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Abstract
In public procurement, establishing reference prices is essential to guide competitors in setting product prices.
Group-purchased products, which are not standardized by default, are necessary to estimate reference prices.
Text clustering techniques can be used to group similar items based on their descriptions, enabling the definition
of reference prices for specific products or services. However, selecting an appropriate representation for text is
challenging. This paper introduces a framework for text cleaning, extraction, and representation. We test eight
distinct sentence representations tailored for public procurement item descriptions. Among these representations,
we propose an approach that captures the most important components of item descriptions. Through extensive
evaluation of a dataset comprising over 2 million items, our findings show that using sophisticated supervised
methods to derive vectors for unsupervised tasks offers little advantages over leveraging unsupervised methods. Our
results also highlight that domain-specific contextual knowledge is crucial for representation improvement.

Keywords: sentence representation, text clustering, enhanced embeddings

1. Introduction

Public procurement is vital in governmental opera-
tions, ensuring fair competition, transparency, and
fiscal responsibility in acquiring goods and services
from private entities. This process encourages com-
petition among companies and ensures that gov-
ernments receive value for money while upholding
ethical standards and combating corruption.

Ideally, there should be a standardized system for
naming the items—goods or services—procured,
which would facilitate comparing reference prices
across different procurement instances. Such stan-
dardization is crucial for detecting overpricing and
uncovering irregularities. However, it falls short
of this ideal scenario. In 2022 alone, the Brazil-
ian federal government disbursed over 80 billion
dollars in public procurement,1 with comparable
expenditures at the state and municipal levels.

Given the lack of uniformity in naming items and
the absence of a common information system span-
ning all levels of government procurement, identi-
fying whether two item descriptions are the same
becomes crucial. Although such a task can be tack-
led as a problem of entity disambiguation (Godény,
2012), it presents unique challenges due to the
unstructured, highly specific, and informally writ-
ten nature of item description texts. While most
methods are designed to handle traditional gram-
matical structures, text data with idiosyncratic char-
acteristics pose distinct challenges (Reimers and
Gurevych, 2019; Yong and Torrent, 2020).

1https://bit.ly/procurementbudget

One of the key challenges is recognizing item at-
tributes, which often include colour, material, model,
and numerical quantities, such as the number of
items required. For instance, the description “plas-
tic mask with elastic band and layer of polypropy-
lene box 100 units” highlights the complexity of the
task, as it contains specific characteristics of the
purchased item. Finding an appropriate represen-
tation for items is paramount to the problem of item
description disambiguation.

Using embeddings to represent sentences has
been widely employed in recent works (Reimers
and Gurevych, 2019). Most of these methods cal-
culate the average or sum of the learned vector for
each word to represent sentences. However, this
approach has a significant drawback: it assigns the
same weight to all words in a sentence. In gram-
matically correct sentences, the subject, predicate,
and object are known to be the most critical parts as
they convey the meaning of the primary sentence.

In item or product descriptions, nouns are more
important for defining the items and measurement
units, while numbers are essential for specifying
sizes and quantities. For instance, distinguishing
between boxes containing 1,000 or 100 masks re-
quires attention to numbers. To address this issue,
methods for word representation have been modi-
fied to learn sentence representation (Reimers and
Gurevych, 2019), where weights for words in a sen-
tence are learned automatically. Other approaches
aim to enhance sentence representation models,
such as Sentence-BERT (Reimers and Gurevych,
2019), by incorporating post-tagging or named en-

https://bit.ly/procurementbudget
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tity recognition (Yin et al., 2020).
Once we find an appropriate representation, we

can address the problem of item description disam-
biguation in different ways. Here, we use a cluster-
ing approach to group similar items based on their
descriptions. Note that learning representations for
unsupervised tasks is not as common as for super-
vised tasks. Therefore, this work compares a set
of representation models, including an enhanced
domain-dependent embedded text representation,
intended for use in unsupervised contexts to distin-
guish unique items.

We test eight different representations, ranging
from a simple Bag-of-Words to Sentence-BERT,
using a dataset comprising over 2.1 million item
descriptions written in Portuguese. Among these
representations, we adapt the component-focused
representation proposed by Yin et al. (2020) to
item representation. This approach divides the
original description/sentence into the complete text
and the component-focused segment of the sen-
tence. We then separately learn embeddings
for the component-focused structures and subse-
quently integrate them with the embeddings of
the complete text. While Yin et al. (2020) based
their component-focused structure on dependency
parsing, we adapted it to our problem, where the
component-focused structure includes nouns, units
of measure, and numerical values.

To evaluate these representations, we introduce
a generic framework called AFFAIR (A Framework
For generAting Item Repesentaions). Our frame-
work contains three steps, including text cleaning
and information extraction, and it also provides a
systematic approach to generate item representa-
tions for analysis and clustering.

The main contributions of this paper are summa-
rized as follows:

1. The adaptation of the component-focused
method proposed in Yin et al. (2020) to deal
with items/products;

2. A comparison of eight different sentence model
representations for items that do not follow a
formal grammar structure;

3. A framework to deal with the pre-processing
and model representation of structures of texts
that do not follow the formal grammar structure
and deal with numbers.

2. Related Work

Text representation is an area of research broadly
studied in natural language processing (NLP) and
is currently one that most benefits from using deep
neural networks (Devlin et al., 2019; Melamud et al.,
2016). For a long time, the most commonly used

strategy for building embedded representations for
sentences/documents was to average word embed-
dings, such as word2vec (Mikolov et al., 2013) or
Global Vectors (GloVe) (Pennington et al., 2014b).

Recently, researchers have explored alterna-
tive strategies to derive document embeddings,
often utilizing pre-trained models in an unsuper-
vised manner (Conneau et al., 2017b; Reimers
and Gurevych, 2019; Yong and Torrent, 2020).
These models, known as encoders, pose key ques-
tions: which neural network architecture is opti-
mal for the target task, and how should the net-
work be trained? Many unsupervised methods like
SkipThought (Kiros et al., 2015), FastSent (Hill
et al., 2016), and BERT (Bidirectional Encoder
Representations from Transformers) (Devlin et al.,
2019) have been employed for document encod-
ing, though supervised learning approaches have
garnered attention more recently.

One notable supervised method is Sentence-
BERT (SBERT), which modifies BERT using a
Siamese network structure to produce semantically
meaningful sentence embeddings (Reimers and
Gurevych, 2019; Wang et al., 2022). SBERT can
be fine-tuned on context-specific data and used
to map sentences to a vector space in an unsu-
pervised manner, which clustering algorithms and
other machine-learning models can use.

Furthermore, large language models, such as
SBERT, have been enhanced in different ways for
specific tasks. For example, Chen et al. (2021) pro-
posed Inductive Document Representation Learn-
ing (IDRL) to enhance the representations of short
texts. It maps short text structures into a graph
network and recursively aggregates neighbor in-
formation of the words in the unseen documents.
Karami et al. (2022) also proposed a method that
uses punctuation to enhance text representations.

Yin et al. (2020) introduced Component Focus-
ing (CF)-BERT, which divides the input sentence
into two segments: the basic part Sbasic and the
component-enhanced part Scf . While Sbasic retains
complete sentence information, Scf focuses on crit-
ical sentence elements, such as subject, predicate,
and object, obtained through dependency parsing.

Compared to the studies mentioned above, the
proposed framework and its representation method
(E-SBERT) were specifically designed to generate
domain-aware representations from non-structured
text, while accounting for the unique requirements
of clustering tasks. The literature on domain-aware
representations is still limited, especially concern-
ing unstructured text, and our approach fills this
gap by building upon the model of CF-BERT.

While CF-BERT traditionally defines domain-
relevant components based on dependency pars-
ing, we adapted this concept to accommodate un-
structured text. Instead of relying on formal gram-
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Figure 1: AFFAIR overview.

mar structures, our model focuses on extracting
named entities and part-of-speech tags to capture
domain-specific information. This novel approach
allows us to investigate the effectiveness of leverag-
ing domain knowledge to enhance representation
models for unstructured data, predominantly pre-
trained on structured datasets.

3. AFFAIR: A Framework For
generAting Item Repesentations

This section describes AFFAIR, our proposed
framework for evaluating different representations
for public procurement items. The framework works
in three main steps, as shown in Figure 1: (i) Text
Cleaning, (ii) Information Extraction, and (iii) Text
Representation. The framework’s output is embed-
dings suitable for any target task, such as identify-
ing unique items in an unsupervised manner. Each
step comprises a set of operations, with optional
steps indicated by dotted boxes.

Following preprocessing, tokenization breaks
down preprocessed descriptions into individual to-
kens, while spellchecking corrects any misspelt
words using the Levenshtein distance. Spellcheck-
ing is exclusively applied to words not found in a
dictionary,2 where the algorithm identifies similar
words with a distance of up to two operations and
replaces the original word with the most similar
match. Lemmatization replaces each token with
its canonical form using a dictionary of inflected
Portuguese words,3 helping standardize words ap-
pearing in various forms.

Given the significance of digits in item represen-
tations, we also normalize all numbers by repre-
senting them in scientific notation, combining an
exponent and a potency (e.g., 314.0 is represented
as 3.14e+02). This approach was motivated by
findings presented in (Zhang et al., 2020).

In the context of text representation enhance-
ment, we also consider the method of canonizing
numbers proposed by (Zhang et al., 2020). The

2https://bit.ly/CorpusNILC
3https://bit.ly/DELAF_PB

authors showed that BERT’s numerical reasoning
ability is limited when dealing with small-magnitude
numbers. Thus, they proposed replacing every
number in the data with its representation in sci-
entific notation, introducing a new token ([EXP])
to denote the exponent. Such a strategy enables
BERT to associate sentence objects with their cor-
responding magnitudes expressed in the exponent,
leading to notable improvements in results.

3.1. Information Extraction
The proposed framework extracts relevant informa-
tion from the output of the set of tokens by the text
cleaning phase. Two approaches are used for this:
POS tagging and Named Entity Recognition (NER).
For POS tagging and NER, we used the library
spaCy,4 which provides models pre-trained on the
OntoNotes corpus.5

The significance attributed to words identified
by each tool varies depending on the application.
In the context of public procurement items, nouns
are deemed most critical, as determined through
an initial characterization of the real-world dataset,
instead of the subject, verb, and object as would
typically be the case in formal text. For NER, we
focus on eight out of nineteen named entity cate-
gories: PERSON, NOR (nationalities or religious
or political group), PRODUCT, LANGUAGE, PER-
CENT, QUANTITY (measurements, such as weight
or distance), ORDINAL and CARDINAL (numerals
not falling under another type).

Words identified within these eight NER cate-
gories are used to construct a structured represen-
tation of the text, comprising six categories: units of
measurement, colors, materials (e.g., wood, plas-
tic), numbers (i.e., all numeric terms), size (e.g.,
small, large), and quantity (i.e., terms describing
the item’s presentation form or quantity, e.g., pack-
age, unit). The mapping between NER categories
and the structured representation is established

4https://spacy.io
5https://catalog.ldc.upenn.edu/

LDC2013T19

https://bit.ly/CorpusNILC
https://bit.ly/DELAF_PB
https://spacy.io
https://catalog.ldc.upenn.edu/LDC2013T19
https://catalog.ldc.upenn.edu/LDC2013T19
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Table 1: Overview of the evaluated sentence embedding representations.

Model Architecture Input Level Embedding size
Bag-of-Words - Words vocabulary size
GloVe (Average) (Pennington et al., 2014a) - Words 300
fastText (Joulin et al., 2017) MLP Words 300
SIF (Weighted Average) (Arora et al., 2017) MLP Words 300
Sent2Vec (Pagliardini et al., 2018) MLP Sentences 700
InferSent (Conneau et al., 2017a) BiLSTM Sentences 1024
Sentence-BERT (Reimers and Gurevych, 2019) BERT Sentences 728
Enhanced-SBERT (Proposed) CF-BERT Sentences 728

manually. Any term not belonging to the above
categories is categorized as “text”.

To illustrate, consider the preprocessed item de-
scription “adhesive tape autoclave 19 mm x 30 m”.
After the Information Extraction step, the following
word categories would be identified: description:
{adhesive, tape, autoclave, x}; units of measure:
{mm, m}; and numbers: {19, 30}. Regarding POS
tags, the category labels would be assigned as
follows: Noun:{tape, autoclave} and Adjective: {ad-
hesive}. As for NER, the category labels would be
assigned as follows: PRODUCT :{tape, adhesive}
and CARDINAL:{19, 30}.

3.2. Text Representation

The final step involves building vector represen-
tations for the item descriptions, leveraging the
structured descriptions provided by the informa-
tion extraction module as input for a model to learn
embeddings. Here, the framework explores eight
distinct sentence representations. Table 1 presents
an overview of the compared methods, detailing the
architecture type for DNN-based models, the input
data type (words or sentences), and the dimensions
of the embeddings they were trained with.

The last entry of the table introduces Enhanced-
SBERT (E-SBERT), a method we adapted from
the principles of CF-BERT (Yin et al., 2020), which
integrates SBERT to enrich sentence vectors by
incorporating domain-dependent components. E-
SBERT is crucial in focusing on essential item
attributes facilitated by the information extraction
module. By structuring information based on rel-
evant NER categories (e.g., units of measure-
ment, colors, materials), E-SBERT identifies and
prioritizes domain-dependent knowledge, including
nouns and words associated with these categories.

When generating the component-focused em-
bedding, all nouns and words identified as belong-
ing to relevant NER categories are concatenated
and used to enhance the representation. Currently,
these words receive equal weight in the embed-
ding generation process. However, future versions
of the framework could explore assigning different

Softmax classifier

(u, v, |u - v|)

u

EA
cf

v

EA
txt EB

cf EB
txt

Pooling Pooling

BERT BERT

Acf Atxt Bcf Btxt

Sentence A Sentence BInformation
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Information
Extraction

Figure 2: Enhancement architecture for learning
enhanced embedding in a classification task.

weights to specific categories based on their impor-
tance in describing item attributes. For instance,
attributes like color or size might be more critical
than quantity in certain contexts.

Figure 2 illustrates the structure of the enhanced
representation model. Two input sentences, A and
B, are initially passed to the model to generate
fixed-size document embeddings considering the
whole text. In parallel, the model performs infor-
mation extraction for each sentence to obtain their
component-enhanced segments and generate their
embeddings. Hence, each item description yields
two vectors: the embeddings for the complete text
of the sentence Etxt and the embedding for the
component-enhanced part Ecf . The final embed-
ding e for each sentence is then computed as:

e = σ × Etxt + Ecf ,

where σ is a weight factor that adjusts the ratio of
the component-enhanced part embedding to gener-
ate the final sentence representation. Such a hyper-
parameter requires tuning during training and con-
trols the contribution of the component-enhanced
part to the final representation. A σ value closer to
0 indicates heavier reliance on the complete text,
while a value closer to 1 suggests greater reliance
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on the component-enhanced part.
In Figure 2, the resulting embeddings are rep-

resented by u and v, which can act as input for
downstream NLP tasks. For a classification task,
as considered here, u and v are concatenated with
the element-wise difference |u− v| subsequently
processed through a softmax function. The cross-
entropy loss is optimized in this case. Note that the
important components of a sentence can be easily
adapted to different tasks.

4. Identifying Groups of Similar Items

This section outlines the methodology employed to
identify groups of descriptions referring to the same
item, which is the primary objective of this study.
Here, as the datasets we consider have millions of
items, we employ a combination of heuristics and
more sophisticated clustering methods to handle
the computational complexity efficiently.

Generally, the initial tokens of a description con-
tain the most pertinent information about the item.
For example, for the item “syringe for insulin in-
jection”, the token “syringe” is the most relevant
term in the description. Hence, one straightforward
heuristic is to group items sharing the same first
token. In practice, all items beginning with “syringe”
would be grouped. While this approach applies to
Spanish or Portuguese, it can be adapted to suit
the grammatical nuances of other languages.

The first token heuristic (FT) is a starting point
for the clustering algorithm. However, it has draw-
backs. First, descriptions with misspellings or
closely joined words may inadvertently form initial
groups with only one matching item. Second, items
with similar descriptions but referring to different
objects may be erroneously grouped, as seen in ex-
amples like “milk powder” and “milk shaker”, which
are both included in the "milk" group. Nonetheless,
this behavior is expected, as it motivates the need
for more sophisticated clustering approaches.

Following the application of the FT heuristic,
the embeddings generated by the representation
methods are normalized using the UMAP method
(McInnes et al., 2018). Next, the preliminary groups
formed by the FT heuristic are refined using HDB-
SCAN (McInnes et al., 2017). Each sentence is rep-
resented in this phase by its respective generated
embedding method. For each preliminary group,
HDBSCAN is executed, considering the Euclidean
distance between sentence embeddings.

Several factors guided the choice of HDBSCAN:
(i) it can handle clusters with different densities and
detect outliers (i.e., noise); (ii) it can automatically
determine the number of clusters, which is particu-
larly useful when dealing with large datasets; (iii)
it is a hierarchical algorithm that provides a more
realistic representation of the data structure, allow-
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Figure 3: Item descriptions length distribution.

ing users to explore different levels of granularity
in the resulting clustering.

5. Experimental Evaluation

This section compares the model representations
integrated into AFFAIR, as outlined in Table 1, for
clustering public procurement items. First, we de-
tail the real-world dataset considered (Section 5.1)
and the setup of hyperparameters (Section 5.2).
Next, we present the evaluation metrics used to
assess the clustering results (Section 5.3). Finally,
we discuss the experimental results (Section 5.4).

5.1. Dataset
We consider a dataset of real-world items collected
from the Prosecution Service of the Brazilian state
of Minas Gerais system and written in Portuguese.
The dataset contains 196,747 public procurements
held between 2015 and 2018, spanning various
public administration sectors and encompassing
diverse types of items. Here, we focus on items
with descriptions containing at least one numeric
term or unit of measure, as these components are
central to our study. Such a selection resulted in
2,149,533 items, of which 2,096,664 are unique
exact descriptions. Figure 3 shows the distribution
of the number of tokens per item description.

5.2. Hyperparameters Setup
The size of the embeddings for each model was
defined based on preliminary studies, with de-
fault parameter values used when not explicitly de-
fined. For the Bag-of-Words model, embedding
size varies according to the dataset, specifically
the vocabulary size. For pre-trained word embed-
ding methods such as GloVe, fastText, and SIF, the
vector size is set to 300.

Regarding other hyperparameters, in fastText,
the context window size is set to 10, with negative
sampling employing five negative examples and an
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Figure 4: Cumulative Distribution of item counts in FT groups, with full distribution on the left and a
zoomed-in view up to 3000 on the right. The red vertical line marks a group size of 30.

initial learning rate of 0.025 by default. SBERT was
trained on Natural Language Inference (NLI) and
was fine-tuned on a synthetic dataset generated
from the million items in our real-world dataset. For
E-SBERT, the weight factor σ was set to 1 after a
thorough grid search.

To generate the synthetic dataset, we consid-
ered pairs of units of measure along with their con-
version values and random item descriptions. In
other words, for pairs of the same object, we gener-
ated descriptions with different measures that were
equivalent in their conversions. We considered
nine physical quantities: length, volume, mass, and
area. In total, 100k items were generated, with 30k
being duplicates.6

The synthetic dataset is created to develop doc-
ument representations that effectively capture infor-
mation about the scalar magnitudes of different ob-
jects. Consequently, the dataset was intentionally
tailored to emphasize numerical terms and units of
measurement, ensuring that the generated repre-
sentations could effectively encode data related to
these elements.

Finally, for the HDBSCAN algorithm, we carefully
analyzed the parameter for the minimum size of
clusters (min_cluster_size). After evaluating the
results of the first token (FT) heuristic (see Figure
4), we noted that only 3.90% of the groups initially
formed by token-based grouping had less than 31
items. Therefore, we set the minimum cluster size
to 30 to refine the clustering process.

5.3. Evaluation Metrics
When evaluating the clustering performance, we
faced the challenge of establishing a ground truth,
a common challenge in unsupervised tasks. Hence
we combined qualitative analysis with quantitative
metrics commonly used in the clustering literature.
In total, we consider four quantitative metrics that
allow us to assess the coherence and structure of

6Dataset available at: https://github.com/
laic-ufmg/ESBERT/

the resulting clusters:

Percentage of outliers. Identifies the percentage
of instances that do not fit into any identified group.
Outliers can indicate the presence of noise or am-
biguity in the dataset. Therefore, a low percentage
of outliers indicates good clustering quality.

Davies-Bouldin Score. Measures the average
similarity between each cluster and its most similar
cluster. The cluster similarity is a ratio between
intra-cluster and inter-cluster distances, defined by
the pairwise distance between centers belonging
to different clusters. A lower score indicates better
clustering, with values closer to 0 suggesting well-
separated and distinct clusters.

Calinski and Harabasz Score. Assesses the
intra-cluster and inter-cluster dispersion ratio. A
higher score indicates better-defined clusters with
a clear distinction between different groups.

Silhouette Coefficient. Measures the cohesion
and separation of clusters. It is calculated for each
instance and ranges from -1 to 1. A value close
to 1 indicates that the instance is well-clustered
and belongs to the correct cluster, while a negative
value suggests that the instance may have been
assigned to the wrong cluster.

5.4. Results and Discussion
We started our experimental analysis by running the
FT heuristic, which provided a preliminary grouping
of items. The distribution of group sizes resulting
from this initial grouping is shown in Figure 4. As
previously mentioned, the groups varied in size,
with some containing as few as 31 items and others
as many as 40,000.

Table 2 presents an overview of the clustering
metrics for different model representations. The
first two rows represent baseline results obtained
without using the FT heuristic, while the subse-
quent rows use the FT+HDBSCAN approach. Here,
we run HDBSCAN with two item representations
(SBERT and E-SBERT) to check whether incorpo-

https://github.com/laic-ufmg/ESBERT/
https://github.com/laic-ufmg/ESBERT/
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Table 2: Evaluation of clusters found by clustering with different text representations.

Representation #Clusters %Outlier %Removed Calinski Davies-bouldin Silhouette
HDBSCAN

SBERT-NLI-synth 5,160 45.02 45.02 1.24×106 0.39 0.610
E-SBERT-NLI-synth 5,925 43.14 43.14 1.45×106 0.37 0.641

FT+HDBSCAN
Bag-of-Words 31,255 25.89 29.79 2,018.6 0.48 0.621
GloVe 33,565 22.62 26.52 1,986.6 0.475 0.628
fastText 33,278 20.13 24.03 2,295.4 0.45 0.643
SIF 36,086 23.58 27.48 2,730.4 0.415 0.679
Sent2vec 32,415 19.78 23.68 2,597.5 0.462 0.635
InferSent 32,572 27.59 31.49 1,742.8 0.48 0.618
SBERT-NLI 33,115 20.31 24.21 2,360.5 0.445 0.641
SBERT-NLI-synth 36,644 17.84 21.74 3,565.9 0.421 0.685
E-SBERT-NLI-synth 36,800 20.00 23.9 3,382.2 0.434 0.672

rating knowledge about item descriptions—as done
by E-SBERT—enhances clustering outcomes. Ad-
ditionally, S-BERT was fine-tuned only with NLI
(suffix after the name of the method in the table) or
with NLI plus the synthetic dataset.

Regarding the number of clusters generated,
HDBSCAN with SBERT generated fewer clusters
but a higher percentage of outliers when compared
to other strategies. Despite the higher percentage
of outliers (45.02%) than other methods, the sil-
houette coefficient results were significantly worse
when compared to those obtained using the FT
grouping. This suggests that applying a simple
grouping strategy before clustering can improve
the clustering quality.

Notably, the representation generated by E-
SBERT, trained on the NLI dataset and fine-tuned
on the Portuguese synthetic dataset, achieved the
best results for the silhouette coefficient using Eu-
clidean distance. It also yielded the best average
results for the Calinski and Harabasz scores and
the Davies-Bouldin scores (1.45×106 and 0.37, re-
spectively) when solely applied to HDBSCAN. We
believe this is due to the high number of items cat-
egorized as outliers (43.14%), which are removed
from the original collection of items for evaluating
the clustering results.

E-SBERT did not significantly improve com-
pared to SBERT when applied with FT. However,
it achieved better results when used solely with
HDBSCAN (second row of the table). Fine-tuning
SBERT on the Portuguese synthetic dataset im-
proved the clustering results for all metrics, empha-
sizing the importance of domain-specific fine-tuning
for representation models used in unsupervised
tasks such as text clustering.

Moreover, even though simple text representa-
tion strategies performed worse than SBERT, they
yielded reasonable results. For instance, Bag-of-
Words performed better than InferSent. However,

our findings indicate that unsupervised methods
such as SIF can yield results comparable to those
obtained by SBERT, emphasizing the effectiveness
of simple weighted average strategies for building
sentence representations.

In conclusion, the experimental results suggest
that using sophisticated supervised methods, such
as InferSent, besides SBERT, to derive vectors for
unsupervised tasks may not offer significant ad-
vantages. In contrast, unsupervised methods can
provide results comparable to those of SBERT. Ad-
ditionally, fine-tuning SBERT on a synthetic dataset
tailored to the domain can significantly improve
vector representations for item descriptions, as evi-
denced by the enhanced performance of clustering
evaluation metrics.

Qualitative Analysis. To exemplify item groups
obtained when applying HDBSCAN, using the rep-
resentation obtained by SBERT trained on the NLI
dataset and fine-tuned on the Portuguese synthetic
dataset, Table 3 shows the largest subgroups for
the first token “Mask”. The group “Mask”. The
group “Mask” has 2,331 items. HDBSCAN split this
group into 16 subgroups, each representing a spe-
cific variation of the item. Note that four subgroups,
depicted in Table 3, have numbers as one of the
most frequent tokens, highlighting the importance
of numbers for describing items.

6. Conclusions and Future Work

In this work, we introduced a framework designed to
handle non-standard text data characterized by di-
verse measures and numerical content. Our frame-
work includes text preprocessing, extraction, and
representation steps, offering a robust solution to
handle such data. By evaluating various sentence
representation methods, our framework enables
the assessment of their efficacy in addressing the
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Table 3: Subgroups of “Mask”.

Subgroup # items Most frequent tokens Example of description

mask_1 490
"mask", "50", "elastic", "plastic",
"triple", "with", "surgical", "box",
"units"

plastic mask for surgical use box with 50 units

mask_6 279
"mask", "100", "plastic", "with",
"elastic", "with", "polypropylene",
"surgical", "unit", "layer"

plastic mask with elastic band and layer
of polypropylene box 100 units

mask_0 270
"mask", "with", "for", "elastic",
"reservoir", "plastic", "facial",
"oxygen", "high", "reservoir"

mask for use in larynge for respiratory
airway control

mask_11 234 "mask", "95", "n", "with", "filter",
"elastic", "protection", "%"

mask for surgical use with protection n95 medium
size against tuberculosis bacillus

mask_9 198 "mask", "3", "white", "with",
"layer", "larynx", "for" white mask for larynx made of faux fabric with 3 layers

challenge of grouping items, a task crucial for de-
tecting overpricing and generating price statistics.

We proposed an enhanced approach to text rep-
resentation, E-SBERT, focusing on capturing the
essential components within sentences to produce
more robust representations. Our experiments
highlighted the effectiveness of combining simple
heuristics, such as the first token grouping, with
unsupervised text representation models like SIF
and SBERT. These approaches outperformed more
complex methods like InferSent. Furthermore, our
findings underscored the importance of fine-tuning
domain-specific data for unsupervised tasks, par-
ticularly in text clustering scenarios.

Limitations and Future Work. Despite the
promising outcomes of our study, some limitations
warrant attention for future investigations. First,
establishing ground truth in our clustering task re-
mains a significant challenge. While qualitative
analysis was instrumental, correlating these quali-
tative insights with quantitative metrics poses chal-
lenges due to the limited number of analyses con-
ducted. Additionally, the generalizability of our
framework and methods across different domains
and languages requires further exploration.

As future work, we can further analyze the clus-
ters obtained by applying topic modeling tech-
niques to gain deeper insights into their underlying
themes. By extracting keywords using pre-trained
document representation models, we can interpret
the clusters as topics and use them for semantic
search. Additionally, we plan to investigate the ap-
plicability of our text enhancement methodology in
other contexts, such as product reviews and elec-
tronic health records (EHR).
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