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Abstract
A transformer model is used in general tasks such as pre-trained language models and specific tasks including
machine translation. Such a model mainly relies on positional encodings (PEs) to handle the sequential order of
input vectors. There are variations of PEs, such as absolute and relative, and several studies have reported on
the superiority of relative PEs. In this paper, we focus on analyzing in which part of a transformer model PEs work
and the different characteristics between absolute and relative PEs through a series of experiments. Experimental
results indicate that PEs work in both self- and cross-attention blocks in a transformer model, and PEs should be
added only to the query and key of an attention mechanism, not to the value. We also found that applying two PEs in
combination, a relative PE in the self-attention block and an absolute PE in the cross-attention block, can improve
translation quality.

Keywords: Positional Encoding, Transformer, Machine Translation

1. Introduction
A transformer model (Vaswani et al., 2017) is a
neural network model that can handle sequential
information. Sequential information is traditionally
handled using a recurrent or convolutional neural
network, which has a structure that handles se-
quential information in order. A transformer model
does not have a recurrent or convolutional struc-
ture. It handles sequential information by using
positional encodings (PEs) that directly inject po-
sitional information of the sequence in the input
vectors.
There are variations of PEs such as absolute PEs
(Vaswani et al., 2017) and relative PEs (Shaw et al.,
2018). There have been several studies on com-
paring these two PEs (Rosendahl et al., 2019), re-
porting the superiority of relative PEs, especially in
longer sentences.
In this paper, we focused on analyzing in which part
of a transformer model PEs work. We also investi-
gated the different characteristics between absolute
and relative PEs through a series of experiments.
Our contributions are as follows: (1) PEs mainly
work in a self-attention block as well as in the cross-
attention block, (2) PEs should be added only to the
query and key of an attention mechanism, not to the
value, (3) using absolute and relative PEs in combi-
nation can improve translation quality, (4) machine
translation methods using a transformer model do
not have very high generalization ability with re-
spect to sentence length, and their performance
degrades if the sentence lengths match between
training and testing data, and (5) machine transla-
tion quality may rely on the number of tokens in the
training data rather than the number of sentences.

2. Transformer Model and Positional
Encoding

2.1. Transformer Model
Typical transformer-based encoder-decoder mod-
els consist of two structures, an encoder and de-
coder. The encoder consists of two blocks, self-
attention and feed-forward, and the decoder con-
sists of three blocks, self-attention, cross-attention,
and feed-forward. The main component of the self-
attention and cross-attention blocks is multi-head
attention, which is calculated as:

Attention(Q,K, V ) = softmax
(QKT

√
D

)
V, (1)

where Q,K and V respectively represent the query,
key, and value of an input, and D is dimension.
Note that we dropped head indices for clarity.

2.2. Positional Encoding
A transformer model injects positional information
of tokens in the sequence to handle sequential
information. The model uses PEs to incorporate
the order of sequences in the self-attention block
of the transformer. As variations of PEs (Dufter
et al., 2022), we used the widely used absolute and
relative PEs to determine their performances.
Absolute Positional Encoding An absolute PE
injects absolute positional information into input
vectors using fixed or learned positional embed-
dings.
Fixed positional embeddings are calculated using
sinusoidal functions (Vaswani et al., 2017).
Learned positional embeddings, however, are cal-
culated using the embedding layer of neural net-
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Figure 1: Two types of self attention block.

Language-pair Train Devel Test
fr → de 17,975,604 1,026 2,006
de → fr 1,000 1,984
jp → en 33,875,119 1,005 2,008
en → jp 1,000 2,037

Table 1: Number of sentences in datasets.

works. This is typically done by embedding abso-
lute position IDs P = {0, 1, · · · , n}, where n is the
number of tokens in the sentence into the embed-
ding network (Devlin et al., 2019). The position
embedding vectors are then added to the Q,K and
V of an input of a self-attention.
Typical transformer-based machine translation
methods utilize fixed position embeddings, so we
utilize fixed position embeddings in this study.
Relative Positional Encoding A relative PE in-
jects the distance between elements of input se-
quences instead of its position as:

Attentionrel = Softmax
(QKT + S√

D

)
V, (2)

where S is relative positional embedding that em-
beds the distance between input elements (Huang
et al., 2019).

3. Experiments
We conducted a series of experiments to under-
stand the behaviors and characteristics of PEs.
We first clarified in which blocks of the transformer
model PEs work. We then conducted experiments
on machine translation involving two language-
pairs datasets, i.e., French(fr)-German(de) and
Japanese(ja)-English(en) to determine whether our
findings can be generally adopted.

3.1. Experimental settings
We used The Conference on Machine Translation
(WMT22) (2022) General MT (News) task dataset
as the training and test data, and the test data of
The Conference on Machine Translation (WMT21)
(2021) News task dataset as the development
data1. We chose a similar language pair (fr-de)
and non-similar language pair (ja-en) to determine
performance in as wide a range of situations as
possible. Note that we regard that language pairs

1This is because WMT22 dataset does not include
development data.
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Figure 2: Two types of cross attention block.

Self-attention Cross-attention BLEU COMET
Median 29.05 -8.07

Original None Average 29.13 -7.52
(Original transformer) ± 0.16 ± 1.12

Median 29.02 -8.87
Original Cross-PE Average 29.03 8.91

± 0.15 ± 0.46

Less-Feeding None
Median 36.59 34.14
Average 36.65 34.49

± 0.29 ± 0.48

Less-Feeding Cross-PE
Median 38.11 38.78
Average 38.32 39.00

± 0.27 ± 0.88

None None
Median 10.59 -73.42
Average 10.57 -73.40

± 0.18 ± 0.74

None Cross-PE
Median 10.43 -73.57
Average 10.41 -74.09

± 0.10 ± 1.17

Table 2: Results of experiments for analyzing which
blocks of transformer require PE using fr → de task.
We show median, average, and standard deviation
of three experiments. Bold represents best results.
Note that we utilized 1-layer transformer models for
this experiment.

with significantly different word orders, such as SVO
and SOV, as “non-similar languages.” The volumes
of each dataset are listed in Table 1. The transla-
tion models were implemented in PyTorch (Paszke
et al., 2019) and learned with the RAdam optimizer
(Liu et al., 2020) with a learning rate of 5.0× 10−4

with a cosine scheduler with warmup steps of 5,000
and mini batch size of 256. We used beam search
with a beam width of 10 in the decoding process,
and COMET2 (Rei et al., 2020) and SacreBLEU3

(Post, 2018) as evaluation metrics. We utilized sen-
tencepiece (Kudo and Richardson, 2018) as the
tokenizer with a vocabulary size of 16,000. We
trained the models with 10 epochs for the fr-de pair
and 5 epochs for the ja-en pair (almost equal to
650K steps for both language pairs), and evalu-
ated every 50K steps using development data. We
chose the best models on the basis of the COMET
score on the development data and used those
models to evaluate on the test data. We show the
average, standard deviation, and median of three
experiments with the same settings but using dif-

2We used wmt20-comet-da model.
3The signatures are nrefs:1|case:mixed|eff:no|tok:ja-

mecab-0.996-IPA|smooth:exp|version:2.3.1 for en →
jp and refs:1|case:mixed|eff:no|tok:13a| smooth:exp|ver-
sion:2.3.1 for other tasks.
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fr→de de→fr ja→en en→ja
PE Less-Feeding Cross-PE BLEU COMET BLEU COMET BLEU COMET BLEU COMET

Absolute

(Original transformer)
Median 37.15 36.51 26.36 16.24 18.82 15.39 20.09 37.00
Average 37.15 37.34 26.32 16.39 18.87 15.10 20.06 36.46

± 0.04 ± 1.58 ± 0.13 ± 0.69 ± 0.49 ± 0.51 ± 0.18 ± 1.13
Median 38.82 39.37 26.56 19.11 18.35 14.54 20.31 38.43
Average 38.82 39.81 26.57 18.93 18.16 14.73 20.29 38.18

± 0.12 ± 0.96 ± 0.21 ± 0.97 ± 0.69 ± 0.45 ± 0.04 ± 0.69
Median 38.86 41.13 26.54 18.92 18.13 15.86 20.46 38.27
Average 38.85 41.06 26.55 19.38 18.32 15.19 20.50 38.42

± 0.26 ± 0.45 ± 0.42 ± 1.25 ± 0.34 ± 1.19 ± 0.17 ± 0.34

Relative

Median 38.79 40.29 26.41 19.67 17.80 14.91 20.38 37.66
Average 38.92 40.37 26.56 19.28 17.97 15.04 20.29 37.50

± 0.33 ± 0.65 ± 0.27 ± 0.86 ± 1.30 ± 1.67 ± 0.27 ± 0.62
Median 38.89 41.22 26.52 19.10 19.18 17.66 20.35 37.76
Average 38.86 41.47 26.55 19.05 19.05 17.22 20.33 37.98

± 0.05 ± 1.29 ± 0.13 ± 0.38 ± 0.25 ± 1.08 ± 0.28 ± 0.62

Table 3: Experimental results of machine translation. Bold represents best results and underline repre-
sents those models outperforming original transformer.

ferent random seeds for each experiment.

3.2. In Which Blocks Do PEs work?
We conducted experiments to clarify which blocks
of the transformer model require information of PEs,
we prepared two types of self-attention blocks. One,
denoted as Original, is applying a PE to Q,K, and
V (Figure 1-(a)), which has the same structure as
that in the original transformer model. The other,
denoted as Less-Feeding, is applying PE only to
Q and K (Figure 1-(b)) to reduce PE-derived infor-
mation to feed to the next block (Press et al., 2022).
For comparison, we also prepared a model that PE
is not applied for self-attention, denoted as None.
We also prepared two types of cross-attention block.
One is with no PE applied (Figure 2-(a)), denoted as
None, which has the same structure as that of the
original transformer model, and the other, denoted
as Cross-PE, is applying PE for cross attention
(Figure 2-(b)) (Li et al., 2023). We utilized 1-layer
encoder-decoder models for this experiment with
absolute PEs to eliminate effects other than the
difference in how PEs applied as much as possible.
We utilized the fr-de translation dataset.
The results are given in Table 2. The best result was
using Less-Feeding and Cross-PE. The results
show that PEs mainly work in the self-attention
block but also work in the cross-attention block.

3.3. Comparing Absolute and Relative
PEs

We also conducted experiments on machine trans-
lation tasks with the two language pairs to confirm
whether the findings can be adopted generally. We
prepared three models, the original transformer
model, one applying Less-Feeding, and one ap-
plying Less-Feeding and Cross-PE. We used a
6-layer encoder-decoder model and applied PEs for
the first layer of the models. We also prepared ab-
solute and relative PEs for the self-attention blocks
to compare translation quality. We used a relative
PE with skew (Huang et al., 2019). This relative
PE does not add position embedding vectors to V ,

which is the same as Less-Feeding, so we did not
use Original with the relative PE. Note that we
used an absolute PE for the cross-attention block
when applying Cross-PE regardless of the type
of PEs applied in the self-attention blocks. The
experimental results are shown in Table 3.
Less-Feeding with an absolute PE outperformed
Original in almost all tasks except ja→en, which
shows the effectiveness of Less-Feeding. Apply-
ing Cross-PE also improved translation quality es-
pecially in term of COMET scores. Therefore, we
confirmed that our findings presented in Section 3.2
can be generally adopted.
Cross-PE with a relative PE outperformed Orig-
inal in all tasks and using a relative PE without
Cross-PE in most cases, so we confirmed the ef-
fectiveness of using Cross-PE with a relative PE.

3.4. Discussions
How PEs Work in Transformer Model As shown
in Table 2, PEs work in the cross-attention block
as well as work in a self-attention block, so using
Cross-PE in the cross-attention block improved
translation quality for both tasks. As Garg et al.
(2019) showed, word alignment is calculated in
the transformer model, and it is thought that the
word alignment is calculated mostly in the cross-
attention block. We believe that Cross-PE is useful
for improving the word alignment calculation.
When comparing the two types of self-attention
block, the translation qualities were better using
Less-Feeding than using Original. If adding PEs
to V as Original, the output of self-attention block
contains too much PEs-derived information, and
the information is a combination of PEs from vari-
ous input words. This is difficult to handle and trans-
lation quality worsens. Surprisingly, using Less-
Feeding with absolute PEs can achieve almost the
same results as using Less-Feeding with relative
PEs. We presume that one of the reasons of the
reportedly superiority of relative PEs is that rela-
tive PEs basically do not add position embedding
vectors to the V of the an attention mechanism.
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(a) All (b) tokens < 20 (c) 40 < tokens < 60 (d) 80 < tokens

Figure 3: Comparison of translation qualities by sentence length in training data using fr → de task. Note
that scale of vertical axis for BLEU score differs in (a) and others.

Data # Sentences # Tokens BLEU (Absolute PE) BLEU (Relative PE)
tokens < 10 (Figure 3-(b)) 8,052,523 93,327,696 34.27 34.66
40 < tokens < 60 (Figure 3-(c)) 2,560,810 122,431,120 36.42 36.46
80 < tokens (Figure 3-(d)) 394,505 44,813,104 29.44 25.97

Table 4: Number of sentences and tokens in training data used in Figure 3-(b),(c),(d). We show BLEU
scores using absolute and relative PEs with Cross-PE for sentences with same number range of tokens
as training data.

Differences in Generalizing Ability regarding
Sentence Lengths The inability of a transformer
model to generalize to data of unseen lengths was
reported by Varis and Bojar (2021). To clarify the
differences among the three transformer models we
used, we categorized the BLEU scores on the basis
of source sentence length. The results are shown
in Figure 3-(a). There are different characteristics
among the models. We believe this difference is
due to the generalizing ability for sentence lengths
among models. To determine the differences in
generalizing ability, we conducted experiments in
which the training data were selected on the basis
of sentence length. Specifically, we extracted three
sets of training data where the number of source
language tokens was under 20, between 40 and
59, and over 80, and compared the performance.
The results are shown in Figure 3-(b),(c),(d). Us-
ing absolute PEs when Cross-PE was not applied
performed better for unseen sentence lengths than
when using relative PEs. Using relative PEs when
Cross-PE was applied, the BLEU scores for un-
seen sentence lengths improved and outperformed
using absolute PEs when applying Cross-PE. We
believe that this is because applying two different
PEs, relative PEs in a self-attention block and abso-
lute PEs in the cross-attention block increases the
amount of information handled in the translation
model, improving performance.
Interestingly, the translation quality for sentences
shorter than training data was poor for all settings,
which indicates that machine translation methods

using the transformer model fail to generalize data
with different sentence lengths. Translation per-
formances degrade if the sentence lengths do not
match between training and test data.
Effect of Number of Sentences and Tokens
in Training Data Even though there was only
around 400,000 sentence pairs of the selected train-
ing data of 80 < tokens, the BLEU score for sen-
tences with the same length as the training data
was high around 30 (Figure 3-(d)). There were
small differences in BLEU scores with the training
data of tokens < 20, which had around 8,000,000
sentence pairs. Table 4 shows the number of sen-
tences and tokens in the source language of the
training data. It is suggested that it is the number
of tokens as well as the number of sentences that
affects to the BLEU score.

4. Related Work
PEs are commonly utilized to incorporate the order
of sequences. Vaswani et al. (2017) proposed a
pre-defined PE with the original transformer model,
which uses sinusoidal functions of different frequen-
cies to add to the input vectors. Also, there are
absolute PEs with trainable parameters have been
widely used (Devlin et al., 2019; Radford et al.; Liu
et al., 2019).
Shaw et al. (2018) proposed a relative PE, and
demonstrated its effectiveness regarding machine
translation quality. There are variants of relative
PEs such as TUPE (Transformer with Untied Posi-
tional Encoding) (Ke et al., 2021), RoPE (Rotary Po-
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sitional Embedding) (su2, 2024), and other (Press
et al., 2022; Chowdhery et al., 2023; Sun et al.,
2023). Most are used to handle longer sentences
as well as improve performance.
Li et al. (2023) proposed a model that does not feed
PEs to the value of self-attention in a transformer
model, and Press et al. (2022) proposed a model
that utilize PEs in cross-attention. On the basis
of these models, we conducted further detailed
analysis to analyze the behavior of PEs. We not
only improved overall performance by changing
the manner in which a PE is given but also found
differences in behavior in generalizing differences
in sentence length between training and evaluation
data. It has been reported that the performance of a
transformer model deteriorates due to differences
in sentence length (Varis and Bojar, 2021). As
one solution to this problem, we argued that using
different types of the PEs in one model may lead
to improved generalizability for sentence lengths.

5. Conclusion
In this paper, we analyzed in which part of the trans-
former model positional encodings (PEs) work. We
also investigated the different characteristics be-
tween absolute and relative PEs through a series
of experiments.
Experimental results indicate that PEs work in both
self- and cross-attention blocks in a transformer
model, and PEs should be added only to the query
and key of an attention mechanism, not to the value.
We also found that applying two PEs in combination,
applying a relative PE in the self-attention block and
an absolute PE in the cross-attention block, can
improve translation quality.
Machine translation methods using a transformer
model do not have very high generalization ability
with respect to sentence length, and the number of
tokens rather than the number of sentences affects
translation quality.
We compared the performance using basic PEs,
but it is necessary to investigate whether the same
conclusion can be made with more recent PEs. We
also need to investigate the performance difference
due to differences in syntax, such as Det-ee–Det-er
in French and Det-er–Det-ee in German. These
are left as future work.
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A. Comparison between Where PEs
Are Applied in Attention

Mechanism.
To analyze where a PE is used in an attention mech-
anism, we conducted another experiment by chang-
ing the conditions of applying a PE to Q, K, and
V . We utilized training data that included 10% of
the data randomly extracted from the training data
of the fr-de task. We utilized a 1-layer transformer
model. This is because in such models with multi-
ple layers, information of PEs is fed from the previ-
ous layer, making it difficult to limit PE information.
The PEs were applied under the same conditions
for all three attention mechanisms in the encoder
and decoder. We utilized absolute PE.
The experimental results are given in Table 5. It is
clear that it is better to give PE information to Q and
K. Although there was a slight difference, better
performance was obtained by applying to Q and K
without applying to V .
Even when a PE was applied only to V , the per-
formance was better than when no PE was used.

Q K V BLEU COMET
Median 7.51 -103.40

Average 7.57 -102.84
± 0.18 ± 0.95

Median 12.61 -85.41

Average 12.61 -85.37
± 0.03 ± 0.08

Median 12.84 -78.46

Average 12.57 -78.27
± 0.54 ± 0.78

Median 12.03 -85.99

Average 12.29 -85.97
± 0.22 ± 0.36

Median 24.05 -36.88

Average 24.12 -37.05
± 0.13 ± 1.04

Median 13.31 -78.37

Average 13.20 -78.73
± 0.22 ± 1.87

Median 12.79 -86.81

Average 12.76 -86.65
± 0.07 ± 0.33

Median 23.86 -38.77

Average 23.81 -38.47
± 0.23 ± 0.67

Table 5: Comparison between where PEs are ap-
plied in attention mechanism.

PE information given to V cannot be used in the
calculation of attention weight, but is added to the
output of an attention mechanism. In other words,
this setting is almost equivalent to applying PEs
only to the cross-attention block of the transformer
decoder. This also suggests that applying PEs to
the cross-attention block leads to improved perfor-
mance.

B. In which layer do PEs work?
Some methods use PEs for only the first layer
(Vaswani et al., 2017; Devlin et al., 2019) and oth-
ers for every layer (Huang et al., 2020; Raffel et al.,
2020). We also conducted experiments to deter-
mine in which layer PEs work using the fr-de task.
We prepared models that apply PEs in the first n
layer and compared their performances. We uti-
lized training data that included 10% of the data
randomly extracted from the training data of the
fr-de task. The results are given in Table 6. In al-
most all models except for the original transformer
model, their performance was best when the PE
added to the first two to five layers, and was almost
the same among them. In contrast, the best perfor-
mance was obtained by applying PEs for all layers
for the original transformer model.
The word order information is calculated not only
in the first layer of the model but also in the subse-
quent layers. Therefore it is better to add PEs to
not only the first layer but also subsequent layers.
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Absolute PE Relative PE
Less-Feeding (Original transformer)

Cross-PE
No. of Layer BLEU COMET BLEU COMET BLEU COMET BLEU COMET BLEU COMET

1
Median 31.16 12.01 31.36 13.41 31.32 12.38 31.05 8.84 30.33 8.83
Average 31.14 12.46 31.34 13.40 31.33 12.56 30.94 9.15 30.38 8.95

± 0.15 ± 1.22 ± 0.31 ± 0.85 ± 0.17 ± 0.51 ± 0.29 ±1.12 ± 0.19 ± 1.06

2
Median 31.38 12.29 31.36 13.67 31.69 13.34 31.64 13.20 31.13 11.58
Average 31.44 12.21 31.31 13.59 31.75 13.88 31.63 13.20 31.08 11.61

± 0.13 ± 0.44 ± 0.18 ± 0.59 ± 0.20 ± 0.99 ± 0.04 ± 0.89 ± 0.18 ± 0.92

3
Median 31.50 13.84 31.84 15.51 31.41 13.63 32.02 15.01 31.58 13.59
Average 31.46 13.70 31.79 15.38 31.50 13.99 32.02 14.92 31.53 13.26

± 0.15 ± 1.02 ± 0.18 ± 0.57 ± 0.29 ± 1.23 ± 0.13 ± 0.46 ± 0.20 ± 0.69

4
Median 31.45 13.02 31.58 15.69 31.74 13.74 31.89 13.98 31.72 15.36
Average 31.49 13.18 31.77 15.10 31.75 13.94 31.86 14.33 31.73 15.12

± 0.08 ± 0.99 ± 0.38 ± 1.16 ±0.07 ± 0.35 ± 0.15 ± 0.66 ± 0.27 ± 0.56

5
Median 31.49 11.60 31.57 13.16 31.50 13.41 31.80 14.76 31.88 12.69
Average 31.45 12.04 31.52 13.53 31.55 13.69 31.85 14.01 31.79 12.84

± 0.23 ± 1.28 ± 0.12 ± 1.06 ± 0.16 ± 0.72 ± 0.09 ± 0.11 ±0.46 ± 1.81

6
Median 31.61 14.53 31.58 14.30 31.35 12.50 31.36 12.81 31.74 12.30
Average 31.62 14.21 31.55 14.25 31.41 12.67 31.32 12.39 31.71 12.29

± 0.04 ± 0.01 ± 0.17 ± 1.02 ± 0.12 ± 0.62 ± 0.18 ± 1.31 ± 0.16 ± 0.03

Table 6: Results of experiments for analyzing which layers of transformer require positional encoding.
Bold means best results in same setting. We used fr → de task.
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