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Abstract

Recent researches have shown that multi-task instruction tuning after pre-training greatly improves the model’s

robustness and transfer ability, which is crucial for building a high-quality dialog system. However, most previous

works on multi-task instruction tuning rely heavily on human-defined input format or prompt, which is not optimal in

quality and quantity.In this work, we propose to use Task-aware Automatic Prompt generation (TAP) to automatically

generate high-quality prompts. Using the high-quality prompts generated, we scale the corpus of the pre-trained

conversation model to 122 datasets from 15 dialog-related tasks, resulting in Universal Pre-trained Conversation

Model (UniPCM), a powerful foundation model for various conversational tasks and different dialog systems.

Extensive experiments have shown that UniPCM is robust to input prompts and capable of various dialog-related

tasks. Moreover, UniPCM has strong transfer ability and excels at low resource scenarios, achieving SOTA results

on 9 different datasets ranging from task-oriented dialog to open-domain conversation. Furthermore, we are amazed

to find that TAP can generate prompts on par with those collected with crowdsourcing.

Keywords:Automatic prompt generation, Multi-task training, Pre-trained conversation model, Dialog sys-

tem

1. Introduction
Dialogue systemmodeling, a classic research topic

in the field of human-machine interaction, serves as

an important application area (Si et al., 2022a; Lin

et al., 2020b; Song et al., 2023; Dang et al., 2024).

The advancements in dialogue systems for those

applications have been significantly boosted by the

use of pre-trained language models (PLMs), includ-

ing GPT-2 (Radford et al., 2019) , BERT (Kenton

and Toutanova, 2019), and T5 (Raffel et al., 2020)

, combined with task-specific fine-tuning on anno-

tated data (Hosseini-Asl et al., 2020; Yang et al.,

2021; Heck et al., 2020; Lee, 2021; Liu et al., 2022;

Zhao et al., 2023; Liu et al., 2023). However, most

of the models trained under the ‘pretrain-finetune’

paradigm are limited to specific tasks or datasets,

and the dialog systems built upon those models

can only respond to certain input formats, which

lacks robustness and transfer ability.

To relieve such problems, multi-task training,

which has achieved great success in language

model pre-training, has been introduced to pre-

trained conversation models (PCM), which per-

forms multi-task instruction tuning on a pre-trained

language model basis. Recent progress in multi-

task pre-training (Ouyang et al., 2022; Sanh et al.,

2022; Mishra et al., 2022; Wang et al., 2022) has

shown that the robustness and transfer ability of lan-

guage models are greatly improved by pre-training

with multiple tasks.

† Corresponding author

However, the previous works on multi-task train-

ing rely heavily on human-defined input format

or prompt. We find those artificially constructed

prompts still have two major weaknesses that can

be harmful when used to train a language model:

(1) Human labor required and limited in quan-

tity. Previous works like Supernatural-instruction

(Wang et al., 2022) only have one task instruc-

tion for each dataset. Using only one prompt for a

task to train the model may cause overfitting to the

prompt and hinder the model to catch the essence

of the tasks and transfer to other prompts. (2) Hard

to understand and limited in quality. Human la-

belers easily incorporate their own understandings

into the prompts or simply obtain the prompt by

paraphrasing the dataset description, which makes

the prompts quite long and unnatural, containing

specific knowledge of the datasets.

To address the problems mentioned above, we

propose a task-aware auotmatic prompt genera-

tion method TAP. The TAP method can gener-

ate numerous high-quality prompts automatically,

which relieves human labor and improves the qual-

ity and quantity of the prompts as well. Those high-

quality prompts can greatly help train a universal

pre-trained conversational model. With the high-

qualit prompts, the model can learn better on the

larger pre-training datasets and understand each

task better. Using the 303 high-quality prompts au-

tomatically generated for the 15 tasks, we scale our

pre-training corpus to 122 datasets and 26,625,486

instances, which, to our knowledge, is currently the
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largest annotated conversational dataset, covering

almost all dialog-related tasks. Moreover, we pro-

pose a multi-prompt training mechanism to make

use of the generated prompts to better fuse differ-

ent tasks. The resulting model UniPCM is a pow-

erful foundation model for various conversational

tasks and different dialog systems.

Through comprehensive experiments in multi-

ple conversational tasks, we find that UniPCM has

strong ability on various dialog tasks, which out-

performs the T5 baseline by 7.14% in the few-

shot setting on DialoGLUE (Mehri et al., 2020) and

achieves SOTA results on 9 different datasets rang-

ing from task-oriented dialog to open-domain con-

versation. Moreover, the model is robust to input

format and can respond to different input prompts.

Furthermore, to comprehensively evaluate the qual-

ity of the generated prompts, we conduct human

evaluation and automatic evaluation. Our gener-

ated prompts achieve higher average scores than

human-written prompts by 9.50% on three pro-

posed metrics in human evaluation and improve by

2.40% when used to finetune downstream tasks.

In summary, our main contributions are:

• We propose a task-aware automatic prompt

generation method TAP to better fuse the

datasets from different tasks in the multi-task

training, which can generate numerous high-

quality prompts based on extracted task in-

formation. The proposed method greatly re-

duces human effort in prompt engineering and

improves the quality of generated prompts.

• Leveraging the high-quality prompts gen-

erated, we pre-train a unified pre-trained

conversation model UniPCM by scaling the

pre-training datasets to 122 dialog-related

datasets from 15 dialog-related tasks, result-

ing in a powerful conversation model UniPCM.

The pre-trained model and the datasets col-

lected will be released to public.

• We conduct extensive experiments on 10

dialog-related benchmarks including 6 types of

task. Results on few-shot and full-data exper-

iments show the superiority of our proposed

method and model. The code is released at

https://github.com/cycrab/unipcm.

2. Related Work
2.1. Multi-task Language Model Training

Recent researches have shown that multi-task

language model training can greatly improve the

model’s transfer ability, resulting improved perfor-

mance in few-shot and zero-shot settings (Raffel

et al., 2020; Wei et al., 2021; Sanh et al., 2022; Si

et al., 2023b, 2024). Although negative transfer

may occur when the number of tasks is limited, the

model will still benefit from training if scaling the

number of task (Aribandi et al., 2021).

To implement multi-task training, some signals

are given to the model to distinguish one task from

another. Initially, researchers do multi-task pre-

training using a unified text to text format directly

(Raffel et al., 2020; Lu et al., 2022). Simply adding

the name of the task will help the model better

understand the relation between task and reduce

negative transfer problem (Zhang et al., 2018b).

Recent works use crowdsourcing prompts and in-

structions to perform multi-task pre-training, which

achieves great success (Sanh et al., 2022; Wang

et al., 2022; Ouyang et al., 2022). The resulting

models show strong transfer ability, and can even

chat with humans fluently in open domain (Ouyang

et al., 2022).

Our work improves over the previous works in

that we use automatically generated prompts in-

stead of the crowdsourcing ones to enable multi-

tasking, which reduces human labor as well as

improves the quality of the prompts. Furthermore,

we propose and formulate multi-prompt training

mechanism, which relieves several problems in

multi-task pre-training, including task imbalance,

uneven data quality and difference between the

importance of tasks. Moreover, we prove that multi-

prompt training can improve model’s performance

on unseen prompts.

2.2. Automatic Prompt Generation

It has been shown that prompt engineering can

be of great benefit to reduce the gap between lan-

guage model pre-training and finetuning on down-

stream tasks (Gao et al., 2021; Zhong et al., 2021).

To reduce human labor in prompt engineering, var-

ious approaches have been proposed to generate

prompts automatically. AutoPrompt (Shin et al.,

2020) use gradient-based prompt search to auto-

matically generate prompts. However, the prompt

generated are not coherent, and may confuse mod-

els in multi-task scenarios. Researchers proposed

in (Gao et al., 2021; Zhou et al., 2022) to use T5

(Raffel et al., 2020) or large language model to

fill in the blank bewteent the input and output for

automatically generating coherent prompts. How-

ever, the prompts generated do not necessarily

contain task information and may be highly related

to certain input case or dataset. Different from pre-

vious works, our work aims to generating prompts

for multi-task pre-training. Therefore, our method

TAP models task in automatic prompt generation

to help the model understand the relation between

the tasks and the prompts, as well as improve the

quality of generated prompts.

2.3. Pre-training for Dialog Systems

The PLMs have shown strong capabilities in many

NLP tasks (Si et al., 2022a, 2023b; Zhao et al.,

2023; Hu et al., 2023; Li et al., 2024; Si et al., 2022b,

2023a). It has been shown that pre-training can

https://github.com/cycrab/unipcm
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UniPCM

Book a table for 8 
people.

Book a table for 8 
people.

Book a table for 8 
people.

OK, what type of 
restaurant do you 
want?

Booking table

Book a table for 8 
people.

People : 8 people

neutral

What is the intention?The intention:

The emotion is easy 
to find:

Can you come up 
with a response?

What is the speaker’s              
information?

Inputs Prompts Outputs

Figure 1: An illustration of our proposed model UniPCM, which unifies all tasks into an ’input-prompt-

output’ format. Prompts are crucial as they help the model understand the task it should perform.

greatly improve performance for dialog systems,

improving coherency of the generated response

and transfer ability (Roller et al., 2021; Zhang et al.,

2020b; Su et al., 2022). Models trained on large-

scale online open-domain dialogues, for example,

BlenderBot (Roller et al., 2021), DialoGPT (Zhang

et al., 2020b) and Meena (Adiwardana et al., 2020),

can perform well on the chit-chat task, while mod-

els pre-trained on certain tasks can improve per-

formance on corresponding tasks. For example,

in task-oriented dialog, works like TOD-BERT (Wu

et al., 2020), CONV-BERT (Mehri et al., 2020), PP-

TOD (Su et al., 2022), GALAXY (He et al., 2021)

improve the performance on relevant datasets.

However, to interact with human fluently in open-

domain (Ouyang et al., 2022), the dialog system

should not only be capable of various tasks, but

also be robust to different input prompts. Recent

progress in building powerful open-domain dia-

log systems mainly used crowdsourcing to anno-

tate large-scale, multi-task datasets to improve

the systems’ performance (Shuster et al., 2022;

Ouyang et al., 2022). Different from their ap-

proaches, we propose to leverage the existing large

scale datasets that are dialog-related to perform

multi-task pre-training. Chen et al. (2022b) also

trains their dialog foundation model over large scale

dialog-related datasets. However, they do not aim

to building a dialog system, therefore they do not

improve their model’s robustness to input prompts,

neither do they evaluate their model’s transfer abil-

ity in few-shot or zero-shot scenarios. In contrast,

we use generated prompts to perform multi-task

prompt pre-training to improve the model’s transfer

ability and robustness to different input prompts.

3. Method
To train our UniPCM, we first unify all the dialog-

related tasks into an ’input-prompt-output’ format,

which is shown in Figure 1. Then we propose task-

aware automatic prompt generation TAP to gen-

erate high-quality prompts. Finally, based on the

prompts and corpus, we train our UniPCM using

the proposed multi-prompt training mechanism.

3.1. Task-aware Automatic Prompt

Generation

Our task-aware automatic prompt generation

method TAP, as illustrated in Figure 2, mainly con-

tains the following 3 parts:

3.1.1. Finding Signals for Task Information

Before generating prompts, we extract task-related

signals to help us to find the information about the

task t. In this work, we mainly focus on 3 kinds of

signals that can be used as hint of the task for the

model to generate prompts upon. We discuss their

availability, limitation and effectiveness to generate

prompts.

Instructions: Task descriptions, or instructions

are usually available for datasets. Moreover, huge

amounts of instructions are annotated or collected

by researchers or crowdsourcing workers (Wang

et al., 2022; Ouyang et al., 2022). Instructions are

usually long and difficult for language model to un-

derstand directly, therefore it’s hard to directly use

them as input to generate prompts in an unsuper-

vised way. However, instructions contain almost

all important information for the task and it’s not

hard to extract key information from it.

In our work, we use tf-idf methods to filter out

irrelevant words. 1 Then we get all the 1-gram, 2-

grams and 3-grams of the remaining words to get

scored by a Bert model (Devlin et al., 2019) using

their similarity with the task name. The words that

1We inplemented tf-idf using the gensim package:

https://radimrehurek.com/gensim/
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synonym

extraction

(b) Automatic prompt generation

T5

Prompt: What is the intention?

(a) Finding signals for the task (c) Scoring and Filtering

Generation: <X>What is the<Y>?<Z>

Example
Input: Change alarm.

Output: Alarm change.

Instruction: Given the utterance, 
please find out the intention of the 
speaker.

Change alarm. <X>intention<Y> Alarm change.

Task name: Intent Prediction

Keywords:   intention 
intent, purpose, ……

Prompts
1.What is the intention?
2. The intent is easy to find:
3. He intends to change alarm.
……
10. Based on the purpose in 

Scoring by ppl
ppl

7.898
8.035
8.157
……

10.16

email

calendar alarm

Final prompts
1.What is the intention?
2. The intent is easy to find:
…

Figure 2: An illustration of our proposed method TAP. (a) We collect existing signals to generate keywords,

either by extracting from instructions or searching synonyms of the task name. (b) We automatically

generate prompts based on input examples and task-related keywords using a T5 model, harvesting

prompts by concatenating generated words after the sentinel token. (c)We select the prompts by average

perplexity on task-related examples and filter out those prompts that may contain information about the

labels.

have similarity score above a threshold are deemed

as keyword and used to generate prompts.

Task Name: Task name is always available for

task and very concise, ideal for automatic prompt

generation. However, one task can only have one

task name, making it difficult to generate diverse

prompts. Therefore, we propose to use the the-

saurus tool to paraphrase the task name to form

diverse key words. Also, the task name is used to

select the keywords extracted from the instruction,

which has already been discussed.

Keywords: Keywords are ideal input for auto-

matic prompt generation, as keywords are both

concise and representitive of the task information.

However, keywords are not readily available and

should be inferred from other task-related informa-

tion like instructions or the task name. If the quality

or the number of the keywords generated by the

instructions or the task name do not meet the re-

searchers need, researchers can quickly summa-

rize the task and write some high-quality keywords

themselves.

3.1.2. Automatic Prompt Generation Using

Keywords

Getting the task signals (in the form of keywords in

this work), we can generate prompts automatically

using a pre-trained languagemodel T5 (Raffel et al.,

2020). T5 is pre-trained to fill missing spans for a

sentence. For example, given the input “Thank you

<X> me to your party <Y> week”, T5 is trained to

generate “<X> for inviting <Y> last <Z>”, meaning

that “for inviting” replaces the placeholder <X> and

“last” replaces the placeholder <Y>. This is well

suited for prompt generation, as we want to gen-

erate a prompt with the keywords that is coherent

given input and output.

Given an instance of input-output pair (Xt, Yt) in
task t, along with one of the keywords kit, we define
a transform T (Xt, Yt, k

i
t)

2:

Xt, Yt, k
i
t → Xt〈X〉kit〈Y 〉Yt (1)

where 〈X〉, 〈Y 〉 are sentinel tokens for T5 gener-

ation. We generate the prompts according to the

T5 generation probability PT5(T (Xt, Yt, k
i
t)) and

harvest the prompts generated after the sentinel

tokens. The final prompts are reorganized as

Pt = x⊕kit⊕y, where⊕ denotes the concatenation

of token sequence and x, y are the corresponding

content generated after sentinel tokens 〈X〉, 〈Y 〉
by the T5 model.

For one single input-output instance and one key-

word, we get the top 5 prompts according to gen-

eration probability. Using multiple instances and

multiple keywords, we generate numerous prompts

for selection. To avoid generating prompts that are

specific to one single input instance and overlook

the task information, we only retain the prompts

that appear multiple times, which is empirically set

as 2 in our work, in different instances.

3.1.3. Scoring and Filtering of Generated

Prompts

Given inputXt and prompt Pt in task t, the probabil-
ity of generating the correct answer Yt: p(Yt|Xt, Pt)
should be optimized, therefore we evaluate the

2In fact, multiple reasonable transforms can be

defined. In our experiments, we use the transform

T̃ (Xt, Yt, k
i
t) = Xt, Yt, k

i
t → 〈X〉Xt〈Y 〉ki

t〈Z〉Yt, along

with the transform T introduced in the paper to better

model tasks that need a prefix like question answering.
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quality of the generated prompts according to the

probability, as all of Yt, Xt, Pt are available and the

probability can be directly calculated. We choose

those prompts Pt that has higher average log prob-

ability
∑

log(p(Yt|Xt, Pt)) among the datasets in

task.

After that we filter out prompts that may con-

tain certain biased information about the output

Yt using a prohibited words list extracted from the

outputs. The prohibited words mainly fall into the

classification type class, as the output Yt is selected

from certain labels. For example, in emotion clas-

sification task, the word ”positive” or ”negative” is

often generated by the model, as the output Yt con-

tains those two words with high frequency. How-

ever, using such prompts for output generation,

the result will be biased, reducing the generated

performance. Therefore, we filter out those case-

sensitive prompts to encourage those prompts that

accurately reflect the task.

3.2. Multi-task Prompt Training

Using the generated prompts, as well as the col-

lected corpus, we perform multi-task prompt train-

ing. With the training instances (Xi
t , Y

i
t )(i =

1, 2, · · · , Nt) from K different tasks and the gen-

erated prompts P j
t (j = 1, 2, · · · ,Mt), the training

objective function can be written as:

Jθ =

K∑
t=1

Nt∑
i=1

Mt∑
j=1

log p(Y i
t |Xi

t , P
j
t ) (2)

Note that in Eq. 2, we propose to use

multi-prompt training, which means applying

multiple prompts to one single input instance:
Mt∑
j=1

log p(Y i
t |Xi

t , P
j
t ).

However it’s not necessary to apply all the

Mt prompts available to one single case, as the

prompts P j
t (j = 1, 2, · · · ,Mt) are representation of

the task t and have similar embeddings in the latent

task space. Therefore a subset of P j
t can be ran-

domly sampled, resulting in P̃ j
t (j = 1, 2, · · · , M̃t).

The loss
Mt∑
j=1

log p(Y i
t |Xi

t , P
j
t ) can be approximated

by Mt

M̃t

M̃t∑
j=1

log p(Y i
t |Xi

t , P̃
j
t ) to save calculation time.

If the ratio Mt

M̃t
is not added, we can simply ad-

justing the weights of datasets or tasks in training

by adjusting the number of prompts applied. It is

beneficial as some tasks or datasets are deemed

more important by the researchers. Adding more

prompts to those tasks or datasets can make the

model better focus on them.

4. Experiments

4.1. Baseline&Benchmark

To comprehensively evaluate our UniPCM, we

carefully choose ten downstream datasets in six

tasks, mainly evaluating the model’s ability in dialog

understanding, response generation, and compre-

hensive ability.

4.1.1. Dialog understanding

Dialog understanding is crucial for building a high-

quality dialog system as it’s impossible to gener-

ate high-quality responses without having a good

understanding of the context. DialoGLUE (Mehri

et al., 2020) is a benchmark that comprehensively

evaluates the dialogue understanding ability of a

dialog system, which consists of four tasks: slot

filling (REST8K (Coope et al., 2020), DSTC8 (Ras-

togi et al., 2020)), intent prediction (BANKING77

(Casanueva et al., 2020), CLINC150 (Larson et al.,

2019), HWU64 (Liu et al., 2021a) ), semantic pars-

ing (TOP (Gupta et al., 2018)), and dialog state

tracking (MultiWOZ2.1 (Eric et al., 2020)). We

follow the original preprocessing and evaluating

scripts of Mehri et al. (2020), except that we mod-

ify the implementation to a sequence-to-sequence

generation format to fit the model’s training. The

evaluation metrics for slot filling, intent prediction

and semantic parsing are F1, accuracy and ex-

act match respectively. For dialog state tracking

task of Multiwoz, we apply our model to the SOTA

generative baseline SDP-DST (Lee et al., 2021)

and joint goal accuracy (JGA) is reported.Apart

from T5 (Raffel et al., 2020) (we trained our model

upon a T5-base model), we choose SPACE-2 (He

et al., 2022a) and Flan-T5 (Chung et al., 2022) as

our baselines, as SPACE-2 represent the SOTA

pre-trained model targeting task-oriented dialog

understanding, while Flan is the most prevalent

instruction-tuning method used for multi-task train-

ing. The results of TOD-BERT (Wu et al., 2020)

and the best variant of ConvBERT (Mehri et al.,

2020) are also reported for comparison.

4.1.2. Response Generation

Open-domain response generation, or chit-chat, is

also an important skill for building a high-quality

dialog system. We evaluate our model on two clas-

sic chit-chat datasets PersonaChat (Zhang et al.,

2018a) and DailyDialog (Li et al., 2017). We follow

the preprocessing and evaluation scripts of FSB

(Madotto et al., 2021), BLEU (Papineni et al., 2002),

word-level F1 and Rouge-L (Lin, 2004) reported.

We choose DialoGPT (Zhang et al., 2020b) and

PPTOD (Su et al., 2022) as our baseline.

4.1.3. Comprehensive ability

We evaluate the comprehensive ability of a dia-

log system on the Multiwoz end to end generation

task (End2End) (Budzianowski et al., 2018). In

End2End task, the model needs to track the use’s

state, understand user’s intention, decide the best

responding strategies and generate coherent re-

sponse, which is quite challenging. Multiple dialog
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skills, such as intent prediction, dialog state track-

ing, policy optimization, and response generation,

are necessary to complete the task.We apply our

model to the SOTA method MTTOD (Lee, 2021)

and use the official evaluation scripts 3 given by

(Nekvinda and Dušek, 2021). We compare our re-

sults to LABES (Zhang et al., 2020a), SOLOIST

(Peng et al., 2021), UBAR (Yang et al., 2021) and

PPTOD (Su et al., 2022).

4.2. Implementation

4.2.1. Pre-training

We pre-train our conversation model UniPCM on

the collected corpus UniPreDial. The statistics of

the tasks and datasets, as well as the generated

prompts, are shown in Table 4. The maximum

sequence length of input context is set to 256. The

batch size is set to 64 and an AdamW optimizer is

employed for optimization with a constant learning

rate of 2e-5. The pre-training is performed on eight

80GB Tesla-A100 GPU and takes about 72 hours.

4.2.2. Downstream tasks

For downstream tasks, we finetune UniPCM follow-

ing the corresponding baseline scripts. For each

few-shot and zero-shot experiment, we exclude

the training data other than the few-shot data in the

pre-training datasets accordingly to avoid unfair

data use. During testing, we test the model with

5 random prompts sampled from all the available

prompts for each testinig instance (if the prompts

are used). We view the results as 5 independent ex-

periments and the mean result of the performance

is reported as the final result. The variance of the

experiment is reduced as we take the mean re-

sults of 5 experiments. Moreover, to achieve high

score under this testing setting, the model needs

to perform well on all the available prompts. The

resulting high performance proves that our model

is robust to input prompts.

4.3. Main Results

We conduct our experiments on the baseline and

benchmarks mentioned above. The implementa-

tion detail is shown in Sec. 4.2.

4.3.1. DialoGLUE Results

As shown in Table 1, our model UniPCM excels

at few-shot setting, improving 7.14% on average

scores over the T5 baseline, achieving SOTA re-

sults on all 7 datasets of DialoGLUE and improve

by 1.75% over the previous SOTA result SPACE-2

on average scores.

For the full data setting, our model is competi-

tive, achieving the best average scores among the

strong baselines and consistantly outperforms Flan-

T5 on all datasets, which demonstrate the efficacy

3https://github.com/budzianowski/multiwoz

of our pre-training methods. It is worth noticing that

SPACE-2 performs quite well on this task, which is

mainly because its TOD targeted modelling, which

makes the model restricted to understanding task

in TOD datasets.

4.3.2. MultiWOZ2.0 End2End Results

As shown in Table 2, our model UniPCM improves

over the previous SOTA model MTTOD in both

full data and few shot scenarios by 1.6 and 2.2

on combined score respectively. The model’s im-

provements mainly fall in the Inform and Success,

implying that the pre-training improves the model’s

dialog understanding and decision-making ability.

Meanwhile, the few-shot improvements are not so

remarkable as in DialoGLUE datasets, probably

resulting from the delexicalization preprocessing

used in MultiWOZ (Zhang et al., 2020b), making

the language used in this dataset slightly different

from those in other datasets in pre-training.

4.3.3. Chit-chat Results

As shown in Table 3, UniPCM consistently im-

proves over all of the baseline results in zero-shot

and few-shot settings in Persona and DailyDialog.

The results imply that combining open-domain chat

datasets in the multi-task pre-training procedure

will improve the model’s ability to perform open-

domain chatting. Meanwhile, the performance of

PPTOD, a model trained on task-oriented dialog

datasets only, does not improve over the T5 base-

line on chit-chat tasks, which shows the importance

of combining open-domain chit-chat tasks in pre-

training.

4.4. Analysis and Ablation Study

4.4.1. Ablation study for UniPCM in few-shot

setting

It has been shown in Table 1 that UniPCM excels

at few-shot setting, and we want to have a full un-

derstanding of why UniPCM achieves great per-

formance in few-shot setting. We get three main

conclusions from the ablation study shown in Table

5: (1) Using multi-prompt training in finetuning

stage greatly helps the model’s performance in

few-shot setting, achieving 2.98% gain. (2) Using

multi-prompt training in pre-training stage will

help the model learn better in multi-task sce-

nario. Although using one human-written prompt

in the pretraining stage will help improve the dia-

log understanding ability by 1.20%, by using multi-

prompt training in the pre-training stage, the results

improve by 3.08%, which shows that using multi-

prompt training in the pre-training stage will greatly

benefit the model’s performance in downstream

task. (3) PET will help in low-resource setting.

Adding PET (Schick and Schütze, 2021a,b), which
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Setting Model avg BANKING77 HWU64 CLINIC150 REST8K DSTC8 † TOP MULTIWOZ

10-shot data

T5 76.52 76.01 81.77 88.36 85.31 74.72 76.03 51.63

TOD-BERT ∗ 79.96 85.99 86.74 93.07 87.62 50.19 77.77 48.54

ConvBERT ∗ 78.72 85.06 85.69 93.06 87.58 44.36 72.01 48.89

SPACE-2 ∗ 81.91 88.31 88.85 95.22 88.85 54.41 79.55 50.70

Flan-T5 80.68 84.48 86.88 91.80 90.59 78.68 76.78 53.52

UniPCM 83.66 90.16 90.05 95.78 92.62 83.27 79.63 53.73

Full data

T5 85.70 92.60 91.07 96.49 95.95 93.60 81.41 56.66

TOD-BERT∗ 85.43 93.02 89.87 95.93 95.53 90.05 81.90 56.30

ConvBERT∗ 86.17 93.44 92.38 97.11 95.44 91.20 82.08 56.56

SPACE-2∗ 87.56 94.77 94.33 97.80 96.20 91.38 82.74 59.51

Flan-T5 86.99 93.47 92.37 96.71 96.41 94.51 84.32 58.68

UniPCM 87.59 94.41 93.40 97.47 96.92 96.15 84.58 58.76

Table 1: Results of seven datasets from the DialoGLUE benchmark in low-resource and full data setting.
∗ denotes the model is specified for understanding task in TOD only. † denotes we fix a bug in the original

scripts, resulting higher score in DSTC8 dataset and we exclude the dataset in the avg score for fair

comparison.

MultiWOZ2.0 End2End

Setting Model Inform Success BLEU Combined score

Full data

LABES 68.5 58.1 18.9 82.2

SOLOIST 82.3 72.4 13.6 90.9

UBAR 83.4 70.3 17.6 94.4

PPTOD 83.1 72.7 18.2 96.1

MTTOD 85.9 76.5 19.0 100.2

UniPCM (ours) 88.3 76.8 19.2 101.8

Few shot(10%)
MTTOD 66.8 52.8 15.7 75.5

UniPCM (ours) 68.4 57.2 14.9 77.7

Table 2: Full data and few-shot results on Multi-

woz2.0 End2End task, inform, success, BLEU and

combined score are reported.

Model Configuration Persona DailyDialog

Setting Model BLEU F1 Rouge-L BLEU F1 Rouge-L

Zero-shot

T5 (baseline) 0.94 15.24 9.16 0.29 9.76 8.51

PPTOD 0.70 13.83 10.74 0.39 10.44 10.14

DialoGPT 0.57 9.61 11.83 0.45 15.18 18.99

UniPCM (ours) 1.15 16.45 18.25 0.85 17.81 21.04

Few-shot(10%)

T5 (baseline) 1.76 17.18 18.14 0.53 12.62 16.44

PPTOD 1.85 17.44 17.75 0.39 14.58 17.65

DialoGPT 1.23 14.74 18.39 0.77 16.35 18.16

UniPCM (ours) 2.41 19.16 18.81 0.81 18.04 21.23

Table 3: Few-shot and Zero-shot results on Per-

sonachat and DailyDialog dataset (task: chit-chat).

BLEU, word-level F1 and Rouge-L are reported.

leverages the generated prompts to perform semi-

supervised training, improves by 1.08% over the

strong baseline, which shows that our generated

prompts can help model better utilize unlabeled

data by using PET.

4.4.2. Finetuning with multiple prompts.

Although we have shown in Table 1 that multi-

prompt training will greatly improve the model’s

performance of finetuning in few-shot setting, it is

not clear how the number of prompts available will

influence the final results. From Table 6, we can

see that simply applying 1 prompt will increase by

2.306% on test accuracy. Moreover, applying a

small number of prompts (7) can greatly improve

the test accuracy (4.643%). To manually select

prompts that are deemed better by human experts

will not help much (0.323%). Moreover, using a

large number of prompts (25) will improve a little

over fewer prompts result (0.811%). Therefore in

PET, we propose to use subsets of prompts to fine-

tune the voting models, which will yield the best

performance.

4.5. Automatically generated Prompts

Using the 494 keywords extracted from the Super-

Instruction datasets (Wang et al., 2022), we gen-

erate 3423 prompts on 74 tasks. However, as our

work mainly focus on pre-training a conversation

model, we mainly evaluate the 303 prompts used in

pre-training. The rest of generated prompts will be

released with our codes and can be further studied.

4.5.1. Visualization of Generated Prompts

To better understand the prompts distribution in

the latent space, we visualize the embeddings of

the prompts generated using t-SNE visualization

(Van der Maaten and Hinton, 2008). As illustrated

in Figure 3, we use embeddings from language

models to approximate the embeddings in the la-

tent space, as the embeddings in the latent space

are not available. The results show that our gener-

ated prompts are task-centric, yet diverse. More-

over, comparing the embeddings in our pre-trained

model and T5-base model, we can see that pre-

training makes the prompt embeddings of the same

task cluster, meaning that the model understands

the relation between tasks and prompts better after

pre-training.

4.5.2. Human Evalution

We perform human evaluation to comprehensively

evaluate the quality of the generated prompts. We

sum up three key characteristics of good prompts:

task-specific, coherency and fluency, which is de-

fined as:

Task-specificity: whether the prompt accurately

reflects the essence of the task.
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Task type Intent Dialog state tracking Emotion Summary Question answering Generation Response Multiple choice Text2sql Grounded dialog Total

Tasks Intent DST, slot filling Emotion Summary DialQA, DocQA Generation Response, Chat Multiple choice Text2sql TOD, US, KG-dial 15

Number of prompts 37 33 14 11 35 51 27 39 29 27 303

Number of datasets 22 21 7 5 12 4 23 3 2 23 122

Number of instances 1,382,413 4,382,314 171,353 449,995 460,681 198,999 16,555,894 44,992 19,059 2,959,786 26,625,486

Table 4: Statistics of tasks, datasets, and prompts in UniPreDial.

Method avg BANKING77 HWU64 CLINIC150 REST8K DSTC8 TOP

T5 76.52 76.01 81.77 88.36 85.31 74.72 76.03

+ MP 79.50 83.77 85.02 91.67 88.24 79.67 76.69

+ MP + PT 80.70 83.70 85.86 92.73 90.79 80.41 78.64

+ MP + MPPT 82.58 87.92 88.74 94.76 91.55 82.87 78.75

+ MP + MPPT + PET∗ 83.66 90.16 90.05 95.78 92.62 83.27 79.63

Table 5: Ablation study on six datasets from the

DialoGLUE benchmark in low-resource setting (10-

shot data), MP means multi-prompt training in the

finetuning stage, PT means pre-training, MPPT

means multi-prompt training in the pre-training

stage. ∗ denotes it is the UniPCM.

Number of Prompts 0 1(avg) 7(random) 7(selected) 25

Test Acc 76.006 78.312 82.955 83.279 83.766

Table 6: Few-shot(10%) results on BANKING77

dataset using different numbers of prompts. For

1 prompt setting, we report the average scores of

randomly selected prompt to reduce variance.

Coherency: whether the prompt can form coher-

ent sequences with most of the inputs and outputs.

Fluency: whether the prompt itself is grammati-

cally correct and fluent.

Experts in dialog system are asked to score 0, 1,

2 for the three metrics on the prompts generated

by TAP and crowdsourcing human-written prompts

randomly selected from Prompsource (Bach et al.,

2022), the average scores reported in table 7. The

results show that our generated prompts are supe-

rior to the crowdsourcing human-written prompts,

improving the task-specificity, coherency, and flu-

ency by 9.95%, 10.97%, 7.59% respectively. More-

over, it can be shown in the results that by modeling

task in TAP, the prompts generated focus on the

task better, while using the input-output pairs in the

automatic prompt generation procedure make the

prompts generated better fit with the context, result-

ing in higher gain in task-specificity and coherency.

4.5.3. Results on Downstream Tasks

Besides human evaluation, we measure the quality

of the prompts generated using the downstream

finetuning results. A T5 model is finetuned on

downstream tasks with the prompts generated us-

ing multi-prompt training. We compare our auto-

matically generated prompts with crowdsourcing

prompts from Promptsource (Bach et al., 2022).

Moreover, to illustrate the importance of modeling

task in TAP, we try to generate prompts without

task-related information, i.e. the keywords for ab-

lation study, which is the same as the method pro-

posed in Gao et al. (2021). The results shown in

Table 8 demonstrate the superiority of our auto-

50 25 0 25 50 75
40
20

0
20
40
60

(a) T5-base model

60 40 20 0 20 40 60

50
25

0
25
50
75

(b) Our pre-trained model

QA
choice
emotion
generation
intent
response
state
summary
txt2sql

Figure 3: Prompt embeddings in the latent space

using t-SNE visualization. T5-base model and our

pre-trained model are used to approximate the la-

tent space in (a) and (b) respectively.

Method Task-specificity Coherency Fluency

Crowdsourcing 1.698 1.687 1.726

TAP 1.868 1.871 1.857

p-value 7.50e-7 7.55e-9 6.12e-5

Table 7: Human evaluation results for prompts gen-

erated by TAP and collected from Promptsource

respectively. Average scores of task-specificity,

coherency, and fluency is reported. p-value means

the significant test result between the two methods.

matically generated prompts over human-written

prompts, improving by 2.40% on test accuracy.

Meanwhile, modelling task in TAP brings an im-

provement of 0.89%, which shows that modeling

task is beneficial for generating prompts with higher

quality.

5. Conclusion and Future Work

This paper represents progress toward building

high-quality dialog systems with multi-task training

using automatically generated prompts. Based on

a unified ’input-prompt-output’ format, we gener-

ate high-quality prompts using the proposed au-

tomatic prompt generation method TAP and per-

form multi-task training using the proposed multi-

prompt training mechanism, resulting in a powerful

pre-trained conversationmodel UniPCM. Extensive

experiments demonstrate that UniPCM is robust
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Prompts Promptsource TAP without task TAP

Test Acc 80.877 82.388 83.279

Table 8: Few-shot(10%) results on BANKING77

dataset using different sets of prompts. The size of

the prompt set is set to 7 as there is only 7 prompts

available from Promptsource (Bach et al., 2022)

to input prompts, capable of performing various

dialog-related tasks, and has strong transfer ability,

particularly in low-resource scenarios. We hope

our pre-trained model UniPCM, as well as the col-

lected datasets, will help researchers to build better

dialog systems. Furthermore, since multi-task train-

ing is widely used in instruction tuning, we hope

our automatic prompt generation method TAP, as

well as the high-quality prompts generated, will en-

courage the community to further explore the limits

of multi-task training.
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A. Theoretical Deduction

In this section, we give detailed theoretical deduc-

tion the superiority of our proposed TAP, which is

helpful in both generating high-quality prompts and

the model’s transfer ability on unseen tasks.

A.1. Problem Setting

Given a task with input-output an instance pair

(X,Y ), we assume that there is some prompt P
that is helpful to infer the task. Note that P may

be in the form of instructions, keywords, or even

just the task name itself. Also note that in real-

life the input X and the prompt P may not have a

strict boarder, and we separate them for the conve-

nience of discussion, assuming that P contains the

information relevant to the task, while X contains

other information:

p(t|X,P ) ≈ p(t|P ) (3)

p(Y |X,P, t) ≈ p(Y |X, t) (4)

We use a language model to generate output

Y conditioned on the input X and the prompt P ,
where the task t is viewed as a latent variable. The

generation probability, under our latent task as-

sumption, along with the Bayes’ rule, can be written

as follows:

p(Y |X,P )

=

∫
t

p(Y |X,P, t)p(t|X,P )dt

≈
∫
t

p(Y |X,P, t)p(t|P )dt (Eq.(3))

∝
∫
t

p(Y |X,P, t)p(P |t)p(t)dt (Bayes′ rule)

≈
∫
t

p(Y |X, t)p(P |t)p(t)dt (Eq.(4)) (5)

A.2. Benefits of Using Multi-Prompt Training

We can further discuss the benefits of multi-prompt

training, especially in the model’s transfer ability

on unseen test prompts. Given test prompts P test

and N training prompts P i(i = 1, 2, · · · , N), by in-
creasing the number of training prompts N , the

minimal distance between the embedding of the

test prompts and training prompts in the latent task

space: min
i

|emb(P test)− emb(P i)| will reduce and

p(Y |X,P test) (the probability of generating the cor-

rect label Y ) will increase according to Eq. 5. More-

over, if the number of training prompts N is large

enough, the expectation of the minimal distance

will reduce to any given value above 0:

lim
N→∞

Emin
i

|emb(P test)− emb(P i)| → 0 (6)

Under this circumstance, the probability

p(Y |X,P test) will be optimized during train-

ing, resulting in strong performance. The details of

the deduction is shown in Section A.3.

A.3. Deduction of the Consistency of

Multi-prompt Training

Given the test prompt P test, the distance between

the embedding of the test prompts and the ith train-

ing prompts in the latent task space can be written

as:

di = |emb(P test)− emb(P i)|(i = 1, 2, · · · , N)

Assume that di(i = 1, 2, · · · , N) are indepen-

dent identically distributed (i.i.d) and the supporting

set of p(di) is d > 0, which means the probability

P (d) = p(di < d) > 0 for any distance d > 0. We

can prove that given any d > 0 and any ε > 0, there
exists an N that ensures p(min

i
(di) < d) > 1− ε:

∀d, ε > 0 ∃N s.t. p(min
i
(di) < d) > 1− ε (7)

https://doi.org/10.18653/v1/2021.naacl-main.398
https://doi.org/10.18653/v1/2021.naacl-main.398
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Theorem. 7 can be easily proved by calculating

the probability of p(min
i
(di) > d):

p(min
i
(di) > d) =

N∏
i=1

(1− p(di < d))

= (1− P (d))N (i.i.d) (8)

AsP (d) > 0, we can takeN > log1−P (d)ε accord-
ing to Eq.8. Therefore the Theorem 7 is proved.

From Theorem. 7, we can deduce that if N is

large enough, we can find a training prompt that

satisfies |emb(P test)− emb(P i)| < d, therefore the

distribution of p(P test|t) is close to p(P i|t) in the

latent task space:

KL(p(P test|t)||p(P i|t)) < d1 (9)

KL(p(Y |X, t)p(P test|t)p(t)||
p(Y |X, t)p(P i|t))p(t)) < d2 (10)

|
∫
t

p(Y |X, t)p(P test|t)p(t)dt−∫
t

p(Y |X, t)p(P i|t)p(t)dt| < d3 (11)

d1, d2, d3 are constant that converge to zero with

the increase of the number of training prompts N .

Therefore the training probability of ith sample con-

verges to test probability, proving the consistency

of multi-prompt training:

|p(Y |X,P i)− p(Y |X,P test)| → 0 (12)

B. Exploit Prompts for Low Resource

Setting

Prompts can reduce the gap between language

model pre-training and finetuning, therefore improv-

ing model’s performance in downstream tasks, es-

pecially in few-shot and zero-shot settings (Gao

et al., 2021; Cui et al., 2021; Chen et al., 2022a).

Apart from that, pattern exploit training (PET), a

self-training method leveraging multiple prompts,

can greatly improve model’s performance in low

resource setting by perform semi-supervision train-

ing Different prompts can be used as different view

for the case, and models finetuned with different

prompt are used to ensemble pseudo labels on un-

labeled data (Schick and Schütze, 2021a). There

are a few works that improve over the original pat-

tern exploit training: Schick and Schütze (2021b)

extends PET to deal with labels that have multi-

ple tokens, while Tam et al. (2021) proposes to

provide more supervision and learn without task-

specific unlabeled data. Our PET contributes in

reformulating PET to apply it to generative lan-

guage model. Moreover, we combine PET with

our multi-task prompt pre-trained model and ap-

plied multi-prompt training in the finetuning stage

of PET, improving the accuracy of the generated

pseudo labels.

C. Prompts for Semi-Supervised

Training: PET

To utilize numerous and diverse generated

prompts, as well as the pre-trained model that

performs well on those prompts, we perform PET

(Schick and Schütze, 2021a) for semi-supervised

training. We adapt the origin PET method to bet-

ter utilize multiple prompts, as well as fitting our

pretrained model.

For the generated prompts P =
P j(j = 1, 2, · · · ,M), we use a partition of P ,
P1, P2, · · · , Pk to train k voting models for ensem-

bling. The lth voting model Ml are finetuned from

the pre-trained model on the annotated part of

data (Xi, Y i)(i = 1, 2, · · · , Na) with the prompt

sets Pl, the loss function as follows:

J l
θ =

Na∑
i=1

|Pl|∑
j=1

log pMl
(Y i|Xi, P j

l ) (13)

To generate pseudo labels on unannotated data,

we ensemble the outputs generated by voting mod-

els given all input instances and prompts:

Ỹ i = ensemble({Ỹ i
j }), Ỹ i

j ∼ pMl
(Ỹ i|Xi, P j

l ) (14)

where we use majority voting method to per-

form ensembling for the labels generated. Sam-

pling is used in (14) to increase diversity of the

generated label, helping us to distinguish those in-

stances and labels that are deemed uncertain by

the model. Because we finetune the voting models

on a model pre-trained over all prompts and we use

multi-prompt training to finetune the voting models

in (15), the accuracy of the voting models is greatly

improved, therefore advancing the quality of the

pseudo labels generated.

TheNp pseudo labels are used to train themodel,

along with the annotated data, to improve the

model’s performance:

Jθ =

Na∑
i=1

M∑
j=1

log p(Y i|Xi, P j)

+

Np∑
k=1

M∑
j=1

log p(Ỹ k|Xk, P j) (15)
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Task Datasets

Natural language generation web_nlg (Castro Ferreira et al., 2020), dart (Nan et al., 2021), e2e_nlg (Dušek et al., 2020), common_gen (Lin et al., 2020a)

Summary dialogsum (Chen et al., 2021b), xlsum (Hasan et al., 2021), xwikis (Perez-Beltrachini and Lapata, 2021), wiki_lingua (Ladhak et al., 2020), Samsum (Gliwa et al., 2019)

Slot filling Restaurant8k (Coope et al., 2020), TOP (Gupta et al., 2018), DSTC8 (Rastogi et al., 2020), ATIS (Hemphill et al., 1990), CrossNer (Liu et al., 2021b), FB_TOD_SF (Schuster et al., 2019),

MIT-movies-eng (Liu et al., 2013), MIT-movies-eng (Liu et al., 2013), MIT-movies-trival10k (Liu et al., 2013), MIT-restaurant (Liu et al., 2013), SNIPS (Coucke et al., 2018),

Intent prediction BANKING77 (Casanueva et al., 2020), CLINC150 (Larson et al., 2019), HWU64 (Liu et al., 2021a), FB_TOD_SF (Schuster et al., 2019), SNIPS (Coucke et al., 2018), TOP (Gupta et al., 2018),

MultiWOZ2.2 (Zang et al., 2020), SGD(Rastogi et al., 2020), WOZ (Mrkšić et al., 2017), SimJoint (Shah et al., 2018), MultiWOZ_synthesis (Campagna et al., 2020), SwDA (Stolcke et al., 2000),

DailyDialog (Li et al., 2017), DSTC2 (Williams et al., 2016), DSTC3 (Williams et al., 2016), InCar (Eric et al., 2017) ,PersuaGOOD (Wang et al., 2019), Frames (El Asri et al., 2017),

MulDoGo (Peskov et al., 2019), BiTOD (Lin et al., 2021), MSRe2e (Li et al., 2018),

Dialog state tracking SGD (Rastogi et al., 2020), TaskMaster1 (Byrne et al., 2019), TaskMaster2 (Byrne et al., 2019), TaskMaster3 (Byrne et al., 2019), WOZ (Mrkšić et al., 2017), KETOD (Chen et al., 2022c),

MulDoGo (Peskov et al., 2019), InCar (Eric et al., 2017), SimJoint (Shah et al., 2018),MultiWOZ2.2 (Zang et al., 2020),

Multiple choice Commensense-qa (Talmor et al., 2019), Cosmosqa (Huang et al., 2019), Meld (Poria et al., 2019)

Emotion classification DailyDialog (Li et al., 2017), Go-emotion (Demszky et al., 2020), Meld (Poria et al., 2019), SentiHood (Saeidi et al., 2016), MAMS (Jiang et al., 2019), ASTE (Xu et al., 2021),

RECCON (Poria et al., 2021)

Document-based question answering SQuAD (Rajpurkar et al., 2016), QuAC (Choi et al., 2018), NarrativeQA (s Ko �ciský et al., 2018), Race (Lai et al., 2017)

Dialog-related question answering DREAM (Sun et al., 2019), Molweni (Li et al., 2020), DialogRE (Yu et al., 2020), FriendsQA (Yang and Choi, 2019), DDRel (Jia et al., 2021), ReadingComprehension (Ma et al., 2018),

RECCON (Poria et al., 2021), WizInt (Komeili et al., 2022)

Chit-chat & Mutual (Cui et al., 2020), ABCD (Chen et al., 2021a), AirDialog (Wei et al., 2018), CCPE (Radlinski et al., 2019), MetalWOZ (Shalyminov et al., 2020), CMU_DoG (Zhou et al., 2018),

Response generation CoQA (Reddy et al., 2019), CoSQL (Yu et al., 2019a), doc2dial (Feng et al., 2020), DSTC10-track2 (Kim et al., 2021), DSTC10-track3 (Kottur et al., 2021), MedicalDialog (Zeng et al., 2020),

Self-Dialog (Fainberg et al., 2018), WOW (Dinan et al., 2018), TopicChat (Gopalakrishnan et al., 2019), Persona-Chat (Zhang et al., 2018a), MulDoGo_un (Peskov et al., 2019),

CSQA (Saha et al., 2018b), AmazonQA (Gupta et al., 2019), ChitChat (Will et al., 2020), EmpatheticDialog (Rashkin et al., 2019), CommonsenseDialog (Zhou et al., 2021),

ConvQuestions (Kacupaj et al., 2021), MMD (Saha et al., 2018a)

Knowledge-grounded dialog Soccer-kgdial (Chaudhuri et al., 2019), Incar-kgdial (Chaudhuri et al., 2019), WizInt (Komeili et al., 2022), KETOD (Chen et al., 2022c)

Text to SQL Spider (Yu et al., 2018), Sparc (Yu et al., 2019b)

Task oriented dialog & TaskMaster1 (Byrne et al., 2019), TaskMaster2 (Byrne et al., 2019), TaskMaster3 (Byrne et al., 2019), SwDA (Stolcke et al., 2000), FusedChat(Young et al., 2022), Frames (El Asri et al., 2017),

User simulation MultiWOZ2.2 (Zang et al., 2020), SGD(Rastogi et al., 2020), WOZ (Mrkšić et al., 2017), SimJoint (Shah et al., 2018), MultiWOZ_synthesis (Campagna et al., 2020), MulDoGo (Peskov et al., 2019),

DailyDialog (Li et al., 2017), DSTC2 (Williams et al., 2016), DSTC3 (Williams et al., 2016), InCar (Eric et al., 2017) ,PersuaGOOD (Wang et al., 2019), BiTOD (Lin et al., 2021)

MSRe2e (Li et al., 2018),

Table 9: Pre-training tasks and datasets in UniPreDial.

D. Building pre-training corpus

To perform multi-task pre-training for conversation

model, we collect UniPreDial 4, which contains

122 dialog-related from 15 dialog-related tasks.

The tasks in UniPreDial mainly fall into three cate-

gories: task-oriented dialog related (intent predic-

tion, dialog state tracking and grounded dialog),

open-domain chit-chat, and other dialog-related

datasets.

Task-oriented dialog is extensively studied by

previous researchers, resulting in abundant anno-

tated datasets. We make full use of the annotated

information as we leverage prompts to convert a

turn in a dialog into multiple training instances, as

shown in Figure 1.

Open-domain chit-chat datasets are important

for improving the generation ability of pre-trained

conversation models. We use the datasets col-

lected in He et al. (2022b) 5 as the datasets are

competitive in quality and quantity. However, in-

stead of viewing those datasets as unannotated

data for semi-supervised training for task-oriented

dialog, we train the response generation task on

those datasets, leveraging the coherency of open-

domain chat datasets.

To extend the model’s ability, we collect other

datasets that can improve the model’s skills. Emo-

tion classification, summary, natural language gen-

eration, and text2sql are important skills for dialog

systems in real-life scenarios, while question an-

swering and multiple choice have similar format as

dialog and will yield positive transfer in co-training

(Aribandi et al., 2021).

4We collect datasets from https://hugging-

face.co/datasets, https://www.parl.ai/docs/tasks.html

and GitHub repositories on https://github.com/.
5https://github.com/AlibabaResearch/DAMO-

ConvAI/tree/main/space-3
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