)

]
DKL [q(zv) || q(zt)]

)
, (13)

λ2
n =

(
DKL

[
q(ztn || ptn) || q(zvn || pvn)

]
DKL [q(zt) || q(zv)]

)
, (14)

λn = Sigmoid

(
λ1
n + λ2

n

2

)
, (15)

where the uncertainty score λn is com-
puted as the symmetrized KL divergence
obtained by averaging the normalized val-
ues of DKL [q(zvn || pvn) || q(ztn || ptn)] and
DKL [q(ztn || ptn) || q(zvn || pvn)]. The sigmoid function
is used as the activation function to map the uncer-
tainty scores to the range [0, 1]. The uncertainty
score λn serves as the weight controlling the fusion
of unimodal and cross-modal features during both
training and inference. Specifically, in the process
of cross-modal uncertainty learning, cross-modal
features are adaptively utilized while unimodal
features are dropped out when uncertainty is high,
and vice versa.

3.7. Hate Speech Detector
We flatten the mixed multimodal features and adap-
tively concatenate two unimodal feature embed-
dings. Specifically, we utilize the uncertainty score
λn to guide the fusion of features. The cross-modal

feature is multiplied by λn and each unimodal fea-
ture is multiplied by 1− λn.

Fn = λnG⊕ (1− λn)p
v ⊕ (1− λn)p

t, (16)

where ⊕ denotes the concatenation operation.
Subsequently, the fused feature Fn is passed to
the hate speech detector for classification. The
detector comprises a two-layer fully connected
feed-forward network with intermediate ReLU non-
linearity, along with a softmax layer utilized to esti-
mate the probability of hatefulness.

Hn = ReLU(W1Fn + b1), (17)
ŷn = Softmax(W2Hn + b2), (18)

where W1, W2, b1, and b2 are learnable parameters.
ŷn is the estimated probability. The cross-entropy
loss Ltask is employed for hate speech detection
task:

Ltask = − 1

N

N∑
n=1

yn log(ŷn), (19)

where yn is the ground-truth one-hot label. We
combine classification loss and modal alignment
loss to obtain the optimization objective of UCA
framework.

LLoss = Ltask + Lalign. (20)

4. EXPERIMENTS

4.1. Datasets
The experiment is conducted on five publicly avail-
able datasets, described briefly as follows:

Hate dataset: This dataset is part of the Hateful
Memes Challenge 2020 for multimodal hate speech
detection, published in (Kiela et al., 2020). It com-
prises 10K memes with binary labels indicating
whether they are hateful or non-hateful.

Harm-C dataset: This dataset, related to
COVID-19, is published in (Pramanick et al., 2021a)
for multimodal harmful detection. It contains nearly
3.5K memes with binary labels indicating whether
they are harmful or non-harmful.

Harm-P dataset: This dataset, related to United
States politics, is published in (Pramanick et al.,
2021b) for multimodal harmful detection. It consists
of nearly 3.5K memes with binary labels indicating
whether they are harmful or non-harmful.

Offense dataset: Related to the 2016 United
States presidential election, this dataset is pub-
lished in (Suryawanshi et al., 2020) for multimodal
offensive detection. It comprises nearly 1K memes
with binary labels indicating whether they are offen-
sive or non-offensive.

Sarcasm dataset: This dataset consists of
image-text tweets collected in (Cai et al., 2019) for
multimodal sarcasm detection. It contains nearly
25K memes with binary labels indicating whether
they are sarcastic or non-sarcastic.
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Models Acc. ↑ AUROC ↑
Late Fusion 63.20 69.30
Concat BERT 61.53 67.77
MMBT-Region 67.66 73.82
ViLBERT 65.27 73.32
Visual BERT 66.67 74.42
DisMultiHate 71.26 79.89
CDKT 76.50 83.74
PromptHate 72.98 81.45
CLIP 59.00 68.30
UCA (Ours) 76.10 84.32

Table 1: Performance comparison on the Hate.

Models Harm-C
Acc. ↑ F1 ↑ MMAE ↓

ViLBERT 78.53 78.06 0.1881
Visual BERT 81.36 80.13 0.1857
MOMENTA 83.82 82.80 0.1743
TOT 87.01 85.93 0.1634
CLIP 73.45 72.61 0.2508
UCA (Ours) 88.98 88.31 0.1015

Table 2: Performance comparison on the Harm-C.

4.2. Implementation Details
In the cross-modal feature encoder, we employ the
CLIP-Large (Radford et al., 2021) model to initialize
the image and text encoders. The output vector
dimension are 1024 for the image encoder and 768
for the text encoder. In the cross-modal alignment
module, the output dimension of the cross-modal
projection layer is set to 256. For the cross-modal
fusion module, we set S to 100, which entails zero-
padding shorter sequences and truncating longer
sequences to match the sequence size. M is fixed
to 2 since we only have two involved modalities,
while C is set to 256, consistent with the output
dimension of the projection layer. Additionally, S′,
M ′, and C ′ are set to 10, 2 and 32, respectively. In
the hate speech detector, the intermediate feature
dimension of the detector is 64, and the dropout
rate is 0.4. We utilize weighted Adam as the opti-
mizer, employing a cosine annealing and warm-up
strategy to regulate the variation of the learning rate.
The initial learning rate is set to 0.001. The size of
the minibatch is fixed at 64. The training epochs for
each dataset is 20.

4.3. Evaluation Metrics
For the Hate dataset, we follow the evaluation
method adopted by (Kiela et al., 2020), utilizing
Area Under the Receiver Operating Characteristic
curve (AUROC) and accuracy (Acc.) as evaluation
metrics. The AUROC is the primary metric. For the
Harm-C and Harm-P datasets, we adopt the evalu-
ation method adopted by (Pramanick et al., 2021b),

Models Harm-P
Acc. ↑ F1 ↑ MMAE ↓

ViLBERT 87.25 86.03 0.1276
Visual BERT 86.80 86.07 0.1318
MOMENTA 89.84 88.26 0.1314
TOT 91.55 91.29 0.1245
CLIP 83.02 82.83 0.1604
UCA (Ours) 92.68 92.66 0.0739

Table 3: Performance comparison on the Harm-P.

Models F1 ↑ Pre. ↑ Rec. ↑
StackedLSTM+VGG16 46.30 37.30 61.10
BiLSTM+VGG16 48.00 48.60 58.40
CNNText+VGG16 46.30 37.30 61.10
ERNIE-VIL 53.10 54.30 63.70
DisMultiHate 64.60 64.50 65.10
CLIP 58.94 60.98 59.07
UCA (Ours) 65.89 66.09 66.90

Table 4: Performance comparison on the Offense.

utilizing Acc., Macro-F1 (F1), and Macro-Averaged
Mean Absolute Error (MMAE) as evaluation metrics.
For the Offense dataset, we follow the evaluation
strategy presented in (Suryawanshi et al., 2020),
employing F1, precision (Pre.) and recall (Rec.) as
evaluation metrics. For the Sarcasm dataset, we
employ the evaluation method described in (Cai
et al., 2019), using F1, Pre., Rec. and Acc. as
evaluation metrics.

4.4. Experimental Results
As shown on Table 1-5, UCA significantly outper-
forms all the compared methods in all metrics for
each dataset, which demonstrates the effective-
ness of the proposed UCA framework. Specifically,
UCA obtains a new state-of-the-art result with an
AUROC of 84.32% on the Hate dataset, producing
a significant improvement of approximately +3%.
For the Harm dataset, UCA could model the inher-
ent uncertainty between modalities compared to
TOT (Zhang et al., 2023), providing a more robust
result. For the Offense dataset, UCA could pro-
duce a higher performance than DisMultiHate (Lee
et al., 2021) without extracting additional features
such as entities and demographic information. UCA
also produces an ACC. of 87.8%, creating a new
state-of-the-art result on the Sarcasm dataset. The

Models F1 ↑ Pre. ↑ Rec. ↑ Acc. ↑
HFM 80.90 79.40 82.45 83.44
D&R Net 80.60 77.97 83.42 84.02
Res-Bert 81.57 78.87 84.46 84.80
MIII-MMSD 82.92 80.87 85.08 86.05
InCrossMGs 85.60 85.39 85.80 86.10
CDKT 83.89 79.37 88.96 85.60
CMGCN 87.00 87.02 86.97 87.55
CLIP 81.94 82.21 83.61 82.40
UCA (Ours) 87.36 87.13 87.64 87.80

Table 5: Performance comparison on the Sarcasm.
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Models Hate Harm-C Harm-P Offense Sarcasm
Acc. ↑ AUROC ↑ Acc. ↑ F1 ↑ MMAE ↓ Acc. ↑ F1 ↑ MMAE ↓ F1 ↑ Pre. ↑ Rec. ↑ F1 ↑ Pre. ↑ Rec. ↑ Acc. ↑

UCA (Ours) 76.10 84.32 88.98 88.31 0.1015 92.68 92.66 0.0739 65.89 66.09 66.90 87.36 87.13 87.64 87.80
UCA w/o P 75.20 83.41 88.21 87.45 0.1142 91.98 91.74 0.0814 63.48 63.45 64.00 87.27 86.93 87.61 87.63
UCA w/o A 74.60 81.82 86.87 86.36 0.1295 90.44 90.05 0.1007 62.71 62.66 63.14 86.59 86.36 86.89 87.05
UCA w/o F 74.80 82.13 88.06 87.24 0.1176 90.63 90.55 0.0921 63.13 63.03 63.38 86.62 86.41 86.89 87.09
UCA w/o U 72.10 80.26 86.47 85.63 0.1337 90.11 89.65 0.1138 61.74 61.66 61.96 86.42 86.18 86.74 86.88

Table 6: Ablation study evaluated on the Hate, Harm-C, Harm-P, Offense and Sarcasm datasets.

above stable improvement demonstrates the effec-
tiveness of learning image-text alignment and inter-
modal uncertainty. We also use CLIP to fine-tune
each dataset and directly concatenate the output
features into the classifier as a baseline. Compared
to CLIP, UCA could produce a significant improve-
ment, especially on the Hate dataset, with an im-
provement of over +15%. Besides, UCA requires
a lower computational complexity than CLIP.

4.5. Ablation Study
To evaluate the effectiveness of each component
in UCA, we conduct a series of ablation studies on
each dataset as shown on Table 6.

w/o P: After removing the projection layer of im-
age and text, the performance decreases slightly,
indicating that the projection before alignment could
improve the semantic relationship between the im-
age and text feature spaces of memes.

w/o A: After removing the cross-modal align-
ment loss, the performance decreases greatly, il-
lustrating that reducing the gap between modalities
to align image and text is particularly significant for
identifying hateful memes.

w/o F: After removing the cross-modal fusion
module and using the attention mechanism to
capture dependencies between modalities, perfor-
mance decreases to some extent, verifying that
MLP-based cross-modal fusion could maintain high
performance while reducing computational costs.

w/o U: After removing the cross-modal uncer-
tainty learning module, performance decreases the
most, demonstrating that considering the contribu-
tion of each modality to hate sentiment is the most
critical factor for multimodal hate speech detection.

4.6. Case Study
The purpose of UCA is to model the misalignment
and uncertainty between modalities for multimodal
hate speech detection. To further understand UCA
intuitively, we show some cases in Figure 3. Specif-
ically, in the first meme, the image and text rep-
resent completely opposite sentiment tendencies,
with the image expressing hate sentiment. Com-
pared to CLIP, UCA focuses more on the alignment
of background information and is more in line with
the watching state. Uncertainty learning can bridge
the information gap between modalities and provide

a more complementary feature representation for
memes. On the contrary, in the second meme, both
the image and the text express the same sentiment
tendencies. However, establishing the correlation
between the fun in the text and the crazy move-
ments in the image can lead to sentiment leaning
towards hate. UCA could identify the presence of
less uncertainty between modalities, thereby adap-
tively aggregating more unimodal features. The
above cases demonstrate that UCA could promote
alignment between modalities and determine when
unimodal information is sufficient and when cross-
modal fusion information is crucial.

Memes

CLIP

UCA

Labels Non-Hateful

λ
Non-Hateful

0.791 0.106

Figure 3: Case study of memes on the Hate.

5. Conclusion

In this paper, an uncertainty-aware cross-modal
alignment framework is proposed by modeling the
misalignment and uncertainty between modalities
for multimodal hate speech detection. UCA con-
sists of two crucial components: cross-modal align-
ment and uncertainty learning modules. The cross-
modal alignment module enhances the semantic
relationship between the image and text feature
spaces of memes. On the other hand, the cross-
modal uncertainty learning module plays a crucial
role in determining the adequacy of unimodal infor-
mation versus the necessity of cross-modal fusion
information, offering a complementary perspective
for memes. Experimental results on five publicly
available datasets demonstrate that UCA produces
a competitive performance compared with previous
methods. The ablation and case studies provide
additional insights into the effectiveness of each
component in UCA.
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