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Abstract
Hierarchical text classification (HTC) is a challenging subtask of multi-label classification due to its complex
taxonomic structure. Nearly all recent HTC works focus on how the labels are structured but ignore the sub-structure
of ground-truth labels according to each input text which contains fruitful label co-occurrence information. In
this work, we introduce this local hierarchy with an adversarial framework. We propose a HiAdv framework
that can fit in nearly all HTC models and optimize them with the local hierarchy as auxiliary information. We
test on two typical HTC models and find that HiAdv is effective in all scenarios and is adept at dealing with
complex taxonomic hierarchies. Further experiments demonstrate that the promotion of our framework indeed
comes from the local hierarchy and the local hierarchy is beneficial for rare classes which have insufficient training data.
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1. Introduction

Hierarchical text classification (HTC) aims to cate-
gorize a text sample into a set of labels that are or-
ganized as a structured hierarchy (Silla and Freitas,
2011). Various multi-class classification problems
can be extended to HTC by giving a pre-defined
label hierarchy, such as scientific documents clas-
sification (Lewis et al., 2004; Sadat and Caragea,
2022) or news categorization (Kowsari et al., 2018).
As the main difference to ordinary multi-class clas-
sification problems, how to utilize the large-scale,
imbalanced label hierarchy is the key challenge of
HTC (Mao et al., 2019).

Nearly all of the recent HTC works modeled the
label hierarchy with a graph encoder: they feed
in either both text and label information for a mix-
ture representation (Zhou et al., 2020; Wang et al.,
2022b) or the hierarchy solely for a graph repre-
sentation which is then fused with text represen-
tation (Zhou et al., 2020; Deng et al., 2021; Zhao
et al., 2021). However, these works mainly focus
on the constant global hierarchy but ignore the sub-
graph corresponding to each input text, which can
contain structured label co-occurrence information
(Jiang et al., 2022). This so-called local hierar-
chy is first introduced by Wang et al. (2022a) to
generate positive samples for contrastive learning
and they observe small improvements. However,
this work considers the local hierarchy as flat but
ignores its structure. Following this work, Jiang
et al. (2022) takes further advantage of local hier-
archy by a sequence-to-sequence approach. In
their method, the local hierarchy is utilized through
teacher forcing, which takes a ground-truth label
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Figure 1: A demonstration of our adversarial frame-
work. A generator and an encoder use global and
local hierarchy as input respectively, and the output
representations are trained adversarially.

sequence as input and predicts the next step of that
sequence. However, the transition from a graph to
a sequence still loses some hierarchical informa-
tion. Besides, their method generates labels layer
by layer, so this method requires multiple inference
times compared to other works.

Is there a way that can directly model the local
hierarchy as a graph? Stepping forward from the
contrastive learning of Wang et al. (2022a), a sim-
ple idea will supply: we can train the original text
representation to be similar to a local-hierarchy-
incorporated representation. In contrast to con-
trastive learning which requires dissimilar example
pairs and previous work ignores totally, in this paper,
we propose a hierarchy-aware adversarial frame-
work (HiAdv) to incorporate local hierarchy.

In detail, during training, our HiAdv learns two
representations adversarially. As shown in Figure 1,
a generator inputs the text and global hierarchy and
outputs a mixed text-label representation. Besides,
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an encoder generates an oracle representation by
giving the ground-truth labels as input. In order to
obtain high-quality local-hierarchy-related represen-
tation, the encoder organizes as an autoencoder-
like structure: it encodes the local hierarchy to a
representation and then reconstructs the represen-
tation back to the local hierarchy. A discriminator
is then asked to distinguish the raw representation
from the one with the local hierarchy. By encourag-
ing the generator to fool the discriminator, the raw
representation should be similar enough to the one
with the local hierarchy after training. Furthermore,
this idea does not rely on specific model architec-
ture: we can apply it to any HTC model that involves
a graph encoder.

We summarize our contributions as follows:

• We propose an adversarial framework, HiAdv,
for HTC to incorporate local hierarchy. This is
the first attempt to incorporate the entire local
hierarchy.

• The framework does not rely on specific archi-
tecture so it can adapt to most existing HTC
models which rely on a graph encoder to en-
code label hierarchy.

• Experiments demonstrate that our framework
can constantly improve the performance of
basic models on three datasets and achieve
new state-of-the-art with the latest architec-
ture as a backbone. We release our code at
https://github.com/wzh9969/HiAdv.

2. Related Work

2.1. Hierarchy text classification
Hierarchical text classification (HTC) is a challeng-
ing task due to its large-scale, imbalanced, and
structured label hierarchy (Mao et al., 2019). Re-
cent works for HTC focus on global approaches,
which build only one classifier for the entire graph
(Zhou et al., 2020). The early global approaches
neglect the hierarchical structure of labels and view
the problem as a flat multi-label classification (John-
son and Zhang, 2015). After various attempts
to coalesce the label structure (Wu et al., 2019;
Mao et al., 2019; Zhang et al., 2021), Zhou et al.
(2020) demonstrate that encoding the holistic label
structure directly by a structure encoder can most
improve performance. Following this research, a
bunch of models try to study how the structure
encoder should interact with the text (Chen et al.,
2020, 2021; Deng et al., 2021; Zhao et al., 2021;
Zhu et al., 2023). Besides the direct text-label inter-
action, Wang et al. (2022b) adopts prompt tuning
for HTC to better utilize pretrained language mod-
els, and they predict labels layer-wisely to manually

incorporate the depth information of the label hierar-
chy. Despite a different training strategy, this work
still follows the principle of integrating the output of
the structure encoder into the text representation.
Ji et al. (2023) studies the problem under few-shot
settings.

While previous works focus on the global hier-
archy (i.e., the predefined label hierarchy), a few
recent works claim the importance of local hierar-
chy (i.e., the hierarchy corresponding to each input
text). Wang et al. (2022a) adopts contrastive learn-
ing to directly inject hierarchical knowledge into the
text encoder. In this work, ground-truth labels serve
as the guidance to select classification-related to-
kens, which are then constructed as positive sam-
ples for contrastive learning. Jiang et al. (2022)
views the problem as sequence generation: labels
at different hierarchy layers are generated step by
step. From this perspective, the local hierarchy is
introduced naturally: only the labels in the local hier-
archy should be generated. However, this method
gets rid of the structure encoder entirely, which has
been proven to be effective in all of the previous
works.

2.2. Adversarial Training

Adversarial training is originally proposed in the
Generative Adversarial Network (GAN) for image
generation (Goodfellow et al., 2020). It adversari-
ally trains a discriminator against a generator: the
discriminator aims to distinguish real images from
generated ones while the generator struggles to
fool the discriminator. In NLP, adversarial networks
are also applied in some generation tasks. For se-
quence generation, adversarial training serves as
an alternative to step-by-step generation to avoid
exposure bias issues (Scialom et al., 2020; Liu
et al., 2020; Chai et al., 2023). For NLU tasks,
recent studies show that adversarial training can
be well-deployed on pre-trained language models
(Zhu et al., 2020; Jiang et al., 2020; Wang et al.,
2021; Wu et al., 2023). Some works of neural topic
modeling introduce adversarial networks to learn
topic distributions (Wang et al., 2019, 2020; Hu
et al., 2020). Both Wu et al. (2021) and Wu et al.
(2022) adopt adversarial training for multi-domain
text classification to extract shared features across
domains. However, the usage of adversarial train-
ing in their works focuses on multi-domain data
and has little relation to the classification task itself.
As a result, these methods cannot be adopted for
general text classification or the hierarchical text
classification that we are studying.

https://github.com/wzh9969/HiAdv
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Figure 2: Two HTC models and an abstract HTC model. (a) HiBERT. Feed BERT output text representation
into a graph encoder. (b) HPT. A prompt tuning model with a hierarchy-aware template. (c) An abstract
model. Two encoders dealing with text and structure respectively and a mixture mechanism for a mixed
representation.

3. Preliminary

3.1. Problem Definition
For each hierarchical text classification (HTC)
dataset, we have a predefined label hierarchy (i.e.,
global hierarchy) H = (Y, E), where Y is the label
set (also the node set of H) and E is the edge set.
H is organized as a Directed Acyclic Graph (DAG)
but we focus on a setting where every node except
the root has one and only one father so that the
hierarchy can be simplified as a tree-like structure.
Given an input text x, the models aim to categorize
it into a label set (i.e., local hierarchy) Y ⊆ Y. The
predicted label set Y corresponds to one or more
paths in H. Each path starts from the root node
and ends at any node on the tree.

3.2. Basic Models
Our framework is model-unrelated, so it is neces-
sary to introduce two basic architectures we adopt
in this work.

3.2.1. HiBERT

A text encoder with an auxiliary structure encoder
is one of the simplest HTC models. Following
previous work (Wang et al., 2022a), we adopt
BERT (Devlin et al., 2019) as the text encoder and
Graphormer (Ying et al., 2021) as the structure en-
coder. We name this architecture Hierarchy-aware
BERT (HiBERT) for simplicity.

Specifically, as in Figure 2a, given a text input x,
BERT encodes it to a text representation,

htext = BERT(x) (1)

The structure encoder then takes the label hierar-
chy and text representation as input and outputs a
mixed representation. To utilize label information,

we use the average of BERT token embedding of
the label name as its label embedding li. For the
root node which has no particular meaning, we use
the text representation as label embedding. We use
the output graph representation of the root node as
a mixed representation of text and labels:

hmix = Graphormer([htext,L],H)root (2)

Finally, a linear classifier is used to calculate the
probability of each class:

P = sigmoid(Wchmix + bc) (3)

where Wc and bc are weight matrix and bias.

3.2.2. Hierarchy Prompt Tuning

Hierarchy Prompt Tuning (HPT) (Wang et al.,
2022b) is the state-of-the-art model which regards
the problem as a masked language model problem.
As shown in Figure 2b, HPT first encodes label
hierarchy into prompting features T by a GAT:

T = GAT(L,H) (4)

where L = {li} is the label embedding that contains
node information. Then, the input text x and prompt-
ing features T are filled into a template, where a
[MASK] position is reserved as in the masked lan-
guage model (MLM) task. BERT then encodes the
template but we focus only on the output repre-
sentation of the [MASK] token. By calculating the
probability of filling each label embedding into the
[MASK] position, HPT predicts in an MLM manner.
We define the BERT output of the [MASK] position
as mixed text-label representation hmix in accor-
dance with HiBERT. Please refer to the original
paper for more details.
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4. Methodology

In this section, we introduce HiAdv. The whole
framework is illustrated in Figure 3. Our framework
can be applied to any HTC architecture that involves
a text encoder and a graph encoder.

4.1. Abstraction of HTC Models
Despite differing in architecture details, both pre-
ceding models as well as most other architectures
HTC works selected can be abstracted to a text
encoder Etext and a structural encoder Estructure:

htext = Etext(x,hlabel)

hlabel = Estructure(L,H,htext)
(5)

As in Equation 5 and Figure 2c, the text encoder
takes text x as input while the structural encoder is
built according to the label hierarchy H and takes
label embedding L as input. Besides, one encoder
may utilize the output representation of the other.
Each encoder outputs a representation in Rd.

Finally, a mixture mechanism coalesces two rep-
resentations:

hmix = htext ⊙ hlabel (6)

and a multi-label classifier C predicts probability
distributions:

P = sigmoid(C(hmix)) (7)

During training, a multi-label classification loss
such as binary cross entropy is adopted:

LC = Loss(P, Y ) (8)

This abstract model generates a representation
hmix according to a given input x, so we can define
it as a generator under the perspective of adversar-
ial training.

4.2. Encoder Network
In the context of adversarial training, an encoder
network encodes a real input x̂ into a real distribu-
tion. In our scenario, the encoder network attempts
to generate an oracle representation that takes lo-
cal hierarchy as input and can perform the best
classification. We organize the encoder as an au-
toencoder: it encodes local hierarchy along with
text into the oracle representation and then recon-
structs the local hierarchy.

To incorporate local hierarchy, we modify the
label embedding in Equation 5. For label yi, we
add an oracle label embedding to indicate whether
this label is in the local hierarchy Y :

l̂i = li +

{
e1, yi ∈ Y

e0, yi ̸∈ Y
(9)
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Figure 3: A demonstration of our adversarial frame-
work. The generator and the encoder share the
same text encoder. We omit the classifier for clarity,
which takes hmix and ĥmix for input to classify and
generates classification losses LC and L̂C during
training.

where e0 and e1 are two learnable embeddings
that indicate whether yi is in Y . As a result, the
label embedding matrix L̂ = {̂li} contains the local
hierarchy as a prior. As in Figure 3, we use an
independent structure encoder to deal with the local
hierarchy while other components of the encoder
share with the generator:

ĥlabel = Êstructure(L̂,H,htext)

ĥmix = htext ⊙ ĥlabel

(10)

where ĥmix is the demanded oracle representation
which takes the local hierarchy as a prior.

The oracle representation ĥmix is then recon-
structed to the local hierarchy Y with the classifier
C, which is similar to an autoencoder that aims to
find the best representation for reconstructing the
local hierarchy. During training, ĥmix is guided by
the classification loss the same way as hmix in the
generator:

L̂C = Loss(sigmoid(C(ĥmix)), Y ) (11)

4.3. Discriminator
With a generated representation hmix and an oracle
representation ĥmix, a discriminator D attempts to
distinguish whether a representation h is generated
with or without the local hierarchy. This is a binary
classification problem so we use a simple two-layer
linear classifier as the discriminator:

p = Sigmoid(W2ReLU(W1h+ b1) + b2) (12)
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Algorithm 1: Framework of HiAdv.
Input: Training dataset Ttrain = {(x, Y )},

global hierarchy H, test dataset
Ttest = {x}

Output: Model prediction {Ŷ }
// Initialization

1 Initialize Etext, Estructure, Êstructure, C, and
D randomly;

// Training
2 while not converged do
3 Sample a data point (x, Y ) from Ttrain;
4 Calculate hmix and ĥmix by Equation 6

and 10;
// Update D

5 Fill hmix and ĥmix successively into
Equation 12 to obtain p and p̂;

6 Calculate Ldis and L̂dis by Equation 13;
7 Back-propagate Ldis + L̂dis and update

parameters of the discriminator;
// Update the rest

8 Calculate classification loss LC and L̂C

by Equation 8 and 11;
9 Calculate adversarial loss Ladv by

Equation 15;
10 Back-propagate LC + L̂C + Ladv and

update parameters of all components
except the discriminator;

11 end
// Testing

12 foreach Text x ∈ Ttest do
13 Calculate P by Equation 7 using Etext,

Estructure, and C;
14 Select Ŷ = {Pi > τ ∀i};
15 end

where W1 ∈ Rd×d, W2 ∈ R1×d, b1 ∈ Rd, and
b2 ∈ R are weights and bias.

The discriminator is guided by binary cross-
entropy loss:

Ldis = −(I log p+ (1− I) log(1− p)) (13)

where I is an indicator

I =

{
0, h = hmix

1, h = ĥmix

(14)

4.4. Adversarial Framework
The generator, the encoder, and the discriminator
train adversarially. As mentioned, the discriminator
aims to distinguish the representation while the
generator attempts to fool the discriminator. As
shown in Figure 3, besides the classification loss,
the generator is guided by an adversarial loss:

Ladv = −(1− I) log p (15)

Dataset |Y | Depth Avg(|yi|) Train Dev Test
WOS 141 2 2.0 30,070 7,518 9,397
NYT 166 8 7.6 23,345 5,834 7,292

RCV1-V2 103 4 3.24 20,833 2,316 781,265

Table 1: Data statistics. |Y | is the number of
classes. Depth is the maximum level of hierar-
chy. Avg(|yi|) is the average number of classes
per sample.

Notice that Ladv only updates the parameters of
the generator but does not affect the parameters
of the encoder or that of the discriminator so that
we only consider h = hmix in Equation 15.

During training, both the generator and the en-
coder take the same text x as input and outputs
hmix and ĥmix respectively. The discriminator then
calculates p so that every loss can be computed.
After training, the framework degrades to a sin-
gle generator, which can predict independently as
Equation 7. Since the problem is a multi-label clas-
sification, we select labels that have probabilities
greater than a threshold τ as model predictions.
The whole process is illustrated in Algorithm 1.

5. Experiments

5.1. Experiment Setup
Datasets and Evaluation Metrics We experi-
ment on Web-of-Science (WOS) (Kowsari et al.,
2018), NYTimes (NYT) (Sandhaus, 2008), and
RCV1-V2 (Lewis et al., 2004) datasets for anal-
ysis. The statistic details are illustrated in Table
1. We follow the data processing of previous work
(Zhou et al., 2020) and measure the experimental
results with Macro-F1 and Micro-F1.

Baselines For systematic comparisons, we intro-
duce a variety of HTC baselines.

• BERT (Devlin et al., 2019). A widely used
pretrained language model that can serve as
a text encoder. All of the other baselines as
well as our method are based on BERT.

• HiAGM (Zhou et al., 2020), HTCInfoMax
(Deng et al., 2021), and HiMatch (Chen et al.,
2021). These three methods all encode text
and taxonomic hierarchy separately and pro-
pose different migration strategies.

• HGCLR (Wang et al., 2022a). HGCLR regu-
lates BERT representation by contrastive learn-
ing. It only introduces nodes of the local hier-
archy but ignores how they are connected.

• HPT (Wang et al., 2022b). HPT proposes a
new architecture with prompt tuning. The text
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Model WOS (Depth 2) RCV1-V2 (Depth 4) NYT (Depth 8)
Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

BERT (Wang et al., 2022a) 85.63 79.07 85.65 67.02 78.24 66.08
BERT+HiAGM(Wang et al., 2022a) 86.04 80.19 85.58 67.93 78.64 66.76
BERT+HTCInfoMax(Wang et al., 2022a) 86.30 79.97 85.53 67.09 78.75 67.31
BERT+HiMatch (Chen et al., 2021) 86.70 81.06 86.33 68.66 - -
HGCLR (Wang et al., 2022a) 87.11 81.20 86.49 68.31 78.86 67.96
HPT (Wang et al., 2022b) 87.16 81.93 87.26 69.53 80.42 70.42
HBGL (Jiang et al., 2022) 87.36 82.00 87.23 71.07 80.47 70.19
HiBERT 85.77 80.10 86.49 68.82 79.49 68.40
HiBERT + HiAdv † 86.38 80.78 86.74 69.43 79.56 69.30
HPT* 87.08 81.59 86.96 69.25 80.21 70.14
HPT* + HiAdv † 87.20 81.62 87.36 69.62 80.83 70.78

Table 2: F1 scores on 3 datasets. The best results are in boldface. *In order to fit in HiAdv, we modify the
predicting strategy of HPT so the result is slightly lower. Hereinafter we still denote it as HPT for simplicity.
†Improvements are statistical significant with p < 0.05.

encoder of HPT encodes text and the output
of the graph encoder simultaneously.

• HBGL (Jiang et al., 2022). HBGL introduces lo-
cal hierarchy in a sequence-to-sequence man-
ner, differing from other works which are dis-
criminative models. The architecture of HBGL
is a pure BERT so we cannot adopt it as a
backbone.

Implement Details We implement our model us-
ing PyTorch. Following previous work (Chen et al.,
2021), we use bert-base-uncased as our text en-
coder. We test on two architectures introduced in
Section 3.2. For HPT, since the adversarial frame-
work can only focus on one representation, we
modify the predicting strategy so that the model
predicts with one single representation instead of
predicting layer-wisely. For HiBERT, we adopt Zero-
bounded Log-sum-exp & Pairwise Rank-based (Su
et al., 2022) that HPT uses, which has proven to
be a more suitable loss function than binary cross-
entropy for HTC. We use a batch size of 8 to fill
one Nvidia RTX 3090 (24G) fully. All other hyper-
parameters follow HPT (Wang et al., 2022b). For
more stable training, we train the model without the
adversarial loss for the first epoch and stop training
if Macro-F1 on the development set does not in-
crease for 5 epochs. Following Wang et al. (2022b),
we select the checkpoint with maximum Macro-F1
on the development set as the final model and re-
port the best results among 5 individual runs.

5.2. Main Results
Table 2 illustrates our main results. Among base-
line methods, HBGL and HPT perform similarly
on all datasets except the Macro-F1 of RCV1-V2,
which we believe is the advantage of sequence-to-
sequence generation.

The proposed HiAdv steadily improves the per-
formance of both backbone models on all datasets.
WOS has a label hierarchy of two layers and the
local hierarchy has only one path, making it the
easiest dataset among all tested datasets. As a re-
sult, applying HiAdv on HPT has little improvement
because it has already learned the hierarchy infor-
mation well without further treatment. HiBERT is a
weaker model than HPT, so it can still benefit from
HiAdv on a simple dataset. As for NYT which has
a hierarchy of 8 layers and has the most intricate
label structure, existing methods may not fully learn
that information so that our adversarial framework
achieves new state-of-the-art.

As mentioned, we use a variant of HPT by remov-
ing the layer-wise prediction. Although information
about the depth of hierarchy is lost to some extent,
the extra local hierarchy provided by the adversar-
ial framework outweighs the loss except on WOS.
WOS is a special case where the hierarchy is too
easy to learn, so a handmade rule to force the
model to predict layer-wise is sufficient.

5.2.1. Discussion on Model Capacity

Model capacity can affect the performance of HiAdv.
HPT is a stronger backbone than HiBERT and it
leads to divergent behaviors between these two
models.

When applying HiAdv on HiBERT, the improve-
ments of Micro-F1 descend according to the dif-
ficulty of label hierarchy while the improvements
of Macro-F1 for HiBERT are steady. This phe-
nomenon indicates that the local hierarchy benefits
rare classes with insufficient training samples more
than sufficiently trained classes when the model
capacity is limited. However, for a stronger basic
model HPT, besides the WOS dataset which the
model has learned well enough, applying HiAdv
can improve both Micro-F1 and Macro-F1, showing
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Variants WOS (Depth 2) RCV1-V2 (Depth 4) NYT (Depth 8)
Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

HiBERT 86.90 80.82 87.50 68.69 79.93 69.84
HiBERT + HiAdv 87.10 81.36 87.83 69.66 80.00 70.68
- w/o adversarial loss 86.57 80.61 87.46 68.42 79.33 69.23
HiBERT + Contrastive learning 86.49 79.46 87.09 68.40 77.46 65.18
HPT 87.68 81.72 88.04 69.41 80.49 71.18
HPT + HiAdv 87.84 82.07 88.40 69.80 80.99 71.73
- w/o adversarial loss 87.40 81.61 88.03 69.34 80.66 71.16
HPT + Contrastive Learning 87.74 81.91 88.13 69.28 80.84 71.69

Table 3: Results of different optimizing strategies on the development set. The best results are in boldface.
We test two backbones with 1) no treatment; 2) the proposed HiAdv; 3) the proposed HiAdv but without
the adversarial loss; 4) contrastive learning.

that our adversarial framework is adept at dealing
with complex structures for powerful models.

5.2.2. Comparison with Other Local Hierarchy
Methods

When comparing our method with HGCLR and
HBGL which also involves local hierarchy, the re-
sults demonstrate that our adversarial framework
can better utilize the local hierarchy.

If we use HPT, which ignores local hierarchy com-
pletely, as a baseline, both HGCLR and HBGL re-
veal better performance on WOS which has the
simplest hierarchy but behaves relatively poorly
on NYT which has the most complex hierarchy.
These two methods view the local hierarchy as
either flat or a sequence so that they lose more
information about structure when the hierarchy is
more complex. Besides, HGBL utilizes local hier-
archy in a sequence-generation manner so there
is a gap between the ground-truth local hierarchy
input for training and model-predicted hierarchy in-
put for testing. When the hierarchy is deep, this
gap becomes more evident. On the contrary, the
promotion of our HiAdv has a positive correlation to
the complexity of hierarchy: we observe the most
improvement at NYT but nearly no improvement at
WOS, showing that HiAdv can better handle com-
plex local hierarchy and learn more from it than
previous methods.

5.3. Analysis

5.3.1. Effect of Adversarial Training

We select adversarial training to incorporate local
hierarchy but it is not the only choice. Wang et al.
(2022a) uses contrastive learning for a similar pur-
pose so we compare HiAdv with it here. As in Table
3, we exhibit results on the development set of re-
moving the adversarial loss and replacing HiAdv
with contrastive learning.

After removing the adversarial loss, HiAdv de-
grades into a data augmentation method where
the local-hierarchy-involved data generated by the
encoder serve as augment data. Although ran-
dom improvement can be observed, in most cases
simple data augmentation is counteractive. Directly
introducing local hierarchy will leak the ground-truth
labels so that models tend to rely on the local hi-
erarchy instead of learning from it without further
guidance.

Contrastive learning produces promising results
with HPT but fails to work with HiBERT. Contrastive
learning directly optimizes the target representa-
tion and pulls it toward the oracle representation.
Although robust models like HPT may gain from
this optimization, weak models such as HiBERT
experience countereffects. On the contrary, adver-
sarial training is a more gentle approach that only
requires two representations to be similar enough
to fool a discriminator. As a result, HiAdv is a more
robust framework that can fit in more backbones.

5.3.2. Effect of Local Hierarchy

We further study how the local hierarchy affects
HiAdv on the NYT dataset due to its complex hi-
erarchy. Table 4 enumerates the results of some
variants on the development set of NYT. We study
how the model reacts when providing a partial lo-
cal hierarchy, no local hierarchy, and a wrong local
hierarchy. We implement the partial local hierar-
chy by randomly dropping 15% of labels and the
wrong local hierarchy by randomly selecting the
same amount of labels.

As is shown, our framework indeed learns from
the local hierarchy. With it corrupted, results of
both HiBERT and HPT drop significantly, showing
that the promotion of HiAdv indeed comes from
the local hierarchy. As for removing the hierarchy
partially or completely, variants with more local hi-
erarchy have better performance. This observation
is in accordance with the deduction from the main



17333

Variants Micro-F1 Macro-F1
HiBERT + HiAdv 80.00 70.68
- w/ partial local hierarchy 79.51 69.64
- w/ no local hierarchy 78.46 68.09
- w/ wrong local hierarchy 78.67 67.02
HPT + HiAdv 80.99 71.73
- w/ partial local hierarchy 80.86 71.50
- w/ no local hierarchy 77.82 64.14
- w/ wrong local hierarchy 77.09 61.87

Table 4: Results of modifying local hierarchy on the
development set of NYT dataset. The best results
are in boldface. We show the original results and
the results when we input partial, empty, and wrong
local hierarchy.

results that HiAdv can learn more from complex
hierarchy than simple one. With no local hierarchy
or wrong hierarchy, the performance of HPT drops
dramatically, which demonstrates that HPT is more
sensitive to local hierarchy and thus more suitable
for our framework from another perspective.

Besides, changing the local hierarchy has a rela-
tively lower impact on Micro-F1 than on Macro-F1,
which we have observed similar behaviors in the
main results. These results further demonstrate
that the local hierarchy elevates the performance
of rare classes more than normal classes.

5.3.3. Results on Imbalanced Hierarchy

One of the key challenges of hierarchical text classi-
fication is the imbalanced label hierarchy. As men-
tioned, our method affects Macro-F1 more than
Micro-F1, showing that it can alleviate the imbal-
ance issues to some extent. In this section, we
visualize how our model resolves the issue of im-
balance on the development set of NYT.

The imbalance can be viewed from two perspec-
tives in HTC. For one, the number of training in-
stances of each class is different so some classes
may not be fully trained. As shown in Figure 4a,
we cluster labels into five bunches based on the
number of training instances. HiAdv is effective to
all clusters and can promote rare classes such as
"<20%" cluster for HPT and "20%-40%" cluster for
HiBERT.

For another, the number of labels at different
hierarchy layers is different. As shown in Figure 4b,
HiAdv mainly acts on deep layers (layers ≥ 4). The
structure of label hierarchy is more complicated in
the deep so this phenomenon demonstrates that
our framework can utilize complex local hierarchy
effectively.
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Figure 4: Macro F1 scores of label clusters on the
development set of NYT. (a) Label clusters grouped
by the number of training samples. >80% means
this cluster of labels has training instances of more
than 80% of labels. The rest are arranged similarly.
(b) Label clusters grouped by depth in the hierarchy.

5.3.4. Time Efficiency

HiAdv requires an additional graph encoder so it
requires extra computational costs. Since our ap-
proach is a framework, the extra computational
costs heavily depend on the backbone model. In
this section, we study how HiAdv affects the com-
putational costs of different backbones.

In Table 5 we exhibit the rough training time con-
sumed by one epoch on the NYT dataset. The
straightforward implementation of HiAdv requires
roughly double the training time for both backbones.
Compared to a single model that needs a one-
time back-propagation, our framework requires two-
time back-propagations for adversarial training. But
from Figure 3 it can be observed that both passes of
back-propagation share the same BERT encoder,
which contains most of the parameters so an opti-
mization algorithm is easy to find.

For HiBERT where BERT only takes text as in-
put (Equation 1), the BERT encoder only needs
one-time back-propagation exactly. As a result,
the optimized HiAdv requires around 7% of extra
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Variants HiBERT HPT
w/o HiAdv 560 690
w/ HiAdv, w/o optimization 1020 1380
w/ HiAdv, w/ optimization 600 810

Table 5: Rough seconds consumed on one epoch
on the train set of NYT.

training time. For HPT where BERT takes graph
information as input, the second pass is necessary.
But the input sequence of BERT is still mostly the
same on both passes so it is possible to merge
those two sequences into one. With that optimiza-
tion implemented, HiAdv only requires less than
20% more training time.

During inference, our framework degrades into
a single backbone model so it does not affect in-
ference time. In practice, applying our framework
needs no extra computational cost after deploy-
ment.

6. Conclusion

In this paper, we propose a hierarchy-aware ad-
versarial framework (HiAdv) for assisting existing
HTC models to incorporate local hierarchy. For
any HTC model that involves a text encoder and
a graph encoder, HiAdv treats it as a generator
while an extra encoder encodes the local hierar-
chy into an oracle representation. A discriminator
tries to distinguish the original representation from
the oracle representation while the generator at-
tempts to fool the discriminator. Experiments show
that the adversarial framework is adept at dealing
with complex hierarchies or promoting weak mod-
els that cannot fully learn the hierarchy. Further
experiments demonstrate that the effect of HiAdv
comes from the local hierarchy and the local hierar-
chy is beneficial for classes with deficient training
instances.
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