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Abstract
Multi-modal knowledge graph completion (MMKGC) aims to predict the missing triples in the multi-modal knowledge
graphs by incorporating structural, visual, and textual information of entities into the discriminant models. The
information from different modalities will work together to measure the triple plausibility. Existing MMKGC methods
overlook the imbalance problem of modality information among entities, resulting in inadequate modal fusion and
inefficient utilization of the raw modality information. To address the mentioned problems, we propose Adaptive
Multi-modal Fusion and Modality Adversarial Training (AdaMF-MAT) to unleash the power of imbalanced modality
information for MMKGC. AdaMF-MAT achieves multi-modal fusion with adaptive modality weights and further
generates adversarial samples by modality-adversarial training to enhance the imbalanced modality information.
Our approach is a co-design of the MMKGC model and training strategy which can outperform 19 recent MMKGC
methods and achieve new state-of-the-art results on three public MMKGC benchmarks. Our code and data have
been released at https://github.com/zjukg/AdaMF-MAT.
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1. Introduction

Knowledge graphs (KGs) (Wang et al., 2017)
model the world knowledge as structured triples
in the form of (head entity, relation, tail entity).
Multi-modal knowledge graphs (MMKGs) Liu et al.
(2019) further extend KGs with representative multi-
modal information (e.g. textual descriptions, im-
ages, etc.) and have become the new infrastruc-
ture in many artificial intelligence tasks (Sun et al.,
2020; Yasunaga et al., 2021; Cao et al., 2022a;
Zhang et al., 2023b; Liang et al., 2023b).

However, KGs often suffer from incompleteness
as there are many unobserved triples in the KGs.
The incompleteness of KGs limits their usage in the
downstream tasks. Therefore, knowledge graph
completion (KGC) (Wang et al., 2017) has attracted
wide attention as a crucial task to complete the
missing triples in the KGs. Mainstream KGC meth-
ods employ knowledge graph embedding (KGE)
to model the structural information in the KGs,
which embeds the entities and relations into a low-
dimensional continuous space.

As for the MMKGs, the KGC models (Wang et al.,
2021; Zhao et al., 2022) incorporate rich-semantic
multi-modal information such as images and text
descriptions, referred to as multi-modal knowledge
graph completion (MMKGC). Mainstream MMKGC
methods (Wang et al., 2021) usually focus on de-
signing elegant methods to achieve multi-modal
fusion among structural, visual, and textual infor-
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Figure 1: A simple example to show that knowl-
edge graph reasoning with limited modal informa-
tion may lead to wrong prediction.

mation, which is a common way of thinking for
multi-modal tasks. Some other methods (Xu et al.,
2022) attempt to enhance the negative sampling
(NS) process with the multi-modal information.

However, existing methods neglect the imbal-
ance of modality information among entities,
which can be observed from two perspectives.
Firstly, as for knowledge graph reasoning, differ-
ent modal information plays distinctive roles and
should be adaptively considered. However, the

https://github.com/zjukg/AdaMF-MAT
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modal fusion problem is inadequately addressed
by existing methods, as the modal information is
often inflexibly incorporated into the representation
space of structural information uniformly. Secondly,
the efficacious features in the images and textual
descriptions are usually limited and challenging
to extract. In practical scenarios, the KGs con-
structed from multiple heterogeneous data sources
are even modality-missing, further constraining the
utilization of modality information in MMKGC. In
practice, the KGs constructed with multiple hetero-
geneous data sources are even modality-missing
(Wang et al., 2021), which further limits the usage
modality information in MMKGC. Figure 1 reveals
that limited or missing multi-modal information sig-
nificantly hampers modal performance. To achieve
better performance for MMKGC, it is crucial to ef-
fectively utilize the essential information as well as
get higher quality multi-modal information. This
need can be summarised as unleashing the power
of imbalanced modality information for MMKGC.

To address this problem, we propose a novel
MMKGC framework with Adaptive Multi-modal
Fusion and Modality Adversarial Training (AdaMF-
MAT) to augment and effectively utilize the multi-
modal information. We introduce AdaMF, an adap-
tive multi-modal fusion (AdaMF) module that selec-
tively extracts essential multi-modal features from
entities to generate representative joint embed-
dings. We further propose a modality-adversarial
training (MAT) strategy to generate synthetic multi-
modal embeddings and construct adversarial ex-
amples, aiming to enhance the limited multi-modal
information during training. While existing NS meth-
ods design complex strategies to sample in the
given KG, our method directly creates synthetic
samples with semantic-rich multi-modal informa-
tion to enhance the multi-modal embedding learn-
ing. The two modules are designed to synergisti-
cally interact and mutually complement each other
to unleash the power of imbalanced modality in-
formation. Our approach is a co-design of the
MMKGC model and training strategy, which can
bring outperforming empirical results against 19
existing unimodal KGC, multi-moda KGC, and NS
methods. Our contribution is three-fold:

• We propose adaptive multi-modal fusion
(AdaMF) for MMKGC, to fuse the imbalanced
modality information of three modalities (struc-
tural, visual, and textual) and produce repre-
sentative joint embeddings.

• We propose a modality adversarial training
strategy (MAT) to utilize imbalanced modality
information. MAT aims to generate adversarial
examples with synthetic multi-modal embed-
dings too enhance the MMKGC training.

• We conduct comprehensive experiments with
further explorations on three public bench-

marks to evaluate the performance of AdaMF-
MAT. The empirical results demonstrate that
AdaMF-MAT can outperform 19 recent base-
lines and achieve new SOTA MMKGC re-
sults. Moreover, we illustrate the suitability
of AdaMF-MAT for the modality-missing sce-
narios.

2. Related Works

2.1. Multi-modal Knowledge Graph
Completion

Existing multi-modal knowledge graph completion
(MMKGC) methods (Liang et al., 2022; Chen et al.,
2024) are mainly concerned with extending the
general knowledge graph embedding (KGE) meth-
ods (Bordes et al., 2013; Yang et al., 2015) to the
multi-modal scenario. In MMKGC, visual and tex-
tual information are delicately considered as well
as the structural information of the entities to make
better predictions.

A mainstream design approach of MMKGC
methods is to enhance the entity representations
with their multi-modal information. IKRL (Xie et al.,
2017) first introduces the visual information of en-
tities into the TransE (Bordes et al., 2013) score
function. TBKGC (Sergieh et al., 2018) later ex-
tends IKRL with both visual and textual informa-
tion. TransAE (Wang et al., 2019) employs the
auto-encoder framework to fuse the multi-modal
information with the entity embeddings. RSME
(Wang et al., 2021) designs several gates to select
and keep the useful visual information of entities.
VBKGC (Zhang and Zhang, 2022) uses Visual-
BERT to extract deep fused multi-modal informa-
tion to achieve better modality fusion. OTKGE
(Cao et al., 2022b) achieve multi-modal fusion via
optimal transport. MoSE (Zhao et al., 2022) con-
sidered different modal information in a split-and-
ensemble manner.

Besides, some methods propose enhanced neg-
ative sampling (Bordes et al., 2013) methods to
improve the MMKGC performance. MMRNS (Xu
et al., 2022) utilizes the modal information to en-
hance the negative sampling to train better KGE
models. MANS (Zhang et al., 2023a) proposes a
modality-aware negative sampling method to align
the structural and multi-modal information.

2.2. Adversarial Training in Knowledge
Graph Completion

Adversarial training (AT) (Kurakin et al., 2017;
Goodfellow et al., 2014, 2015; Shafahi et al., 2019)
is a powerful technology widely used in many ma-
chine learning fields (Mariani et al., 2018; Miyato
et al., 2017). AT aims to train a pair of generator
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and discriminator with a minimax game adversar-
ially, which can enhance both the generator and
the discriminator.

In the knowledge graph community, a few meth-
ods (Cai and Wang, 2018; Wang et al., 2018; Tang
et al., 2022) employ AT to generate harder nega-
tive samples (Bordes et al., 2013) by reinforcement
learning to enhance the embedding training pro-
cess and improve the prediction results. But these
methods are designed for unimodal KGC.

3. Methodology

In this section, we will present our MMKGC frame-
work AdaMF-MAT. An overview of AdaMF-MAT is
shown in Figure 2. We will introduce the main
components in the following paragraphs, which are
feature encoders, adaptive multi-modal fusion, and
modality adversarial training respectively.

3.1. Preliminaries

A knowledge graph (KG) can be denoted as G =
(E ,R, T ), where E ,R are the entity set, relation
set. T = {(h, r, t)|h, t ∈ E , r ∈ R} is the triple set.
For multi-modal KGs (MMKGs), each entity e ∈ E
has an image set Ve and a corresponding textual
description.

An MMKGC model embeds the entities and rela-
tions into a continuous vector space. For each en-
tity ei ∈ E , we define its structural/visual/textual em-
bedding as es, ev, et respectively to represent its
different modal features. For each relation r ∈ R,
we denote its structural embedding as r. Besides,
an MMKGC model can measure the plausibility
of each triple (h, r, t) ∈ T with a score function
F , which can be calculated by the defined embed-
dings. In the inference stage of the KGC task, for
a given query (h, r, ?) or (?, r, t), the model ranks
the corresponding triple scores of each candidate
entity and make the prediction.

3.2. Multi-modal Feature Encoding

We first introduce the encoding process to extract
the multi-modal features from the original images
and textual descriptions of entities. It is a neces-
sary step for all MMKGC methods.

As for the visual modal, we first apply a pre-
trained visual encoder (PVE) (Simonyan and Zis-
serman, 2015; Bao et al., 2022) to extract the visual
feature fv for each entity e with mean-pooling and
project it to the embedding space to get the visual
embedding, which can be denoted as:

fv =
1

|Ve|
∑

imgi∈Ve

PVE(imgi) (1)

ev = Wv · fv + bv (2)

where the Wv,bv is the parameters of the visual
project layer.

For the textual embedding, we similarly extract
the textual feature of each entity with its descrip-
tion and the pre-trained textual encoder (PTE)
(Reimers and Gurevych, 2019). The special [CLS]
token (Devlin et al., 2019) is applied to capture
the sentence-level textual feature ft, which is a
common technology. Then we project the textual
feature ft to the embedding space with another
project layer parameterized by Wt,bt to get the
textual embedding et, which can be denoted as:

et = Wt · ft + bt (3)

We maintain consistency with previous methods
(Sergieh et al., 2018; Xu et al., 2022) and em-
ploy the same PVE and PTE of these methods
for a fair comparison. Besides, the project layers
are designed to project the multi-modal features
from different representation spaces into the same
space of the structural embeddings.

3.3. Adaptive Multi-modal Fusion

In MMKGC, the information of three modalities m ∈
M = {s, v, t} should be carefully considered to
measure the triple plausibility. As existing methods
(Xie et al., 2017; Sergieh et al., 2018) usually treat
them separately or simply put them together, we
propose an adaptive multi-modal fusion (AdaMF
for short) mechanism to achieve adaptive modality
fusion. For each entity e and its embeddings em
where m ∈ M, AdaMF works in the following way:

αm =
exp(wm ⊕ tanh(em))∑

n∈M exp(wn ⊕ tanh(en))
(4)

ejoint =
∑

m∈M
αmem (5)

where αm is the adaptive weight, ⊕ is the point-
wise product operator and wm is the learnable
vector of the modality m. ejoint is the joint embed-
ding of entity e. Through such a design of AdaMF,
we can learn different modality weights for different
entities, thus achieve adaptive modal information
fusion to produce representative joint embeddings.

Besides, we apply the RotatE model (Sun et al.,
2019) as our score function to measure the triple
plausibility. It can be denoted as:

F(h, r, t) = ||hjoint ◦ r − tjoint|| (6)

where ◦ is the rotation operation in the complex
space. The joint embeddings of the head and tail
entity are employed in the score function.

Aiming to assign the positve triples with higher
scores, we train the embeddings with a sigmoid
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Figure 2: Overview of our method AdaMF-MAT. The feature encoders are designed to encode different
modal features (visual/textual/structural) respectively. Each FC represents a fully-connected projection
layer. The adaptive multi-modal fusion module is designed to get the fused joint embedding adaptively. The
modality adversarial training module employs generators to generate synthetic multi-modal embeddings
to construct adversarial examples. The KGC decoder serves as the discriminator and will be enhanced
by these adversarial examples during training.

loss function (Sun et al., 2019). The loss function
can be denoted as:

Lkgc =
1

|T |
∑

(h,r,t)∈T

(
− log σ(γ −F(h, r, t))

−
K∑
i=1

pi log σ(F(h′
i, r

′
i, t

′
i)− γ)

) (7)

where σ is the sigmoid function, γ is the margin and
pi is the self-adversarial weight for each negative
triple (h′

i, r
′
i, t

′
i) generated by negative sampling

(Bordes et al., 2013). The self-adversarial weight
pi can be denoted as:

pi =
exp(βF(h′

i, r
′
i, t

′
i))∑K

j=1 exp(βF(h′
j , r

′
j , t

′
j))

(8)

where β is the temperature parameter and K is
the number of negative samples. A main training
objective of our model is to minimize Lkgc.

3.4. Modality Adversarial Training

Previously, we noted that the multi-modal embed-
dings of entities contain limited essential informa-
tion and face the imbalance problem. Though
AdaMF can adaptively select and fuse the multi-
modal embeddings into a joint one, it can not aug-
ment the existing multi-modal embeddings to pro-
vide more semantic-rich information.

Therefore, inspired by adversarial training (AT)
(Mariani et al., 2018), we design a modality adver-
sarial training (MAT) mechanism for MMKGC to
enhance the imbalanced multi-modal information.

MAT employs a generator G that produces adver-
sarial samples, and a discriminator D that mea-
sures their plausibility, which follows the paradigm
of general AT. Below we describe the design of the
generator G and the discriminator D.

3.4.1. Generator

Further, we design a modality adversarial genera-
tor (MAG) that assumes the role of G by generat-
ing synthetic multi-modal embeddings conditioned
on the structural embedding es, which aims to con-
struct adversarial samples. The MAG is a two-layer
feed-forward network which can be denoted as:

Gm(es, z) = W2 · δ(W1 · [es; z] + b1) + b2 (9)

where W1,W2,b1,b2 are the parameters of the
two feed-forward layers and δ is the LeakyReLU
(Maas et al., 2013) activation function. m ∈ {v, t}
is the visual/textual modal and z ∼ N (0,1) is the
random noise.

For each triple (h, r, t), we generate synthetic
multi-modal embeddings for the head and tail en-
tities and construct the synthetic entities. The
synthetic head entity h∗ has three embeddings
hs,h

∗
v,h

∗
t where h∗

v,h
∗
t are generated by the MAG

Gv and Gt. It is the same for the tail entity.
Further, we can construct three synthetic

triples with the two synthetic entities, which are
S(h, r, t) = {(h, r, t∗), (h∗, r, t), (h∗, r, t∗)} for a
triple (h, r, t). Here, S contains a group of synthetic
triples for (h, r, t), which consists of 3 adversarial
samples. In practice, we generate L groups of syn-
thetic triples for each (h, r, t), and S will contain
3L synthetic triples. Since the generator contains
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Algorithm 1: Pseudo-code for training
AdaMF-MAT
Input: A batch of training triple B sampled

from T , the multi-modal information
of the entities’, the AdaMF model D,
the generator G.

Output: The MMKGC model D trained with
MAT.

1 for each triple (h, r, t) ∈ B do
2 // Training D
3 Get the joint embeddings hjoint, tjoint.
4 Calculate the triple score F(h, r, t) and

the nagative triple scores F(h′
i, r

′
i, t

′
i).

5 Calculate the kgc loss Lkgc.
6 Generate the adversarial example set S

with G.
7 Calculate the adversarial loss Ladv.
8 Calculate the overall loss Lkgc + λLadv.
9 Back propagation and optimize D.

10 // Training G.
11 Get the joint embeddings hjoint, tjoint.
12 Generate the adversarial example set S

with G.
13 Calculate the adversarial loss Ladv.
14 Back propagation and optimize G.
15 end

random noise, these synthetic triples are different
from each other.

3.4.2. Discriminator

With the generated adversarial examples with syn-
thetic multi-modal embeddings, D aims to distin-
guish the positive (real) triples from the synthetic
ones while G aims to generate realistic triples and
deceive the discriminator D. In MMKGC, we let the
score function F serve as the D in the AT setting
because F is the triple plausibility discriminator
and the target to be adversarially enhanced. Ac-
cordingly, the loss of the adversarial training can
be designed as:

Ladv =
1

|T |
∑

(h,r,t)∈T

(
− log σ(γ −F(h, r, t))

− 1

|S|
∑

(h∗,r∗,t∗)
∈S(h,r,t)

log σ(F(h∗, r∗, t∗)− γ)
) (10)

We keep the format of the loss function similar
to Lkgc and contrast the positive triples and the
adversarial examples, as such a format is more
suitable for MMKGC. From another perspective,
MAT can be regarded as an enhanced negative
sampling method for MMKGC, as we generate
high-quality negative examples in an adversarial
manner. The main difference between MAT and ex-
isting negative sampling methods like MMRNS(Xu

Table 1: Statistical information of the benchmarks.
Dataset |E| |R| #Train #Valid #Test

DB15K 12842 279 79222 9902 9904
MKG-W 15000 169 34196 4276 4274
MKG-Y 15000 28 21310 2665 2663

et al., 2022), and KBGAN (Cai and Wang, 2018) is
that MAT generates new hard negative samples by
adversarial training instead of sampling from the
existing KGs. Such a design of MAT can directly
augment the multi-modal embedding learning and
enhance the performance of D without the need
for reinforcement learning applied in KBGAN (Cai
and Wang, 2018). Besides, MMRNS (Xu et al.,
2022) and KBGAN (Cai and Wang, 2018) just em-
ploy the unimodal score functions but our approach
introduces the multi-modal information with adap-
tive multi-modal fusion, which is a co-design of the
MMKGC model and training strategy.

3.4.3. Training Objective

During training, we iteratively train the D and G in
an adversarial manner while keeping to optimize
the general objective Lkgc for MMKGC. The overall
training objective can be represented as:

min
D

Lkgc +min
D

max
G

λLadv (11)

where λ is the coefficient of the adversarial loss.
The pseudo-code of mini-batch training for AdaMF-
MAT is shown in Algorithm 1.

During training, the AdaMF model D and the
generator G will be optimized iteratively in an ad-
versarial setting.

4. Experiments

In this section, we evaluate our method with the link
prediction task, which is a mainstream task in KGC.
We first introduce the experiment settings and then
present our experimental results. We mainly ex-
plore the following four research questions (RQ)
about AdaMF-MAT:

• RQ1: How does the performance of AdaMF-
MAT compare to the existing MMKGC meth-
ods in the link prediction task?

• RQ2: How does the performance of AdaMF-
MAT in the modality-missing scenario?

• RQ3: How much do the design of AdaMF and
MAT contribute to the performance?

• RQ4: can we find some intuitive cases to ex-
plain the performance of our method?
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Model DB15K MKG-W MKG-Y
MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10

Unimodal
KGC

TransE 24.86 12.78 31.48 47.07 29.19 21.06 33.20 44.23 30.73 23.45 35.18 43.37
TransD 21.52 8.34 29.93 44.24 25.56 15.88 32.99 40.18 26.39 17.01 33.60 40.31
DistMult 23.03 14.78 26.28 39.59 20.99 15.93 22.28 30.86 25.04 19.33 27.80 35.95
ComplEx 27.48 18.37 31.57 45.37 24.93 19.09 26.69 36.73 28.71 22.26 32.12 40.93
RotatE 29.28 17.87 36.12 49.66 33.67 26.80 36.68 46.73 34.95 29.10 38.35 45.30
PairRE 31.13 21.62 35.91 49.30 34.40 28.24 36.71 46.04 32.01 25.53 35.84 43.89

GC-OTE 31.85 22.11 36.52 51.18 33.92 26.55 35.96 46.05 32.95 26.77 36.44 44.08

Multi-modal
KGC

IKRL 26.82 14.09 34.93 49.09 32.36 26.11 34.75 44.07 33.22 30.37 34.28 38.26
TBKGC 28.40 15.61 37.03 49.86 31.48 25.31 33.98 43.24 33.99 30.47 35.27 40.07
TransAE 28.09 21.25 31.17 41.17 30.00 21.23 34.91 44.72 28.10 25.31 29.10 33.03
MMKRL 26.81 13.85 35.07 49.39 30.10 22.16 34.09 44.69 36.81 31.66 39.79 45.31
RSME 29.76 24.15 32.12 40.29 29.23 23.36 31.97 40.43 34.44 31.78 36.07 39.09

VBKGC 30.61 19.75 37.18 49.44 30.61 24.91 33.01 40.88 37.04 33.76 38.75 42.30
OTKGE 23.86 18.45 25.89 34.23 34.36 28.85 36.25 44.88 35.51 31.97 37.18 41.38

Negative
Sampling

KBGAN(TransE) 25.73 9.91 36.95 51.93 29.47 22.21 34.87 40.64 29.71 22.81 34.88 40.21
KBGAN(TransD) 23.74 9.34 33.51 47.94 29.67 22.38 35.24 40.80 28.73 20.99 34.64 40.76

MANS 28.82 16.87 36.58 49.26 30.88 24.89 33.63 41.78 29.03 25.25 31.35 34.49
MMRNS(RotatE) 29.67 17.89 36.66 51.01 34.13 27.37 37.48 46.82 35.93 30.53 39.07 45.47
MMRNS(SOTA) 32.68 23.01 37.86 51.01 35.03 28.59 37.49 47.47 35.93 30.53 39.07 45.47

Ours AdaMF 32.51 21.31 39.67 51.68 34.27 27.21 37.86 47.21 38.06 33.49 40.44 45.48
AdaMF-MAT 35.14 25.30 41.11 52.92 35.85 29.04 39.01 48.42 38.57 34.34 40.59 45.76

Table 2: Link prediction performance on DB15K, MKG-W, and MKG-Y. The best results are marked bold
and the second-best results are underlined in each column. The results of unimodal KGE and MMRNS
are from (Xu et al., 2022) while other results are based on our reproduction. MMRNS(SOTA) is the
state-of-the-art results of MMRNS among different score functions.

4.1. Experiment Settings

4.1.1. Datasets

The experiments are conducted on three public
benchmarks. They are DB15K, MKG-W, and MKG-
Y. DB15K Liu et al. (2019) is constructed from DB-
Pedia Lehmann et al. (2015) with images crawled
from a search engine. MKG-W and MKG-Y are pro-
posed by (Xu et al., 2022), which are the subsets
of Wikidata Vrandecic and Krötzsch (2014) and
YAGO Suchanek et al. (2007) knowledge bases re-
spectively. The statistical information about the
three datasets is shown in Table 1. We reuse
the multi-modal features captured with pre-trained
models (Simonyan and Zisserman, 2015; Devlin
et al., 2019) released by the original papers.

4.1.2. Task and Evaluation Protocols

To evaluate our method, we conduct link prediction
(Bordes et al., 2013) task on the three datasets.
Link prediction is a significant task of knowledge
graph completion, which aims to predict the miss-
ing entity of a given query (h, r, ?) or (?, r, t). The
two parts of the link prediction task is called head
prediction and tail prediction respectively.

Following the existing works, we use rank-based
metrics (Sun et al., 2019) like mean reciprocal rank
(MRR) and Hit@K(K=1, 3, 10) to evaluate the re-
sults. MRR and Hit@K can be calculated as :

MRR =
1

|Ttest|

|Ttest|∑
i=1

(
1

rh,i
+

1

rt,i
) (12)

Hit@K =
1

|Ttest|

|Ttest|∑
i=1

(1(rh,i ≤ K) + 1(rt,i ≤ K))

(13)
where rh,i and rt,i are the results of head prediction
and tail prediction respectively.

Besides, filter setting (Bordes et al., 2013) is
applied to all the results to avoid the influence of
the training triples for fair comparisons.

4.1.3. Baselines

To demonstrate the effectiveness of our approach,
we select several MMKGC methods as our base-
lines for comparisons and they can be divided into
three categories:

(i) Uni-modal KGC methods, including TransE
(Bordes et al., 2013), TransD (Ji et al., 2015), Dist-
Mult (Yang et al., 2015), ComplEx (Trouillon et al.,
2017), RotatE (Sun et al., 2019), PairRE (Chao
et al., 2021), and GC-OTE (Tang et al., 2020).
These methods only use the structural information
of the KGs to learn structural embeddings.

(ii) Multi-modal KGC models, including IKRL
(Xie et al., 2017), TBKGC (Sergieh et al., 2018),
TransAE (Wang et al., 2019), MMKRL (Lu et al.,
2022), RSME (Wang et al., 2021), VBKGC (Zhang
and Zhang, 2022), OTKGE (Cao et al., 2022b).
These methods utilize both the structural informa-
tion and multi-modal information in the KGs.

(iii) Negative sampling methods, including KB-
GAN (Cai and Wang, 2018), MANS (Zhang et al.,
2023a) and MMRNS (Xu et al., 2022). KBGAN
is the first work for adversarial negative sample
in KGC based on reinforcement learning. MANS
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and MMRNS design new negative sampling strate-
gies enhanced by the multi-modal information to
generate high-quality negative samples.

Besides, we re-implement some baselines that
have no officially released codes and conduct the
link prediction experiments according to the de-
tailed experimental settings in the original paper.

4.1.4. Implemention Details

We implement our method based on OpenKE (Han
et al., 2018) and conduct experiments on Ubuntu
22.04.1 operating system with NVIDIA GeForce
3090 GPUs. We employ VGG (Simonyan and Zis-
serman, 2015) for DB15K and BEiT (Bao et al.,
2022) for MKG-W/MKG-Y as PVEs. As for the tex-
tual modal, we employ sentence-BERT (Reimers
and Gurevych, 2019) following the setting in MM-
RNS (Xu et al., 2022).

For the hyper-parameters, we tune the embed-
ding dimension in {200, 250} while the negative
sample number K is tuned in {32, 64, 128}. The
dimension of the random noise in the MAT is 64.
The group number of adversarial samples L is set
to be 1. The training batch size is fixed to 1024.
We search the margin γ ∈ {1, 2, 4, 8, 12}, the tem-
perature β ∈ {0.5, 1.0, 2.0} and the learning rate
ηd, ηg ∈{10−3, 10−4, 10−5} for D and G. The co-
efficient λ of the adversarial loss is searched in
{0.1, 0.01, 0.001}.

4.2. Main Results (RQ1)

To address RQ1, we conduct the main link predic-
tion experiments and present the results in Table
2. Our method AdaMF-MAT can outperform the
existing 19 MMKGC baselines, with an average im-
provement of 6.0% in MRR, 8.0% in Hit@1, 5.5%
in Hit@3, and 2.1% in Hit@10. These results in-
dicate that AdaMF-MAT shows more significant
improvements, particularly on strict metrics like
Hit@1, which means that AdaMF-MAT can make
more exact predictions.

Compared with MMRNS(RotatE) which also em-
ploys RotatE (Sun et al., 2019) as the score func-
tion, our AdaMF (w/o MAT) can achieve better re-
sults on all metrics. Such a result demonstrates
that AdaMF can do better than the existing meth-
ods to utilize the multi-modal information in the
MMKGs. Additionally, we can observe that MAT
can bring full range improvement of metrics by gen-
erating high-quality synthetic triples for positive-
negative contrast during training, compared with
other negative sampling methods like MANS and
MMRNS2. Some old adversarial methods like KB-
GAN may even lead to a decrease in performance,
which means MAT is more stable.

Figure 3: Link prediction results on modality-
missing DB15K dataset. The x-axis represents
the modality-missing ratios. We report the MRR
results of three various MMKGC models (AdaMF,
TBKGC, IKRL). The missing modal information is
randomly initialized first, as commonly done in ex-
isting methods (Sergieh et al., 2018). w/ MAT and
w/o MAT indicate the MMKGC model trained with
MAT and without MAT respectively.

4.3. Modality-missing Results (RQ2)

To answer RQ2, we conduct modality-missing link
prediction experiments on DB15K datasets. In
the experiments, the multi-modal information is
dropped with a given modality-missing ratio. We
first complete the missing information with random
initialization as commonly done in existing meth-
ods (Sergieh et al., 2018) and make comparisons
of the link prediction performance among different
MMKGC models (AdaMF, TBKGC, IKRL) and train-
ing strategies (w/ MAT and w/o MAT). The MRR
results are shown in Figure 3. We can draw the
following three conclusions from the results:

(i) AdaMF can achieve better link prediction per-
formance in the modality-missing KGs compared
with other existing MMKGC baselines like IKRL
and TBKGC. This suggests that the adaptive multi-
modal fusion performs better than the existing
modal fusion methods when the entity modal infor-
mation is missing.

(ii) MAT can also enhance the MMKGC model to
learn better multi-modal embeddings by adversar-
ial training and can be applied to different MMKGC
models as a general framework. The results in-
dicate that MAT can improve the performance of
all three MMKGC models compared with randomly
initializing the missing modal information, which
is a vanilla approach in the modality-missing sce-
nario wide used by existing methods (Sergieh et al.,
2018; Wang et al., 2021).

(iii) For the modality-missing KGs, the link pre-
diction results of the MMKGC model using random
initialization are not stable. Figure 3 shows that
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sometimes the experimental results increase even
when the missing ratio decreases. We think this
is because the various MMKGC models can only
make modal fusion but can not augment the limited
modal information. When the missing modal infor-
mation exceeds a certain range, such modal fusion
may fail and the results might be unstable. How-
ever, MAT resolves such a problem and enables
MMKGC models to achieve better performance
and make full use of the modal information, as
the performance is negatively correlated with the
missing ratio. When the modal information is more
sufficient, the model’s capability will be further en-
hanced by utilizing more modal information.

In summary, the experimental results prove that
our AdaMF-MAT is a better choice for MMKGC in
the modality-missing scenario.

4.4. Ablation Study (RQ3)

Model MRR Hit@1 Hit@3 Hit@10

AdaMF-MAT 35.14 25.30 41.11 52.92

AdaMF
(w/o MAT)

S+V+T(Adaptive) 33.19 23.08 40.34 52.47
S+V+T(Mean) 32.57 21.45 39.71 51.68

S+V(w/o T) 32.34 21.84 38.90 50.76
S+T(w/o V) 31.82 19.63 39.69 52.51
V+T(w/o S) 31.01 18.45 39.38 52.27

MAT
w/o (h∗, r, t) 34.64 24.52 40.98 52.49
w/o (h, r, t∗) 34.65 24.49 41.13 52.61
w/o (h∗, r, t∗) 34.61 24.36 40.98 52.65

Table 3: The ablation study results. S/V/T repre-
sent structural/visual/textual embeddings respec-
tively. Adaptive and mean represent the different
settings of the weights of each modality in the joint
embeddings.

To demonstrate in more detail the effectiveness
of each module design and answer RQ3, we con-
duct the ablation study as shown in Table 3. We val-
idate the effectiveness of AdaMF by replacing the
adaptive weights with mean weights for different
modalities. Besides, we remove the embeddings of
each modality to validate the contribution of modal
information. As for MAT, we remove each kind of
adversarial example to check their effectiveness.

From the ablation study results we can find that
the link prediction results decrease when each
module or each modal information of our method is
removed, which demonstrates their effectiveness.

To better understand MAT, we conduct parame-
ter analysis on the group number L of the adver-
sarial examples. As shown in Figure 4, we can
observe that the model performance can be af-
fected to some extent by L, but there is not a very
conspicuous change. As L increases, the link pre-
diction performance first increases a few and then
decreases.

Figure 4: Parameter analysis results about the
number of adversarial examples. We report the
MRR and Hit@1 results.

Figure 5: Adaptive weight visualization results of
AdaMF for different relations. We consider the
AdaMF models trained w/ and w/o MAT. We par-
titioned the test triples by relation and calculated
the average modality weights among the entities.

4.5. Case Study (RQ4)

To demonstrate the effectiveness of AdaMF-MAT
in an intuitive view, we visualize the percentage
of modality weights in AdaMF under several re-
lations. As shown in Figure 5, we can observe
that the modality weights of entities in different re-
lational contexts vary, and the importance of the
three modalities is often s > v > t. This reflects
that AdaMF can extract diverse modal features for
different entities and the modality importance is
also consistent with the previous research results
(Wang et al., 2021; Xu et al., 2022).

Meanwhile, with the enhancement of MAT, the
modality weights are changed compared with a
vanilla AdaMF model. The overall trend is a further
decrease in the weight of visual/textual embed-
dings especially visual modality, which indicates
that MAT can augment the multi-modal embed-
dings and achieve better adaptive modal fusion.
With MAT, the truly essential part of the multi-modal
information is augmented and retained to partici-
pate in the score function.
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5. Conclusion

In this paper, we mainly discuss the problem of
utilizing modal information in MMKGC and pro-
pose a novel MMKGC framework called AdaMF-
MAT to address the limitations of the existing meth-
ods. Existing methods for utilizing modal features
are relatively crude and treat the modal informa-
tion in a one-size-fits-all manner. Meanwhile, the
modality-missing problem is ignored by existing
methods, which we think is also a significant prob-
lem in MMKGC. Our method AdaMF-MAT employs
adaptive modal fusion to utilize the multi-modal in-
formation diversely and augment the multi-modal
embeddings through modality-adversarial training.
Experiments demonstrate that AdaMF-MAT can
outperform all the existing baseline methods and
achieve SOTA results in MMKGC tasks.

We think that the utilization problem of the multi-
modal information in the MMKGs is still consider-
able. The combination of large language models
and MMKGs is a new and popular approach to
MMKGC and the downstream usage of MMKGs.

Limitations and Ethics

Our work mainly proposes an adaptive fusion and
adversarial training framework for MMKGC. We
think the limitation of this work is that our set-
tings for modality-missing scenarios are not close
enough to real production scenarios. Besides, we
need to design a more effective approach to uti-
lize the multi-modal information of MMKGs. All
experiments were conducted on publicly available
datasets, with no violation of scientific ethics or
invasion of privacy involved.
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