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Abstract
Pre-trained language models (PLMs) are shown to be vulnerable to minor word changes, which poses a big threat to
real-world systems. While previous studies directly focus on manipulating word inputs, they are limited by their means
of generating adversarial samples, lacking generalization to versatile real-world attack. This paper studies the basic
structure of transformer-based PLMs, the self-attention (SA) mechanism. (1) We propose a powerful perturbation
technique HackAttend, which perturbs the attention scores within the SA matrices via meticulously crafted attention
masks. We show that state-of-the-art PLMs fall into heavy vulnerability that minor attention perturbations (1%) can
produce a very high attack success rate (98%). Our paper expands the conventional text attack of word perturbations
to more general structural perturbations. (2) We introduce S-Attend, a novel smoothing technique that effectively
makes SA robust via structural perturbations. We empirically demonstrate that this simple yet effective technique
achieves robust performance on par with adversarial training when facing various text attackers. Code is publicly
available at github.com/liongkj/HackAttend.

Keywords: Explainability, Neural language representation models, Semantics

1. Introduction

Pre-trained language models (PLMs), e.g. BERT
(Devlin et al., 2019), GPT (Radford et al., 2018),
RoBERTa (Liu et al., 2019), ALBERT (Lan et al.,
2020), and DeBERTa (He et al., 2021) have demon-
strated human-level performances on a series of
challenging natural language processing (NLP)
tasks, e.g. reading comprehension (Sun et al.,
2019) and logical reasoning (Zhou et al., 2020; Yu
et al., 2020; Wu et al., 2023a). Yet, despite their
impressive capability, studies unveil that such deep
neural networks can be easily misled by minor word
perturbations, which poses a significant challenge
in deploying robust NLP systems.

Augmenting training data with adversarial sam-
ples generated by text attack has been proven to
be an effective technique to create robust language
models. Existing attackers generate the adversar-
ial samples by manipulating the input text, e.g. by
word substitution, swapping or insertion (Jin et al.,
2020). Nevertheless, these defense methods are
limited by the means of the attack and have limita-
tions in their effectiveness against attacks in more
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general situations, such as word substitutions be-
yond synonyms or semantics. Moreover, incorpo-
rating such adversarial samples into training always
results in a large degradation of the performance.

Our key vision is that the vulnerability of a lan-
guage model derives from its architecture and inner
mechanism. By examining the vulnerability of the
inner mechanism, it is possible to gain insights into
why language models are susceptible to input per-
turbations. In this paper, we specifically investigate
the self-attention (SA) mechanism in the context of
model robustness, an area that has received limited
attention despite its fundamental role in PLMs.

To examine the vulnerability of SA in PLMs, We
first propose a novel perturbation strategy HackAt-
tend. Unlike previous attack methods which focus
on the input words, our algorithm perturbs the SA
weights within the SA matrices to trigger the model
to a wrong prediction.

Figure 1 illustrates how HackAttend generates
adversarial samples in the form of custom attention
mask which successfully disrupt SA mechanism’s
ability to capture contextual information effectively.
Empirical experiments were conducted on a wide
range of tasks, including reading comprehension,
logical reasoning, and sentiment analysis, and nat-
ural language inference. Our results demonstrate
that state-of-the-art language models are heavily
vulnerable to HackAttend, achieving high attack

github.com/liongkj/HackAttend
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Figure 1: Illustration of the process of HackAttend
manipulating the SA mechanism. The perturbation
of SA units (highlighted in orange) demonstrates
how the algorithm induces misclassification in senti-
ment analysis by flipping the activation states. The
example perturbation shows the transition from a
positive to a negative sentiment interpretation, pro-
viding a visual representation of HackAttend ’s ef-
fect on the model’s decision-making process for
the SST-2 dataset.

success rate with only minor SA perturbations.
Building upon our findings, we then propose

a novel smoothing technique S-Attend, which
smooths the attention scores during training. Since
our technique perturbs the model structure, result-
ing in no bias to input distribution, it unlocks impres-
sive robustness outcome with minor performance
compromise.

Our contributions are summarized below:
• We are the first to discuss the perturbations

and smoothing technique orienting SA.
• We analyze the impact of different perturbation

levels in the SA matrices on downstream tasks,
providing insights into the role of SA in capturing
task-specific signals.
• We propose a new smoothing technique to

defend against general attacks.

2. Related Work

Our work introduces a novel perturbation strategy
on the SA component. Similar to the end goal
of text adversarial attack algorithms, the objective
of HackAttend perturbation is to induce misclas-
sifications in language models. Examples of text
adversarial attacks includes character level attacks
(e.g. TextBugger (Gao et al., 2018), DeepWordBug
(Li et al., 2019), HotFlip (Ebrahimi et al., 2018)) and
the word level (e.g. TextFooler (Jin et al., 2020),
BERT-Attack (Li et al., 2020), SemAttack (Wang
et al., 2022), PWWS (Ren et al., 2019), and BBA
(Lee et al., 2022). While these methods pay atten-
tion on the scope of input text and word embedding,
our research, in contrast, places emphasis on the
architecture of the model itself. Our goal is not to

propose a new algorithm for real-world adversarial
attacks, but rather to gain a deeper understanding
of this unexplored area.

Our work focuses on the fundamental architec-
ture, self-attention (SA) mechanism (Vaswani et al.,
2017) of PLMs such as RoBERTa (Liu et al., 2019),
ALBERT (Lan et al., 2020), and DeBERTa (He et al.,
2021). SA has been extensively studied in the lit-
erature (Shi et al., 2021; You et al., 2020; Zhang
et al., 2020b). Wu and Zhao (2022) initially discuss
the robustness of SA, highlighting the model’s ten-
dency to overemphasize certain spurious keywords
while ignoring overall semantics. Drawing upon this
observation, we leverage this insight to develop our
perturbation strategy.

In previous literature, various metrics have been
employed to impose constraints on perturbation lev-
els in order to minimize perceptibility between orig-
inal and adversarial samples. Metrics such as Jac-
card similarity, cosine similarity, Earth Mover’s Dis-
tance (Yu and Herman, 2005), MoverScore (Zhao
et al., 2019) and BERTScore (Zhang et al., 2020a)
have proven effective in evaluating semantic simi-
larity of the input. However, the Hamming Distance
provides an alternative perspective in our evalua-
tion, allowing us to control perturbation levels at a
structural level.

It is worth noting that adversarial training is usu-
ally adopted as the means to enhance the ro-
bustness of models (Goodfellow et al., 2015; Zhu
et al., 2020; Wu et al., 2023c). In contrast to prior
research, we distinguish ourselves by removing
the adversarial nature and presenting an efficient
smoothing technique in improving model robust-
ness in our study. Our method employs random
masking of attention units, contrasting with conven-
tional techniques that mask whole unimportant at-
tention heads during training (Budhraja et al., 2020)
and inference (Cao and Wang, 2021), or adding an
extra layer of complexity (Fan et al., 2021). Through
empirical evidence, we demonstrate the substan-
tial advantages of incorporating structural pertur-
bations to achieve comprehensive and resilient ro-
bustness against diverse attacks.

3. Introduction to HackAttend

This section elaborates on our proposed Hack-
Attend perturbation design. HackAttend distin-
guishes itself from conventional text attacks as our
main purpose is for interpretability of the robustness
of language models.

3.1. Notations
We first define the notations used in the methodol-
ogy:

α Masking percentage



17227

NL / NH Number of layers / heads in the victim
model

lmax / hmax Maximum number of layers / heads
perturbed

SAi,j,k,l The kth-row lth-column attention unit
in the SA matrix of the jth head and
ith layer

M / M ′ Original / adversarial attention mask
SL / SH Importance score of a layer or head

3.2. Overview of Hackattend
A PLM consists of multiple SA layers, each with
varying numbers of attention heads (also referred
as SA matrices). Each cell within these matrices
represents a SA unit. For example, a BERT-base
model typically includes 12 (layers) x 12 (heads)
attention matrices. Our proposed method, Hack-
Attend efficiently identifies adversarial samples
across various model configurations by employing
a greedy algorithm approach.

The overall objective of the HackAttend algorithm
is to rank and assess the significance of every SA
matrices in the model based on their eventual im-
pact the final model prediction (discussed in Sec-
tion 3.3. We employed a novel gradient-based tech-
nique (details in Section 3.4) to prioritize the most
significant SA units within the candidate SA matri-
ces. We will then apply a masking operation on
the prioritized SA units within a constraint require-
ment defined in the Section 3.5 to ensure minimal
perturbation on the attention mask while effectively
exploring the search space.

Unlike traditional adversarial samples, HackAt-
tend generates an adversarial structure (in the form
of custom attention mask) which perturbs the un-
derlying attention calculation.

3.3. Layers and Head Selection
Layers Selection In our approach, we assess
each layer’s importance in the model by iteratively
masking all attention heads within that layer. If
masking a specific layer, denoted as the i-layer,
results in an incorrect model prediction, this layer
is deemed highly important and assigned a top
importance score. For cases where the model still
predicts correctly, layer importance is determined
by the reduction in the model’s output probability.
A greater decrease in this probability signifies a
higher importance during prediction.

Heads Selection Similar to the process for layer
selection, we use a comparable strategy to evalu-
ate the importance of individual heads, denoted as
Hj , where each Hj corresponds to a specific head
in the model’s ith layer. We systematically mask

the heads in the ith layer, one at a time, and calcu-
late the model’s output probability, resulting in the
head importance score SH [i, j]. The scores were
ranked in descending order, prioritizing the more
vulnerable head as the target for the perturbation.

3.4. SA Units Selection

To determine the SA units that disrupt the model’s
attention mechanism, we utilize a gradient-based
algorithm for ranking the SA units, inspired by the
work of Wu and Zhao (2022) where the underlying
premise is SA units with larger gradients has more
significant impact on model predictions. By mask-
ing these SA units in the worse-case direction, we
maximizes the empirical training risk. Our process

Dot Product

Mask Hook

SOFTMAX

Q K V

Dot Product

Figure 2: Placement of mask hook

involves the use of original attention mask (M ),
where no attention units are initially masked at the
start of each forward step. We then compute the
gradients of the loss function with respect to the M ,
and rank the SA units based on their gradients in
the backward step.

To obtain the gradients of SA units during the
backward pass, we add a custom backward hook in
the encoder layer, illustrated in Figure 2, to capture
the gradients flowing through M . These modifica-
tions are applied to the original SA layer, specifically
just before the softmax operation, while keeping
the remaining components unchanged.

Nevertheless, it has come to our attention that
specific attention heads may generate very small
gradients in certain samples such that ranking with
gradients is impractical, as these gradients may
essentially become zero across all units. As a fall-
back strategy, the attention scores obtained during
the forward pass will serve as a proxy score as
proposed by Michel et al. (2019). Furthermore, an
ablation study comparing both ranking strategies
can be found in Subsection 6.2.
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3.5. Constraints
In the final step of the algorithm, the attention mask
M with the highest importance rankings within the
candidate SA matrices is perturbed, preventing the
model from attending to those units during com-
putations. In this process, masking involves ex-
panding the original attention mask, which has di-
mensions of [seq_len, seq_len], to create a
modified mask with dimensions of [num_layers,
num_head, seq_len, seq_len], and selec-
tively deactivating specific SA units.

To ensure the learning process remains intact,
a constraint is imposed on the percentage of to-
kens to be perturbed. This constraint guarantees
the high similarity between M and M ′, thereby pre-
serving the overall model’s functionality while main-
taining an optimal adversarial approach.

To implement the token masking constraint, the
parameter masking percentage, denoted as α, is
introduced. It is assigned a value of 0.01, represent-
ing 1.0% of the non-padding tokens. For example,
let’s consider a SA matrix with 225 units (a 15× 15
matrix), and the goal is to mask 1% of the units. In
this case, the top 2 units with the highest gradients
would be selected and denoted as SAi,j,k1,l1 and
SAi,j,k2,l2 , where (k1, l1) and (k2, l2) represent the
indices of the top 2 sorted SA units. M ′ serves as a
replacement for the original attention mask before
it was fed into the victim model.

3.6. Algorithm
HackAttend employs a greedy approach to gener-
ate adversarial attention mask by ranking all SA
matrices. It iteratively selects the most vulnerable
layers and heads based on their importance scores
and searches for important SA units based on gra-
dients. The resulting adversarial structure, denoted
as M ′, is then assessed whether it could induce
misclassification of the victim model. The algorithm,
with its greedy decision-making characteristic, is
presented in Algorithm 1.

4. Empirical Experiment

This section reports our empirical results.

4.1. Evaluation Settings
We evaluate the effectiveness of the perturbations
and its impact using the following metrics:

Hamming Distance This metric quantifies the
extent of perturbations to the SA matrix. Since
the attention matrix is a binary matrix, Hamming
distance measures the number of bits that differ
between M and M ′. We average the Hamming dis-
tance across each perturbed SA matrix as follows:

Algorithm 1 HackAttend
Input: Maximum number of layers perturbed (lmax),

Maximum number of heads perturbed (hmax), Victim
model (f ), Masking percentage (α)

1: Select a sample {x, y}
2: Go forward step and obtain the gradients
3: SL ← Rank all layers based on importance scores
4: for li ← 1 to lmax do
5: SH ← Rank the heads in the SL[li]

th layer based
on their importance scores

6: for hj ← 1 to hmax do
7: M ′ ← Mask the units in SH [hj ]

th head with top
α largest gradients

8: ŷ ← f(x,M ′)
9: if ŷ ̸= y then

10: return SUCCESS
11: end if
12: end for
13: end for
14: return FAIL

dH(M,M ′) =

∑NSA

i=1 (Mi ⊕M ′
i)

NSA

where ⊕ represents the XOR (exclusive or) opera-
tion, NSA is the number of SA matrices perturbed.

Clean Accuracy This metric is used to measure
the accuracy score on the clean set.

Robust Accuracy This metric is used to measure
the accuracy score under attack/perturbation.

Attack Success Rate (ASR) This metric is used
to measure the perturbation’s success rate when
the model makes an incorrect prediction after the
perturbation. The ASR is computed as follows:

ASR =
# successful perturbation

# correct predictions

An effective perturbation algorithm has the fol-
lowing properties: 1) a low Hamming distance, indi-
cating high degree of similarity and the perturbation
is cunning yet minimally affects the attention struc-
ture; 2) a high ASR and/or low robust accuracy is
desired, indicating the effectiveness successfully
inducing misclassifications;

4.2. Dataset
For our experiments, we choose four representative
NLP tasks:
• Sentiment Analysis: Stanford Sentiment Tree-

bank (SST-2) (Socher et al., 2013);
• Natural Language Inference (NLI): Hel-

laSWAG (Zellers et al., 2019), a multiple-choice
common-sense reasoning dataset;
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• Dialogue Comprehension: Dialogue-based
machine reading comprehension (DREAM) (Sun
et al., 2019), in a multiple-choice format;
• Logical Reasoning: ReClor (Yu et al., 2020),

a machine reading comprehension in a multiple-
choice format.

Dataset Mean Max Min
DREAM 75.3 128.0 24.0
HellaSWAG 86.7 128.0 19.0
ReClor 125.1 128.0 66.8
SST-2 25.2 55.0 4.0

Table 1: Sequence length of the Test/Dev split.

4.3. Setup
Victim Models For our experiments, we selected
BERT-base as the victim model. We initially fine-
tuned this pretrained model on a target dataset
(training details can be found in Appendix), fol-
lowed by perturbation experiments using the same
dataset on a single NVIDIA TITAN RTX 24G.

In the HackAttend implementation, we employ
two configurations to limit the number of lay-
ers/heads that the algorithm can target. The full-
scale setting uses parameters hmax and lmax set
to 12, while the half-scale is set to 6, thereby re-
ducing the search space. Note that these settings
do not imply that all layers/heads are perturbed si-
multaneously. The attention mask is related to real
sequence length of the input text i.e. the non-pad
tokens. With the same mask percentage α, longer
sequences results in more SA units being masked.
Hence, the statistics of sequence length is shown
in Table 1.

4.4. Results
Main Results Table 2 demonstrates the overall
results of HackAttend across various tasks. The
introduced perturbations demonstrate its effective-
ness, achieving an ASR of at least 98.9% in 3 out of
4 tasks and reducing the clean accuracy on DREAM
(∼ 64%), ReClor (∼ 52%), and HellaSWAG
(∼ 39%) under the full-scale setting. HackAttend is
sub-optimal in the case of SST-2 in both configura-
tions, yielding ASR of 27.4% and robust accuracy
drop (∼ 26%) and 10.2% ASR, robust accuracy drop
(∼ 10%), respectively.

We hypothesize that this discrepancy can be at-
tributed to the varying degrees of the reliance on SA
layer across different tasks. For example, in simple
tasks like sentiment analysis, the model depends
on a combination of linguistic features and local
keywords, making them less sensitive to perturba-
tions. In contrast, tasks involving complex question
answering and story comprehension heavily rely

dream hellaswag reclor sst-2
Task
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Figure 3: Normalized count of successful pertur-
bation grouped by layers chosen and task. -1 indi-
cates a failed perturbation.

on attention mechanisms, as demonstrated empiri-
cally in Subsection 4.4.

Results on Perturbation Strength Notably, in
the half-scale setting, the gradient-based algorithm
remains significant in most of the datasets. On
DREAM, the drop in ASR% was only marginal, mea-
suring at 7.7%. On HellaSWAG, the drop was even
smaller, at 3.2%. The ReClor dataset exhibited
minimal decrease in ASR, with only 0.4% reduc-
tion. These findings indicate that half-scale setting
is effective, but perturbations under the full-scale
setting yield more promising results.

Results on Different Components Table 3 pro-
vides a summary of baseline experiments, encom-
passing both the performance of the HackAttend al-
gorithm and the impact of each component. For our
baseline, we employ random selection for layers,
heads, and SA units. The results show that incor-
porating importance scores indeed enhances the
perturbation efficiency (lesser number of queries).
However, empirically, we find that gradient alone is
sufficient to identify vulnerable SA units (Wu and
Zhao, 2022).

Vulnerability of Different Layers Figure 3 of-
fers valuable insight into the vulnerability of various
layers. It shows the frequency of each layer was se-
lected for perturbation. The counts are normalized
to provide relative comparison of the frequencies of
successful perturbations across different layers and
tasks. Higher layers, i.e. the 12th layer, is notably
more sensitive to HackAttend, given its responsi-
bility in managing long-range dependencies and
global context.

This consistency applies to all tasks except SST-
2, where all layers exhibit similar performance. This
is because sentiment analysis tasks rely heavily on
local context, like keywords features, which is often
sufficient to yield accurate predictions.
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Dataset Max N ASR% clean% robust% # Query Hamming

DREAM 12 98.9 64.7 0.7 18.6 611.4
6 91.2 5.7 11.2 618.2

HellaSWAG 12 99.9 39.6 0.0 8.8 1222.2
6 96.7 1.3 7.1 1232.8

ReClor 12 100.0 51.8 0.0 7.3 2151.3
6 99.6 0.2 6.5 2153.7

SST-2 12 27.4 93.9 67.8 123.6 9.3
6 10.2 83.8 34.1 9.5

Table 2: Max N indicates the maximum number of candidate heads/layers and α= 1.0% and the results
for DREAM, HellaSWAG, ReClor, and SST-2 are reported on the dev set.

Setting ASR% # Query Hamming
DREAM
Baseline 61.7±1.31 76.4±1.25 565.3±79.20

Imp. w/o Grad 64.6±0.14 65.8±0.07 562.4±3.34

Grad w/o Imp. 98.9±0.00 20.0±0.09 611.9±0.33

HackAttend 98.9 18.6 611.4
HellaSwag
Baseline 88.4±0.06 39.9±0.18 1191.6±2.17

Imp. w/o Grad 88.8±0.02 33.5±0.01 1195.6±0.38

Grad w/o Imp. 99.9±0.00 8.3±0.01 1221.9±0.13

HackAttend 99.9 8.8 1222.2
ReClor
Baseline 77.9±0.10 61.2±1.45 2123.4±203.71

Imp. w/o Grad 77.6±0.70 47.4±0.55 2109.3±21.85

Grad w/o Imp. 100.0±0.00 5.5±0.00 2151.3±0.00

HackAttend 100.0 7.3 2151.3
SST-2
Baseline 0.6±0.01 143.4±0.00 9.9±2.29

Imp. w/o Grad 0.6±0.00 143.6±0.00 8.5±0.33

Grad w/o Imp. 27.3±0.00 124.8±0.01 9.3±0.00

HackAttend 27.4 123.6 9.3

Table 3: Experimental results for various tasks
(mean ± variance over three seeds). “Baseline” in-
dicates random layer, head and SA units selection,
while “Imp.” represent layer and head selection
using Importance Score. “Grad” represent SA unit
selection using gradient.

4.5. Case Study

The functionality of HackAttend is illustrated
through a successful example from the SST-2
dataset, where the ground truth label is Negative
(Figure 4a). HackAttend masks the SA unit cor-
responding to the word pair “a-emotional” based
on gradients (labeled in red). This redirects the
model’s attention from the more relevant word pair
“a-emotional” to “a-inconsistent” (labeled in green),
effectively deceiving the model into focusing on a
less informative feature (Figure 4b).

While “a-inconsistent” contributes to understand-
ing of global semantics, the word pair “a-emotional”
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Figure 4: Comparison of attention maps on the 2nd

layer, 10th head of BERT-base before and after
perturbation. The sample is "A wildly inconsistent
emotional experience." from SST-2. The sentence
is classified as positive after the perturbation.

contains local semantics in the form of emotional
cues. HackAttend effectively misleads the model
by selectively suppressing these cues through at-
tention scores manipulation.

5. Efficiency Analysis

We choose two representative text attackers BERT-
Attack (BA) (Li et al., 2020) and TextFooler (TF) (Jin
et al., 2020) from TextAttack1 on DREAM, ReClor
and SST-2 where the benchmark results on the first
100 successful perturbations are summarized in
Table 4.

For complex tasks, HackAttend outperforms its
counterparts in generating adversarial samples
with higher efficiency. Unlike the other two algo-
rithms, which require more time as input sequences
grow longer, HackAttend maintains relatively con-
sistent efficiency across different sequence lengths,
with the exception of SST-2.

6. Ablation Study

All experiments use the same hyperparameter as
in Section 4 unless otherwise specified.

1https://github.com/QData/TextAttack

https://github.com/QData/TextAttack
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Dataset Perturbation/Attack Avg Time (s) # Query

DREAM
HackAttend (ours) 0.7 13.1
TextFooler 0.9 90.7
BERT-Attack 0.8 64.3

ReClor
HackAttend (ours) 0.6 7.3
TextFooler 1.9 170.4
BERT-Attack 2.0 103.8

SST-2
HackAttend (ours) 23.8 67.2
TextFooler 0.4 92.5
BERT-Attack 1.0 40.0

Table 4: Efficiency Analysis - Average Time and
Query Count for success samples. Our method
outperforms TextFooler and BERT-Attack in terms
of execution time and query efficiency. Candidate
size (k) for BERT-Attack is set to 10.

6.1. Effect of Masking Percentage
We evaluate the effect of mask percentage (α)
by comparing α={1%, 0.1%, 0.01%}. Table 5
demonstrates that ASR maintains reasonable high,
DREAM (∼ 72%), HellaSWAG (∼ 92.5%) and Re-
Clor (∼ 84.9%) even with α as low as 0.01%. This
suggests that selection of SA unit using gradients is
effective in generating adversarial samples across
various datasets and level of masking.

Dataset Mask% ASR% Hamming # Query

DREAM
1.00 98.9 611.4 18.6
0.10 91.2 62.4 36.3
0.01 72.7 5.7 58.9

HellaSWAG
1.00 99.9 1221.2 8.8
0.10 98.9 121.6 17.6
0.01 92.5 11.5 29.7

SST-2
1.00 27.4 9.3 123.6
0.10 6.4 1.1 139.0
0.01 6.4 1.0 139.1

ReClor
1.00 100.0 2151.3 7.3
0.10 100.0 213.3 15.9
0.01 84.9 19.4 40.7

Table 5: Impact of masking percentage on perfor-
mance metrics across different tasks.

6.2. Effect of Ranking for SA unit
Table 6 shows both ranking by score and by neg-
ative gradient can achieve 100% ASR, with some
trade-off on number of queries and per-query time.
Indeed, the gradients pointing in the steepest de-
scent direction have significant impact on the loss
function, are efficient in identifying vulnerable SA
units. Masking them will more likely contribute to
errors in the model’s predictions.

Alternatively, the attention score, assigned as a

Ranking ASR% Hamming # Query Avg Time (s)
Gradient 100 2151.3 7.3 0.11
Score 100 2151.3 22.8 0.08

Table 6: Performance metrics reported on ReClor
for different Ranking Strategies (α = 1.0%). Score
represent Attention Score.

normalized value, shows the relevance of each SA
unit to the model’s predictions. However, since the
attention score evaluates each unit individually, it
may require perturbing more SA matrices to disrupt
the necessary path for accurate predictions.

7. HackAttend Inspired Smoothing

In this section, we explore S-Attend, a smooth-
ing technique to improve model robustness perfor-
mance, which is particularly effective in situations
where attacker diversity or characteristics are not
fully known.

Adversarial training (AT) (Goodfellow et al., 2015)
is proven to be an effective defense technique by
augmenting the training data with adversarial sam-
ples. However, storing such adversarial structures
(e.g. for multiple attention heads/layers) slows
down training or requires large amount of stor-
age. Rather, we propose an efficient technique
- randomly smoothing the attention weights during
training - S-Attend. Concretely, we randomly apply
masking on attention weights following a paramet-
ric Bernoulli distribution with α = {0.1,0.2,0.5} for
all heads.

Table 7 presents the performance of baseline
BERT model, S-Attend, adversarial training tech-
niques on BERT Model (CreAT (Wu et al., 2023b)
& FreeLB (Zhu et al., 2020)) and ADA (adversar-
ial data augmentation) technique against BERT-
Attack (BA) and TextFooler (TF) adversarial at-
tacks. ADA models refer to BERT models trained
on datasets augmented by specific attack algo-
rithms, subsequently evaluated for their defensive
effectiveness against those attacks. The column
"clean%" and "robust%" represent evaluation result
on clean dataset and adversarial augmented test
sets using respective attackers, respectively.

While this smoothing technique is relatively in-
expensive and straightforward, empirical experi-
ments demonstrates that S-Attend trained model
has shown comparable or even superior robust-
ness performance in specific tasks when compared
to the regular adversarial training method, often
with little to no compromise to clean performance.

In DREAM, S-Attend† outperformed BA(ADA)
with a 1.2% increase in robust accuracy and a
marginal 0.3% drop in clean accuracy compared
to TF(ADA) while maintaining competitive clean ac-
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Figure 5: Comparison of attention maps for the text a solid examination of the male midlife crisis. from
SST-2 on the 10th layer, 4th head of BERT-base between normal model (on clean and BERT-Attack
augmented dataset), and S-Attend model (on augmented dataset). After the adversarial attack, the
normal model misclassifies as negative, while S-Attend model correctly maintains as positive.

Dataset Defense/Smoothing clean% robust%
TF BA

ReClor

Baseline 51.8 0.8 2.0
CreAT 49.0 46.6 48.0

FreeLB 50.4 50.2 49.6
TF(ADA) 47.8 47.4 47.8
BA(ADA) 47.4 47.0 46.6

S-Attend (α = 0.1) 48.6 47.4 47.8
S-Attend (α = 0.2) 51.0 50.0 49.6

S-Attend† (α = 0.5) 52.8 51.4 51.2

DREAM

Baseline 64.7 19.3 3.8
CreAT 65.0 55.1 55.2

FreeLB 65.1 56.2 55.1
TF(ADA) 57.4 55.6 54.1
BA(ADA) 55.7 51.9 52.5

S-Attend (α = 0.1) 63.2 54.2 52.8

S-Attend† (α = 0.2) 64.4 54.6 53.7
S-Attend (α = 0.5) 63.0 53.0 52.8

Table 7: Robust Performance Evaluation: Baseline
model vs. Adversarial Training models vs. ADA
models. Baseline represents regular fine-tuned
BERT base. † denotes the best S-Attend Model.

curacy. In ReClor, the S-Attend† model stands
out prominently with remarkable performance. It
boosts clean accuracy by 1.0% compared to the
baseline, along with reducing robust accuracy by
0.4% and 0.6% in both ADA test sets.

The effectiveness of the smoothing mechanism
employed by S-Attend can be attributed to two key
factors. 1)During training, S-Attend promotes the
activation of various components, which in turn
aids in reducing sensitivity to noisy input data. 2)
Attention weight perturbation during training helps
the model to learn a more generalized representa-
tion, capturing global semantics and intricate word
relationships. Fundamentally, this significantly en-
hances the model’s robustness (Wu et al., 2020).

7.1. S-Attend Against HackAttend

To further validate S-Attend ’s effectiveness, we
compared various methods against HackAttend
perturbations, as seen in Table 8. These results
highlight our model’s robustness against a broad
spectrum of attacks, be it conventional adversarial
attacks or perturbations like HackAttend. Notably,
the smoothing technique can either reduce ASR%
or, at the very least, increase query counts.

Both CreAT and FreeLB exhibits limited effective-
ness against HackAttend, specifically on ReClor.
In the other hand, our simple yet straightforward
smoothing technique effectively mitigates this limi-
tation. However, it’s worth noting that the ASR% of
HackAttend remains high after smoothing, indicat-
ing the SA component still presents vulnerabilities.

Dataset Method Mask% ASR%

ReClor

Baseline

1.00

100.0
S-Attend 100.0

CreAT 100.0
FreeLB 100.0

Baseline

0.10

99.6
S-Attend 87.1

CreAT 100.0
FreeLB 100.0

DREAM

Baseline

1.00

98.9
S-Attend 97.5

CreAT 100.0
FreeLB 98.9

Baseline

0.10

91.2
S-Attend 85.1

CreAT 90.0
FreeLB 88.3

Table 8: Robustness evaluation against HackAt-
tend perturbations. Adversarial Training vs. S-
Attend smoothing. Baseline represents regular
fine-tuned model.
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7.2. Case Study
The aftereffects of applying S-Attend could be
demonstrated through a successful scenario where
our model correctly maintains its predictions even
when subjected to adversarial attacks. As an exam-
ple from SST-2 (Figure 5), the attention heatmap in-
dicates that the words “solid” and “examination” are
pivotal in the model’s positive sentiment prediction.
However, a synonym word swap (“solid”→“hard”)
by BERT-Attack causes misclassification due to
spurious patterns, which suggest that models tend
to heavily rely on word matching (Hao et al., 2021).

In contrast, the S-Attend model showcases its
remarkable capability and adaptability in effectively
focusing on critical cues like “midlife” and “crisis”.
It demonstrates its ability to shift its attention, when
confronted with potentially misleading word sub-
stitutions, such as synonyms and semantically re-
lated terms, while maintaining predictive accuracy
in challenging linguistic scenarios.

8. Conclusion

In this paper, we presented HackAttend, a method
for perturbing SA-based PLMs. Our experiments
demonstrated its effectiveness in generating ad-
versarial structures, particularly on complex tasks.
HackAttend achieves high success rates with min-
imal perturbation. Additionally, we proposed S-
Attend, a smoothing technique that enhances the
model SA structure with minimal impact on train-
ing time, while exhibiting competitive performance
against other adversarial training.

Limitations
This paper only studies on encoder-only architec-
ture. Firstly, extending the applicability of HackAt-
tend to other model architectures, such as encoder-
decoder architectures like T5 (Raffel et al., 2020)
or decoder-only architectures like GPT (Radford
et al., 2018) are not studied. We did not evaluate
HackAttend on large language models due to the
resource limitations.
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10. Appendices

Fine-tuning Details

LR BSZ EP WP MSL
DREAM 3e− 5 16 8 0.1 128
HellaSWAG 2e− 5 32 3 0.1 128
ReClor 2e− 5 24 6 0.06 128
SST-2 2e− 5 32 3 0.06 128

Table 9: Suggested fine-tuning setting. LR: learn-
ing rate; BSZ: batch size; EP: training epochs; WP:
warmup proportion; MSL: sequence length;
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