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Abstract
In video-text retrieval, most existing methods adopt the dual-encoder architecture for fast retrieval, which employs
two individual encoders to extract global latent representations for videos and texts. However, they face challenges in
capturing fine-grained semantic concepts. In this work, we propose the UNIFY framework, which learns lexicon
representations to capture fine-grained semantics and combines the strengths of latent and lexicon representations
for video-text retrieval. Specifically, we map videos and texts into a pre-defined lexicon space, where each dimension
corresponds to a semantic concept. A two-stage semantics grounding approach is proposed to activate semantically
relevant dimensions and suppress irrelevant dimensions. The learned lexicon representations can thus reflect
fine-grained semantics of videos and texts. Furthermore, to leverage the complementarity between latent and
lexicon representations, we propose a unified learning scheme to facilitate mutual learning via structure sharing and
self-distillation. Experimental results show our UNIFY framework largely outperforms previous video-text retrieval
methods, with 4.8% and 8.2% Recall@1 improvement on MSR-VTT and DiDeMo respectively. Code and pre-trained
models will be publicly available at https://github.com/auhowielau/UNIFY.
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1. Introduction

Video-text retrieval is a crucial task with wide prac-
tical applications. Recently, pre-training to learn
transferable cross-modal representations has grad-
ually become the paradigm of this field (Bain et al.,
2021; Li et al., 2022b; Bai et al., 2022; Wang et al.,
2022; Ge et al., 2022a,b). To achieve fast retrieval,
most methods adopt the dual-encoder architecture.
It employs two individual encoders for video and
text feature extraction respectively, and uses con-
trastive learning for cross-modal alignment.

As dual-encoder models compress a video (or
text) into a latent vector, cross-modal interaction
and alignment are solely based on such coarse-
grained global representations. Therefore, it’s chal-
lenging for them to capture fine-grained semantic
concepts such as objects and actions. To tackle
this, some methods (e.g. Li et al., 2022b) employ
extra interaction modules to enhance global latent
representations. However, it deprives the model’s
ability of fast retrieval. BridgeFormer (Ge et al.,
2022a) discards the extra module after training,
and thus the fine-grained interaction ability cannot
be well transferred to the model when inference.

In this work, we present a novel UNIFY frame-
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Figure 1: Comparison of latent and lexicon repre-
sentations. The dimensions of latent representa-
tions have no explicit meanings. In contrast, each
dimension of lexicon representations corresponds
to a semantic concept, where semantically rele-
vant dimensions are activated (e.g. woman and
dog) while semantically irrelevant dimensions are
suppressed (e.g. cat and cup).

work for unified video-text retrieval. It learns lexicon
representations of videos and texts to capture fine-
grained semantics, and combines the strengths
of latent and lexicon representations for effective
cross-modal retrieval. Firstly, we define a lexicon
space where each dimension corresponds to a se-
mantic concept represented by a word. As shown
in Figure 1, videos and texts are mapped into
this space to obtain lexicon representations. To

https://github.com/auhowielau/UNIFY
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capture fine-grained semantic information, we pro-
pose a two-stage semantics grounding approach
to activate semantically relevant dimensions and
suppress semantically irrelevant dimensions. Sec-
ondly, as latent representations summarize videos
and texts from a global perspective, and lexicon
representations excel at capturing fine-grained se-
mantics, combining them can further improve the
model’s performance. Thus, to better leverage their
complementarity, we propose a unified learning
scheme which facilitates mutual learning between
them via structure sharing and self-distillation.

Specifically, inspired by SPLADE (Formal et al.,
2021b), we can ground texts to semantically rele-
vant dimensions by resorting to a pre-trained BERT
(Devlin et al., 2018) model and its masked lan-
guage modeling (MLM) head. However, it’s much
more intractable for videos to achieve this due to
the giant gap between raw pixels and the lexicon
space. To address this, we propose a two-stage
semantics grounding approach. As initially videos
have random distributions in the lexicon space, in
stage one, we freeze the text encoder to avoid
textual lexicon representations being corrupted in
cross-modal alignment. We map local video and
text features into the lexicon space using the MLM
head, and aggregate them to obtain video-level
and text-level lexicon representations. Contrastive
learning is then applied to pull paired samples
closer and push unpaired ones away. In stage two,
we jointly train both the video and text encoders for
further cross-modal alignment. Apart from video-
text contrastive learning, we employ the MLM task
in this stage to preserve textual semantics.

To leverage the complementarity between latent
and lexicon representations, we propose a unified
learning scheme. Firstly, from a structure shar-
ing perspective, the two types of representations
share a stem video (or text) encoder in shallow
layers to promote knowledge sharing and transfer.
Meanwhile, representation-specific encoders are
adopted in deep layers to focus on global and fine-
grained semantic information respectively. Sec-
ondly, as learning lexicon representations is rela-
tively more challenging, we utilize latent represen-
tations to provide additional supervision informa-
tion from a different perspective via self-distillation.
Specifically, we employ the similarity scores com-
puted from latent representations as soft labels for
the contrastive learning of lexicon representations.
Through the proposed unified learning scheme, la-
tent and lexicon representations can benefit from
each other, and are unified to form an effective
video-text retriever.

Experimental results demonstrate the proposed
lexicon representations can capture fine-grained
semantics effectively. Moreover, our UNIFY frame-
work combines the strengths of latent and lexicon

representations, and largely outperforms previous
state-of-the-art methods in video-text retrieval.

Our contributions can be summarized as follows:

• We present a novel UNIFY framework which
unifies global latent representations and fine-
grained lexicon representations for effective
video-text retrieval.

• We propose a two-stage semantics grounding
approach to ground videos and texts into se-
mantically relevant dimensions, and a unified
learning scheme to leverage the complemen-
tarity of latent and lexicon representations.

• Experimental results show our model well cap-
tures fine-grained semantics and largely sur-
passes previous video-text retrieval methods.

2. Related Work

2.1. Video-Text Retrieval

Recently, pre-training to learn transferable cross-
modal representations has been popular in both
image-text retrieval (Xu et al., 2021a; Li et al.,
2022a; Xu et al., 2023) and video-text retrieval
(Miech et al., 2020; Bain et al., 2021; Xu et al.,
2021b; Ge et al., 2022a,b). However, dual encoder
methods have shortcomings in understanding the
fine-grained alignment between video and text,
which is crucial for accurate video-text retrieval.
Currently, there are two ways to solve this problem.
The first (Li et al., 2022b; Ge et al., 2022a) in-
volves using an additional fusion encoder to model
fine-grained cross-modal interactions. However,
the features cannot be pre-cached in this kind of
structure and limit the model’s fast retrieval ability.
The second one takes some learning strategies
based on the dual encoder, such as MILES (Ge
et al., 2022b) introduces masked image modeling
task to inject the fine-grained semantics into global
representation. Nevertheless, the fine-grained se-
mantics are learned in an implicit way which may
not be the optimal approach. We believe that an ex-
plicit fine-grained representation will facilitate better
retrieval performance. Therefore, in this paper, we
introduce an efficient and effective method UNIFY
by introducing a specific representation branch -
lexicon one to capture fine-grained semantics, and
we use a unifying scheme to promote collabora-
tion between the fine-grained lexicon and original
global latent representation.

2.2. Lexicon Representation

The concept of lexicon representation was initially
introduced by Vector Space Model (Salton et al.,
1975), which represents a document as a vector
in a vector space. Each dimension corresponds
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Figure 2: Overview of our proposed UNIFY framework. The whole model consists of two streams for
video and text respectively, each including a stem encoder, two representation-specific encoders and
two projection heads. For lexicon representation learning, we propose a two-stage semantics grounding
approach (Section 3.2). Furthermore, we unify the latent and lexicon representations via structure sharing
and self-distillation (Section 3.3). VTC stands for video-text contrastive learning.

to a term in the vocabulary, whose value indicates
the importance of the term in the document. As
pre-trained language models have gained popu-
larity, neural network-based lexicon methods (Bai
et al., 2020; Formal et al., 2021b,a; Lassance and
Clinchant, 2022; Shen et al., 2022) have achieved
progress. Our method is inspired by the neural-
based lexicon representation methods. However,
our task involves both video and text modalities.
Though text data can be naturally projected into the
lexicon space by directly taking the pre-trained lan-
guage model as the text encoder, it’s much more
intractable for videos to achieve this due to the
giant modality gap between video and text. To
tackle this, in this paper, we propose a two-stage
semantics grounding approach to learn lexicon rep-
resentations of videos.

3. Method

3.1. Overview

As Figure 2 shows, we propose the UNIFY frame-
work to unify latent and lexicon representations for
effective video-text retrieval. The architecture of
UNIFY can be roughly divided into two parts, i.e.
the video stream and the text stream, to extract
video and text representations respectively. Both
parts consist of five elements, i.e., a stem encoder
Estem(·) shared by the latent and lexicon repre-

sentations, two representation-specific encoders
Elat(·), Elex(·) and two corresponding projection
heads Hlat(·), Hlex(·). Note that videos and texts
share the same lexicon projection head to map
both modalities into the same lexicon space.

It takes two steps to extract latent and lexicon
representations from videos and texts. Taking an
input video V for example, as the left part of Figure
2 shows, 1) we first use the stem video encoder to
extract video features, which are then fed into the
latent video encoder and lexicon video encoder to
obtain the corresponding raw features:

rvlat = Ev
lat(E

v
stem(V )) ∈ Rd, (1)

rvlex = Ev
lex(E

v
stem(V )) ∈ RK×d, (2)

where K is the number of local video features, and
d is the dimension of raw features. Note that the
latent encoder only outputs the global [CLS] fea-
ture, while the lexicon encoder outputs all local
raw features. 2) We employ the latent and lexi-
con projection heads to map raw features into the
corresponding representation spaces. For latent
representations, this step can be formulated as:

fv
lat = Hv

lat(r
v
lat) ∈ Rd̂, (3)

where d̂ is the dimension of the latent space. As
for the lexicon space, each dimension of it corre-
sponds to a semantic concept represented by a
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word. Denoting the lexicon size as |W|, the lexicon
projection can be formulated as:

pvlex = Hv
lex(r

v
lex) ∈ RK×|W|. (4)

After getting the lexicon representations of local
patches, we perform the ReLU(·) activation func-
tion to suppress negative values to zero, and ag-
gregate them to get the video-level lexicon repre-
sentation by pooling operation:

fv
lex = Pool(ReLU(pvlex)) ∈ R|W|. (5)

As the right part of Figure 2 shows, following a
similar process, we obtain the latent and lexicon
representation of an input text T :

f t
lat = Ht

lat(E
t
lat(E

t
stem(T ))) ∈ Rd̂, (6)

ptlex = Ht
lex(E

t
lex(E

t
stem(T ))) ∈ RL×|W|, (7)

f t
lex = Pool(ReLU(ptlex)) ∈ R|W|, (8)

where L is the number of tokens of T .
After obtaining the latent and lexicon representa-

tions of videos and text, when inference, we utilize
both types of representations to calculate the dot
product similarity scores (Slat and Slex) between
video-text pairs. Finally, we combine the two scores
at a 1:1 ratio to serve as the final similarity score
for ranking:

S = Slat + Slex. (9)

3.2. Two-stage Semantics Grounding

In order to capture fine-grained semantics, lexicon
representations are required to satisfy two seman-
tic constraints: 1) dimensions semantically relevant
to the video (or text) are activated with high val-
ues, and 2) semantically irrelevant dimensions are
suppressed to zero. This makes the learning of
lexicon representations quite challenging. Luckily,
for texts, we can resort to pre-trained language
models (PLM) to achieve this goal. PLMs such
as BERT (Devlin et al., 2018) are trained with the
masked language modeling (MLM) task, which can
project the masked tokens to semantically relevant
words. Therefore, by reusing PLM and its MLM
head, we can transform texts into lexicon repre-
sentations that satisfies the semantic constraints.
However, it’s much more intractable for videos to
achieve the same goal, as video’s raw pixels are
significantly different from discrete words in both
modality and semantics. To tackle this, we propose
a two-stage semantics grounding approach.

Stage 1. As initially videos are randomly dis-
tributed in the lexicon space, updating video and
text encoders simultaneously may damage the lex-
icon distributions of texts. Therefore, as the lower
left part of Figure 2 shows, we freeze the text en-
coders and ground videos into the lexicon space

in stage 1. We resort to the paired texts to acquire
the information which dimensions of the lexicon
space are relevant to the videos. Specifically, we
learn cross-modal semantic alignment in the lex-
icon space by optimizing a video-text contrastive
(VTC) learning objective with Noise-Contrastive
Estimation (NCE):

Llex
VTC =

B∑
i=1

NCE (vi, ti) +

B∑
i=1

NCE (ti, vi) ,

NCE (xi, yi) = − log
exp

(
xT
i yi/τ

)∑B
j=1 exp

(
xT
i yj/τ

) , (10)

where vi and ti are normalized lexicon represen-
tations of the i-th video and text in a batch. B is
batch size and τ is a temperature hyper-parameter.

Stage 2. As the lower right part of Figure 2
shows, in stage 2, we jointly train the video and
text encoders for bidirectional cross-modal align-
ment. However, simply unfreezing the text en-
coders will deprive the semantic constraints and
cause texts to drift in the lexicon space. There-
fore, apart from video-text contrastive learning, we
adopt the masked language modeling (MLM) task
in stage 2 for preserving textual semantics. MLM
recovers the masked tokens by reasoning contex-
tual text, and thus encourages the model to project
text tokens to lexicon dimensions corresponding
to their semantics. Denoting the text with tokens
masked as T̂ and the prediction probability of the
masked tokens as pmask(T̂ ), MLM loss can be for-
mulated as:

LMLM = ET̂∼D

[
CE

(
ymask,pmask(T̂ )

)]
, (11)

where ymask is the ground truth one-hot vectors of
the masked tokens. D is the training dataset. CE
stands for cross-entropy loss.

As the lexicon space is high-dimensional (e.g.
30522-d), to avoid semantically relevant dimen-
sions being overridden by massive non-zero val-
ues on those semantically irrelevant dimensions,
we introduce a FLOPs loss (Paria et al., 2020) to
encourage the sparsity of the lexicon representa-
tions:

LFLOPs =

|W|∑
k

(
1

B

B∑
i=1

vki )
2 +

|W|∑
k

(
1

B

B∑
i=1

tki )
2, (12)

where vki and tki are the activation values of the
k-th dimension of the lexicon space.

The training objectives for learning lexicon rep-
resentations in stage 1 and 2 are as follows:

Llex =

{
Llex
VTC + β · LFLOPs, stage1

Llex
VTC + β · LFLOPs + LMLM, stage2

(13)
where β is the weight of the FLOPs loss.
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3.3. Unified Learning of Latent and
Lexicon Representations

Latent representations focus more on global con-
tent, while lexicon representations excel at captur-
ing fine-grained semantics. To leverage the com-
plementarity of latent and lexicon representations,
we propose a unified learning scheme to facilitate
their mutual learning.

Structure sharing. Firstly, we unify the learning of
latent and lexicon representations from a structure
sharing perspective. To combine the strengths of
both representations, an intuitive way is to train two
individual dual-encoder models for latent and lexi-
con representations respectively, and apply score-
level fusion for retrieval. However, this parallel
architecture has two drawbacks. 1) The number
of parameters and computation cost are doubled.
2) Lacking interaction prevents them from mutual
learning, and thus can’t achieve the optimal perfor-
mance of unified retrieval.

As shown in Figure 2, we instead propose a
unified architecture, where the latent and lexicon
branches share the same stem video (or text) en-
coder. As the two types of representations focus
on information of different granularities, sharing
shallow layers promotes knowledge sharing and
transfer between them during the learning process.
On the other hand, if the whole video (or text) en-
coder is shared, the raw features input to the la-
tent and lexicon projection heads will be identical,
which inevitably harms the complementarity be-
tween the two representation types. Therefore,
in each stream, we introduce two representation-
specific encoders on top of the stem encoder. The
latent and lexicon encoders are optimized by differ-
ent training objectives, and thus can learn visual
and textual information of different granularities.

Self-distillation. Secondly, we use self-distillation
to facilitate knowledge transfer from latent to lexi-
con representations. On the one hand, learning lex-
icon representations are more challenging due to
the semantic constraints. On the other hand, while
freezing the lexicon text branch in stage 1 (Section
3.2) avoids the textual lexicon distributions being
corrupted, it also to some extent limits the ability
of lexicon representations. As they have different
focuses, the knowledge from latent representations
can provide extra supervision for lexicon represen-
tation learning. Specifically, for each type of repre-
sentations, we obtain the similarity scores between
videos and texts by computing the dot product of
their normalized representations. Denote video-to-
text and text-to-video similarity scores as Sv2t and
St2v. We use the similarity scores of latent repre-
sentations as soft labels to perform self-distillation
on lexicon representations, and optimize a KL di-

vergence (DKL) loss as follows:

LD = DKL(S
lex
v2t||Slat

v2t) +DKL(S
lex
t2v ||Slat

t2v). (14)

Combining the self-distillation loss and the video-
text contrastive loss of latent representations, the
overall training objective of our UNIFY framework
can be formulated as:

L = Llex + Llat
VTC + λ · LD, (15)

where Llat
VTC has the same form as Llex

VTC in Equa-
tion 10, and λ is the weight of the self-distillation
loss. In practice, we linearly decrease λ during
training, which avoids harming the complemen-
tarity between latent and lexicon representations
while facilitating lexicon representation learning.

4. Experiments

4.1. Experimental Setup

Pre-training Datasets. For a fair comparison, we
follow Frozen (Bain et al., 2021) and MILES (Ge
et al., 2022b) to adopt two pre-training datasets
- Google Conceptual Captions (CC3M) (Sharma
et al., 2018) with 3M image-text pairs, and WebVid-
2M (Bain et al., 2021) with 2.5M video-text pairs.

Downstream Tasks. 1) Text-to-video retrieval.
We evaluate the text-to-video retrieval perfor-
mance of our UNIFY model on four main-
stream datasets, i.e., MSR-VTT (Xu et al.,
2016), DiDeMo (Anne Hendricks et al., 2017),
LSMDC (Rohrbach et al., 2015) and MSVD (Chen
and Dolan, 2011). The evaluation adopts both
zero-shot and fine-tuning setups, and uses Re-
call and Median Rank as metrics. 2) Action
Recognition. We also evaluate our model’s per-
formance in zero-shot action recognition, which
can be regarded as video-to-text retrieval by de-
scribing videos with corresponding action classes
following (Radford et al., 2021). Evaluation is con-
ducted on the HMDB51 (Kuehne et al., 2011) and
UCF101 (Soomro et al., 2012) datasets. Both
datasets are divided into three training/test splits.

Implementation Detail. We instantiate the video
encoder with the Timesformer (Bertasius et al.,
2021) model, and initialize the parameters of spa-
tial attention blocks by reusing ViT-B/16 weights
pre-trained on ImageNet-21K (Ridnik et al., 2021).
As for the text encoder, we use the BERTbase (De-
vlin et al., 2018) model for initialization, and take
its word embedding vocabulary as our lexicon. In
default, the number N of shared stem blocks is set
as 9, and M of representation-specific blocks is
set as 3. We use 8 NVIDIA A100 GPUs for pre-
training and 8 NVIDIA V100 GPUs for fine-tuning.
We pre-trained UNIFY for a total of 10 epochs,
during which the text encoder was frozen for the
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Method Year Video Input Pre-train Dataset Pairs MSR-VTT

R@1↑ R@5↑ R@10↑ MedR↓
Zero-Shot

SupportSet (Patrick et al., 2020) 2021 R(2+1)D-34 HowTo100M 120M 12.7 27.5 36.2 24.0
Frozen (Bain et al., 2021) 2021 Raw Videos CC3M, WebVid-2M 5.5M 18.7 39.5 51.6 10.0
AVLnet (Rouditchenko et al., 2020) 2021 ResNeXt-101 HowTo100M 120M 19.6 40.8 50.7 9.0
RegionLearner (Yan et al., 2023) 2023 Raw Videos CC3M, WebVid-2M 5.5M 22.2 43.3 52.9 8.0
LaT (Bai et al., 2022) 2022 Raw Videos CC3M, WebVid-2M 5.5M 23.4 44.1 53.3 8.0
MILES (Ge et al., 2022b) 2022 Raw Videos CC3M, WebVid-2M 5.5M 26.1 47.2 56.9 7.0
BridgeFormer (Ge et al., 2022a) 2022 Raw Videos CC3M, WebVid-2M 5.5M 26.0 46.4 56.4 7.0
TCP (Zhang et al., 2023) 2023 Raw Videos CC3M, WebVid-2M 5.5M 26.8 48.3 57.6 7.0

UNIFY-Latent 2023 Raw Videos CC3M, WebVid-2M 5.5M 28.4 49.4 59.4 6.0
UNIFY-Lexicon 2023 Raw Videos CC3M, WebVid-2M 5.5M 28.0 50.2 59.8 5.0
UNIFY 2023 Raw Videos CC3M, WebVid-2M 5.5M 29.0 51.7 60.1 5.0

Fine-Tuning

SupportSet (Patrick et al., 2020) 2021 R(2+1)D-34 HowTo100M 120M 30.1 58.5 69.3 3.0
VideoCLIP (Xu et al., 2021b) 2021 S3D HowTo100M 110M 30.9 55.4 66.8 -
Frozen (Bain et al., 2021) 2021 Raw Videos CC3M, WebVid-2M 5.5M 31.0 59.5 70.5 3.0
ALPRO (Li et al., 2022b) 2022 Raw Videos CC3M, WebVid-2M 5.5M 33.9 60.7 73.2 3.0
LaT (Bai et al., 2022) 2022 Raw Videos CC3M, WebVid-2M 5.5M 35.3 61.3 72.9 3.0
OA-Trans (Wang et al., 2022) 2022 Raw Videos CC3M, WebVid-2M 5.5M 35.8 63.4 76.5 3.0
RegionLearner (Yan et al., 2023) 2023 Raw Videos CC3M, WebVid-2M 5.5M 36.3 63.9 72.5 3.0
MILES (Ge et al., 2022b) 2022 Raw Videos CC3M, WebVid-2M 5.5M 37.7 63.6 73.8 3.0
BridgeFormer (Ge et al., 2022a) 2022 Raw Videos CC3M, WebVid-2M 5.5M 37.6 64.8 75.1 3.0
TCP (Zhang et al., 2023) 2023 Raw Videos CC3M, WebVid-2M 5.5M 38.0 65.5 76.4 3.0

UNIFY-Latent 2023 Raw Videos CC3M, WebVid-2M 5.5M 40.1 66.3 75.0 2.0
UNIFY-Lexicon 2023 Raw Videos CC3M, WebVid-2M 5.5M 40.8 68.9 78.2 2.0
UNIFY 2023 Raw Videos CC3M, WebVid-2M 5.5M 42.8 68.8 78.8 2.0

Table 1: Text-to-video retrieval results on MSR-VTT test set. “Video Input” lists the input to the video
encoder, where “Raw Videos” means training on raw video frames without pre-extracted features.

first 3 epochs. We utilize the AdamW (Loshchilov
and Hutter, 2019) optimizer with a weight decay
of 0.05 and batch size of 512. The learning rate
was initially raised to 1e-4 in the first epoch and
then decayed based on a cosine schedule. We
randomly select 4 frames per video and resize to
224x224. We set the mask ratio of MLM task as
15%, and empirically set the weight of the FLOPs
loss as 1e-4. As for the weight λ of self-distillation
loss, we linearly decrease it from 1 to 0.

4.2. Main Results

Evaluation on Video-Text Retrieval. Table 1
shows the performance on the MSR-VTT dataset
under zero-shot and fine-tuning settings. UNIFY-
Latent and UNIFY-Lexicon are the retrieval results
of the two representation types in our model, and
UNIFY denotes the score-level fusion results of
them. Based on the retrieval results, we make
the following observations: 1) UNIFY-Lexicon sur-
passes UNIFY-Latent in almost all metrics, validat-
ing that our proposed two-stage semantics ground-
ing approach can capture fine-grained semantic
concepts and boost retrieval performance effec-
tively. 2) UNIFY-Latent also significantly outper-
forms existing latent-representation-based meth-
ods, showing the unified learning scheme allows
latent and lexicon representations to benefit from

each other and improves performance. 3) The
combination of latent and lexicon representations
largely improves performance, demonstrating our
UNIFY can combine the strengths of both rep-
resentation types effectively. Overall, under the
fine-tuning setting, UNIFY significantly outperforms
TCP (Zhang et al., 2023) by 4.8%.

Table 2 shows the retrieval performance on the
DiDeMo, LSMDC and MSVD datasets. Similar to
MSR-VTT, our UNIFY model surpasses previous
methods in almost all metrics. Notably, under the
fine-tuning setting, we outperform BridgeFormer
(Ge et al., 2022a) by 8.2% on the challenging
DiDeMo dataset, which consists of longer videos
and more complex semantic concepts compared
to other datasets. The result validates the effective-
ness of our approach. Another point worth noting
is that on these three datasets, we list the perfor-
mance of CLIP-based methods such as CLIP4Clip
(Luo et al., 2022), CenterCLIP (Zhao et al., 2022)
and DiCoSA (Jin et al., 2023). These models are
initialized using the parameters of the CLIP (Rad-
ford et al., 2021) model, which is pre-trained on
400M image-text pair data (70× more than our pre-
training data). Our method even surpasses them or
achieves comparable performance, which further
demonstrates the superiority of our method.

Evaluation on Action Recognition. Table 3
presents the zero-shot action recognition perfor-
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Method DiDeMo LSMDC MSVD

R@1↑ R@5↑ R@10↑ MedR↓ R@1↑ R@5↑ R@10↑ MedR↓ R@1↑ R@5↑ R@10↑ MedR↓
Zero-Shot

Frozen (Bain et al., 2021) 21.1 46.0 56.2 7.0 9.3 22.0 30.1 51.0 33.7 64.7 76.3 3.0
LaT (Bai et al., 2022) 22.6 45.9 58.9 7.0 - - - - 36.9 68.6 81.0 2.0
OA-Trans (Wang et al., 2022) 23.5 50.4 59.8 6.0 - - - - 39.1 68.4 80.3 2.0
MILES (Ge et al., 2022b) 27.2 50.3 63.6 5.0 11.1 24.7 30.6 50.7 44.4 76.2 87.0 2.0
BridgeFormer (Ge et al., 2022a) 25.6 50.6 61.1 5.0 12.2 25.9 32.2 42.0 43.6 74.9 84.9 2.0

UNIFY-Latent 27.3 53.8 63.5 4.0 12.4 28.4 36.1 30.5 46.4 77.0 87.0 2.0
UNIFY-Lexicon 28.3 53.4 63.8 4.0 12.6 27.2 36.6 28.0 48.3 77.2 86.7 2.0
UNIFY 29.6 55.5 66.0 4.0 14.1 30.4 37.5 25.0 48.1 79.7 87.2 2.0

Fine-Tuning

CipBert (Lei et al., 2021) 20.4 48.0 60.8 6.0 - - - - - - - -
RegionLearner (Yan et al., 2023) 32.5 60.8 72.3 3.0 17.1 32.5 41.5 18.0 44.0 74.9 84.3 2.0
LaT (Bai et al., 2022) 32.6 61.3 71.6 3.0 - - - - 40.0 74.6 84.2 2.0
OA-Trans (Wang et al., 2022) 34.8 64.4 75.1 3.0 18.2 34.3 43.7 18.5 - - - -
ALPRO (Li et al., 2022b) 35.9 67.5 78.8 3.0 - - - - - - - -
MILES (Ge et al., 2022b) 36.6 63.9 74.0 3.0 17.8 35.6 44.1 15.5 53.9 83.5 90.2 1.0
BridgeFormer (Ge et al., 2022a) 37.0 62.2 73.9 3.0 17.9 35.4 44.5 15.0 52.0 82.8 90.0 1.0

CLIP4Clip (Luo et al., 2022) 43.4 70.2 80.6 2.0 22.6 41.0 49.1 11.0 46.2 76.1 84.6 2.0
CenterCLIP (Zhao et al., 2022) - - - - 21.9 41.1 50.7 10.0 47.6 77.5 86.0 2.0
DiCoSA (Jin et al., 2023) 45.7 74.6 83.5 2.0 25.4 43.6 54.0 8.0 47.4 76.8 86.0 2.0

UNIFY-Latent 40.7 68.5 80.0 2.0 22.8 42.2 50.8 10.0 55.5 85.2 91.6 1.0
UNIFY-Lexicon 44.6 73.5 82.8 2.0 24.5 44.6 54.4 8.0 55.1 86.7 93.0 1.0
UNIFY 45.2 74.0 83.2 2.0 24.5 46.3 55.0 7.0 57.7 86.8 92.9 1.0

Table 2: Experimental results of text-to-video retrieval on the DiDeMo, LSMDC and MSVD datasets.

Method HMDB51 UCF101

S1 S2 S3 Mean S1 S2 S3 Mean

ClipBert (Lei et al., 2021) 20.0 22.0 22.3 21.4 27.5 27.0 28.8 27.8
Frozen (Bain et al., 2021) 27.5 28.3 27.7 27.8 45.4 44.7 47.7 45.9
MILES (Ge et al., 2022b) 38.4 38.6 37.8 38.3 51.8 53.4 52.8 52.7
BridgeFormer (Ge et al., 2022a) 38.0 36.1 39.1 37.7 51.1 54.3 53.8 53.1
UNIFY (Ours) 38.9 39.6 39.9 39.5 53.3 55.0 53.0 53.8

Table 3: Top-1 accuracy of zero-shot action recog-
nition. “S” denotes different testing splits, and
“Mean” is the averaged result over three splits.

0.4 0.5 0.6 0.7 0.8 0.9 1

Billiards
Drumming

Horse Riding
Ice Dancing

Mixing
Rafting
Rowing

Soccer Juggling
Swing

Walking With Dog

Latent Lexicon UNIFY

Figure 3: Zero-shot results of latent and lexicon
representations on UCF101.

mance on HMDB51 and UCF101, which can be
regarded as video-to-text retrieval. Except for
UCF101 split 3, we outperform previous methods
in all splits. This verifies that our UNIFY model can
learn cross-modal representations that generalize
well to the task of action recognition.

4.3. Complementarity between Latent
and Lexicon Representations

Figure 3 shows the zero-shot performance of sev-
eral actions in UCF101. Lexicon representations

A large group of people are carving pumpkins together.

Latent 
Rank=19

Lexicon 
Rank=1

Query:

Query: Caption is shown about what the clip will be about, and then three
blocks of ice are shown and a man uses a chainsaw to carve the ice.

Latent 
Rank=1

Lexicon 
Rank=35

Figure 4: Retrieval results of two queries us-
ing latent and lexicon representations. Each row
presents the top-5 ranked videos.

grasp fine-grained object information more effec-
tively, showing better performance on classes like
“Billiards" and “Horse Riding". On the other hand,
latent representations beat lexicon representations
on classes like “Mixing" and “Ice Dancing", which
rely more on long-range action analysis. Moreover,
combining both types of representations leads to
further improvement on most classes.

Figure 4 shows the retrieval results of two
queries using latent and lexicon representations
respectively, where "Rank=.." indicates the rank-
ing of the ground truth video among all candidate
videos. In the first example, the lexicon represen-
tations capture the crucial detailed semantics of
“pumpkin", and thus successfully retrieves the cor-
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Figure 5: Top-10 activated lexicon dimensions of four variants of UNIFY-Lexicon. Words that are
semantically irrelevant to the video (or text) are highlighted in red color.

#Line sharing stem encoder self-distillation UNIFY-Latent UNIFY-Lexicon UNIFY

R@1↑ R@5↑ R@10↑ MedR↓ R@1↑ R@5↑ R@10↑ MedR↓ R@1↑ R@5↑ R@10↑ MedR↓
A × × 24.7 47.8 56.9 6.0 26.6 48.1 57.2 6.0 26.8 48.3 57.9 6.0
B ✓ × 26.9 48.2 58.7 6.0 27.5 48.5 58.9 6.0 28.2 49.5 59.3 6.0
C ✓ ✓ 28.4 49.4 59.4 6.0 28.0 50.2 59.8 5.0 29.0 51.7 60.1 5.0

Table 4: Ablation study on the unified learning scheme which includes structure sharing and self-distillation.
Zero-shot text-to-video retrieval results on MSR-VTT are reported.

#Line freezing strategy MLM task R@1↑ R@5↑ R@10↑ MedR↓
A × × 22.0 43.4 53.5 8.0
B ✓ × 23.2 44.3 54.2 7.0
C × ✓ 23.6 45.5 54.4 7.0
D ✓ ✓ 26.6 48.1 57.2 6.0

Table 5: Ablation study on the two-stage seman-
tics grounding approach. Zero-shot text-to-video
retrieval results on MSR-VTT are reported. Only
the Lexicon branch is trained in this experiment.

rect video. The second query is longer and corre-
sponds to a video with complex content. Though
lexicon representations manage to capture some
relevant semantics (e.g. man and snow), aggre-
gating local semantics fails to grasp the overall
semantics of complex texts and videos. In con-
trast, latent representations summarize texts and
videos from a global perspective and successfully
retrieves the correct video.

4.4. Two-stage Semantics Grounding
Ablation

In this section, we solely train an individual lexicon
branch to ablate the proposed two-stage semantics
grounding (TSG) approach.

Overall TSG. Figure 5 shows the top-10 activated
dimensions of different variants. In the baseline
model (a) without TSG, the video falls into seman-
tically irrelevant dimensions, and the grounding
ability of the text encoder is mostly lost. Essentially,
in the baseline model, lexicon representations de-
grade into high-dimensional latent representations.
In contrast, semantically relevant dimensions are
activated in model (d) which is trained using TSG.
Moreover, line A and D in Table 5 show that em-

ploying TSG significantly improves the R@1 per-
formance by 4.6%, validating the effectiveness of
the proposed TSG approach.

The Freezing Strategy. Comparing (a) and (b) in
Figure 5, we observe that freezing the text encoder
in the first stage reduces the activation of semanti-
cally irrelevant dimensions. This demonstrates the
freezing strategy prevents textual lexicon distribu-
tions from being corrupted by cross-modal align-
ment. Line A and B in Table 5 show that the freez-
ing strategy improves retrieval performance.

The MLM Task. In (c) of Figure 5, although the text
encoder is frozen in the first stage, the absence
of the MLM task in the second stage results in the
loss of semantic constraints for the text, leading
to the activation of some semantically irrelevant di-
mensions. Comparing (c) and (d), we observe that
the MLM task effectively suppresses the activation
of semantically irrelevant dimensions, showing that
MLM helps preserve textual semantics. Line C and
D in Table 5 show combing MLM with the freezing
strategy largely improves the model’s performance.

4.5. Unified Learning Scheme Ablation

Structure sharing. Comparing line A and line
B in Table 4, we can find that sharing the stem
encoder between the latent and lexicon branches
leads to an improvement in performance for both
branches, lifting 1.8% and 1.7% respectively. This
highlights that sharing shallow layers between the
two representation types can facilitate knowledge
transfer and improve the representation ability of
both branches. Moreover, performance boost is
also observed in the fused UNIFY results, lifting
from 26.8% to 28.2% in R@1.



17039

Figure 6: Effect of the number N of shared blocks
in the stem encoder. Zero-shot text-to-video re-
trieval results on MSR-VTT are reported. Here the
experiments are conducted without self-distillation.

The number of shared stem blocks. As shown
in Figure 6, as we gradually increase the num-
ber of shared blocks, the performance of both the
latent and lexicon branches has improved. The re-
sults demonstrate that they benefit from knowledge
transfer via structure sharing. And the optimal per-
formance is obtained at N = 9. However, when
N continues to increase to 12, a performance de-
cline occurs. This is because at this time the two
branches completely share the encoder, and only
the projection heads are different. Thus the model
cannot fully learn the two specific representations.
This result further verifies the rationality of the pro-
posed structure sharing strategy.

Self-distillation. When additionally introducing
the self-distillation strategy from Line B to Line
C, we observe further improvement in the perfor-
mance of both branches and the overall UNIFY
results. Latent representations provide extra su-
pervision information for lexicon representations,
and the enhanced lexicon representations in turn
inject fine-grained semantic knowledge into the
stem encoder. The experimental results demon-
strate the proposed self-distillation strategy can
facilitate mutual learning between the two repre-
sentations types and improves the performance of
both UNIFY-Latent and UNIFY-Lexicon.

5. Conclusion

In this work, we presented a novel UNIFY frame-
work, which learns lexicon representations for fine-
grained semantics capturing, and unifies latent and
lexicon representations for cross-modal retrieval.
We proposed a two-stage semantics grounding
approach to enable lexicon representations to re-
flect fine-grained semantic concepts. As latent
and lexicon representations have different focuses,
we further proposed a unified learning scheme to
leverage this complementarity. Our method largely

outperforms existing video-text retrieval methods,
validating the effectiveness of lexicon representa-
tions and the unified learning scheme.
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