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Abstract
Out-of-distribution (OOD) detection plays a crucial role in ensuring the safety and reliability of deep neural networks in
various applications. While there has been a growing focus on OOD detection in visual data, the field of textual OOD
detection has received less attention. Only a few attempts have been made to directly apply general OOD detection
methods to natural language processing (NLP) tasks, without adequately considering the characteristics of textual
data. In this paper, we delve into textual OOD detection with Transformers. We first identify a key problem prevalent
in existing OOD detection methods: the biased representation learned through the maximization of the conditional
likelihood p(y|x) can potentially result in subpar performance. We then propose a novel variational inference framework
for OOD detection (VI-OOD), which maximizes the likelihood of the joint distribution p(x, y) instead of p(y|x). VI-OOD
is tailored for textual OOD detection by efficiently exploiting the representations of pre-trained Transformers. Through
comprehensive experiments on various text classification tasks, VI-OOD demonstrates its effectiveness and wide
applicability. Our code has been released at https://github.com/liam0949/LLM-OOD.
Keywords: Out-of-distribution detection, large language models, representation learning

1. Introduction

Large-scale deep neural networks (DNNs) such as
CNNs and Transformers, have brought about a rev-
olutionary impact on numerous complex real-world
machine learning applications. Nevertheless, a no-
table drawback of DNNs remains their tendency
to make overconfident decisions, rendering them
less reliable for safety-critical applications like med-
ical diagnosis (Ulmer et al., 2020) and self-driving
cars (Filos et al., 2020). It has been noted that
DNNs often assign elevated confidence scores to
unfamiliar inputs, leading to potential erroneous
predictions when confronted with anomalous out-
of-distribution (OOD) data (Nguyen et al., 2015).
To address this issue, there has been active re-
search and investigation into OOD detection in re-
cent years (Hendrycks et al., 2022; Yang et al.,
2022).

Challenge of OOD detection. OOD detection
aims at solving a K-class in-distribution (ID) clas-
sification task and a binary ID vs. OOD discrimi-
nation task simultaneously. A commonly assumed
practical setting is OOD examples are unavailable
during training, which presents the major chal-
lenge for OOD detection. The mainstream meth-
ods for OOD detection commonly follow a post-hoc
scheme (Hendrycks and Gimpel, 2017), which first
discriminatively trains an ID K-class classifier by
maximizing the conditional likelihood of p(y|x) and
then derives some statistics from the trained model
to predictive OOD confidence scores. However,
since the binary ID vs. OOD discrimination task is
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not considered in the training process, the learned
representations by K-class training may be biased
to the ID classes. While some attempts have been
made to address this challenge by incorporating
surrogate OOD datasets during the training phase,
such as those described in the works by Hendrycks
et al. (2019) and Lee et al. (2018a), further en-
deavors are required to identify appropriate OOD
datasets that demonstrate significant distributional
shifts compared to the ID data.

Research on textual OOD detection. The ma-
jority of recent research efforts have concentrated
on detecting OOD data in visual domains, with only
a limited number of studies (Hendrycks et al., 2020;
Podolskiy et al., 2021a; Zhou et al., 2021a) focus-
ing on textual OOD detection. As far as our knowl-
edge extends, current textual OOD detection meth-
ods typically utilize general OOD detection algo-
rithms on representations generated by Transform-
ers (Vaswani et al., 2017). However, these meth-
ods often fail to adequately account for the unique
characteristics and nuances of textual data. More-
over, although the hierarchical contextual represen-
tations of pre-trained Transformers have demon-
strated remarkable effectiveness in numerous NLP
tasks (Sun et al., 2019; Ma et al., 2019; Mohebbi
et al., 2021; Devlin et al., 2019; Liu et al., 2019a),
their potential for textual OOD detection has not
been fully harnessed.

Our proposal. To tackle the aforementioned
issues, we propose a variational inference frame-
work based on Transformers for textual OOD de-
tection. Rather than solely focusing on maximiz-
ing the conditional distribution p(y|x) of ID data,

https://github.com/liam0949/LLM-OOD
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our approach involves optimizing the joint distribu-
tion p(x, y), which is to maximize p(y|x) and p(x)
simultaneously. The core idea revolves around
modeling the distribution of the provided ID data,
which allows us to harness valuable information
that might not be directly relevant for ID classifi-
cation but proves significant for outlier detection.
To make the joint distribution p(x, y) tractable, we
resort to optimizing the evidence lower bound of
p(x, y) derived via amortized variational inference
(AVI) (Kingma and Welling, 2014). Moreover, con-
sidering the unique characteristics of textual data,
we modify the approximated posterior distribution
in the framework of AVI, making the posterior con-
ditioned on a dynamic combination of intermediate
layer-wise hidden states of the Transformer. The
Transformer backbone functions as a shared en-
coder for both the ID classification head and the
decoder (generator) in the AVI framework (Fig. 2).

The contributions of this work include:

• Our proposed variational inference framework
for OOD detection (VI-OOD) offers a novel
and principled approach, providing a fresh per-
spective that is orthogonal to previous OOD
detection methods (Hendrycks et al., 2020;
Podolskiy et al., 2021a; Zhou et al., 2021a).

• Our instantiation of VI-OOD harnesses the
rich contextual representations of pre-trained
Transformers to learn more effective latent rep-
resentations for text inputs. The improved rep-
resentations can be readily used by various
existing post-hoc OOD detection algorithms,
consistently enhancing their performance in
textual OOD detection.

• Our proposed method is evaluated using main-
stream encoder-based and decoder-based
Transformer architectures and comprehensive
OOD text classification scenarios. It can offer
advantages to widely utilized OOD detection al-
gorithms, particularly for distance-based OOD
detectors, such as the Mahalanobis Distance
method (Lee et al., 2018b)

2. Pilot Study

2.1. Problem Statement and Motivation
Out-of-distribution (OOD) detection aims
to accurately separate all class-dependent
in-distribution (ID) examples as well as out-of-
distribution (or anomalous) examples. Given
the input space X × Y and an ID class label
set YID = {yj}Kj=1 ⊂ Y, an ID training set
DID = {(xi, yi)}Ni=1 is sampled from the distribution
p(x, y) of ID data where yi ∈ YID. With DID, an ID
classifier fID : X → YID is trained. During test time,

since there may be a distribution shift between
the training and test data in practical application
scenarios (Szegedy et al., 2014; Morningstar et al.,
2021), the ID classifier fID may encounter OOD
samples (yi /∈ YID). Hence, an OOD confidence
scoring function fOOD : X → R is needed to
perform ID vs. OOD binary classification. In this
regard, OOD detection aims to solve both the
K-class ID classification task and the binary outlier
detection task. The ID classifier fID is commonly
trained with a discriminative loss by maximizing
the conditional log-likelihood of the training set:

θ̂ = argmax
θ

1

N

∑
(xi,yi)∈DID

log p(yi | xi; fID, θ), (1)

where θ stands for all trainable parameters of fID.
The fundamental challenge of OOD detection

is that at the training stage, real OOD examples
are unavailable and thus cannot be effectively rep-
resented to provide necessary learning signals for
the binary ID vs. OOD task. To address this issue,
a few attempts have been made to introduce surro-
gate OOD datasets during training by using some
datasets irrelevant to the ID data (Hendrycks et al.,
2019; Lee et al., 2018a). However, it is difficult
to select suitable “OOD” datasets to represent the
huge space of real OOD data.

Post-hoc methods. The majority of existing
OOD detection methods (Hendrycks and Gimpel,
2017; Hendrycks et al., 2019; Lee et al., 2018b; Liu
et al., 2020; Hendrycks et al., 2022; Sun et al., 2021,
2022) follow a post-hoc paradigm and address the
binary ID vs. OOD task in the inference stage.
These methods propose different OOD confidence
scoring functions with the trained ID classifier fID.
Specifically, the parameters of the trained fID are
frozen, and some statistics of specific layers of fID
(usually the penultimate layer or the softmax layer)
are often used as OOD confidence scores.

Motivation of this work. While post-hoc meth-
ods have shown promise, it is pointed out that the
performance of fID on ID data is not a good indi-
cator of its performance on OOD data (Hendrycks
et al., 2020; Lee et al., 2018a). Specifically, the
discriminative training of fID is often conducted
with p(y|z), where z is the latent representation
obtained by passing an input x to a DNN encoder.
Maximizing the conditional log-likelihood log p(y|z)
is essentially maximizing the mutual information
between the latent variable Z and the label vari-
able Y , i.e., I(Z, Y ) (Boudiaf et al., 2020). Natu-
rally, the learned representation Z will be biased
towards the ID classification task. Indeed, Kamoi
and Kobayashi (2020) have demonstrated that in
the Mahalanobis-distance-based OOD detection
method, the principal components of ID data that
are deemed least important for the ID classification
task actually contain valuable information for the
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Figure 1: Investigation of OOD performance of Transformer’s intermediate Hidden States: AUROC Results
for 24 Layers of RoBERTaLARGE. The figure illustrates the OOD performance evaluation across multiple
layers of RoBERTaLARGE. Higher values indicate better performance. The model undergoes fine-tuning
on SST-2 and is assessed for OOD performance using the 20NG dataset. The four commonly used
OOD scoring functions, namely MSP (red), Maha (light yellow), Cosine (blue), and Energy (green), are
represented in the figure.

binary ID vs. OOD task. This information may be
overlooked or discarded when training the ID classi-
fication function fID using the conditional likelihood
p(y|x). Furthermore, a recent study by Uppaal et al.
(2023) highlights that relying solely on supervised
training with ID data can lead to a degradation in
the performance of OOD detection as the training
progresses.

To address this issue, we propose to learn bet-
ter latent representation Z for post-hoc methods by
considering the distribution of ID data, i.e., maximiz-
ing the likelihoods p(y|x) and p(x) simultaneously1,
which is equivalent to modeling p(x, y) – the joint
distribution of ID data. To this end, we design a
novel principled variational framework that will be
elaborated in the next section.

2.2. A Closer Look at Textual OOD
Detection with Transformers

In Figure 1, we study the impact of the intermediate
hidden states of RoBERTaLARGE on textual OOD
detection. Following (Hendrycks et al., 2020), we
take the model trained on SST-2 as a case study.
The model is trained solely with the discriminative
loss. We conduct OOD detection by utilizing each
hidden state of the trained model’s 24 layers as rep-
resentations of the input text data. Subsequently,
we summarize the AUROC results obtained from
four commonly used OOD detection algorithms. As
the layer number increases from 0 to 23, the hidden
layer is closer to the head of the model, i.e., layer
23 outputs the last hidden state.

Intermediate hidden states could help OOD de-
tection. The results presented in Figure 1 clearly

1Note that p(y|x) =
∫
z
p(y|z, x)p(z|x) dz and p(x) =∫

z
p(x|z)p(z) dz.

indicate that intermediate hidden states consistently
outperform the final hidden states in terms of OOD
performance, as observed across all four OOD
detection methods. The best performance consis-
tently occurs in the middle layers, particularly in
the range of layers 9 to 13. This consistent perfor-
mance is observed for all four OOD detection meth-
ods. On the other hand, as pointed out by Sun et al.
(2019), intermediate hidden states of Transformers
exhibit inferior performance compared to the final
hidden state in ID classification tasks. Based on
these observations, we make a key assumption:
intermediate hidden states contain redundant
information for ID classification but crucial in-
formation for OOD detection.

Furthermore, it is possible to address the dispar-
ities among various OOD detection methods. As
depicted in Figure 1, the performance of interme-
diate layers (layers 9 to 14) is consistently compa-
rable across the four OOD detection methods. For
instance, the Maximum Softmax Probability (MSP)
method demonstrates excellent results around layer
13, but its performance significantly deteriorates
at the last layer, layer 23. These findings suggest
that effectively harnessing the potential of hidden
states in Transformers can alleviate the challenges
associated with OOD detection.

3. Proposed Method

3.1. VI-OOD: A Variational Inference
Framework for Out-of-distribution
Detection

Our goal is to directly maximize the likelihood of
the joint distribution p(x, y) rather than p(y|x). We
assume that a latent variable Z is a stochastic en-
coding of the input sequence X. The log likelihood
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Figure 2: The architecture of our proposed framework. Our method employs an encoder-based transformer
model as the backbone textual encoder. Hidden states of the [CLS] token are chosen to be textual
representations. z is a latent variable conditioned on the textual representations. The in-distribution
(ID) classification head p(y|z) and decoder p(xtarget|z) both take z as the input. s is the hidden states
combination factor and the merge representation xtarget works as the target of the decoder.

of p(x, y) can then be calculated by:

log p(x, y) = log

∫
z

p(x, y, z) dz

= log

∫
z

p(y|z, x)p(x|z)p(z) dz

= log

∫
z

p(y|z)p(x|z)p(z) dz, (2)

where in the last equality we assume the Markov
chain X ↔ Z ↔ Y , i.e., p(y|z, x) = p(y|z). Since it
is intractable to compute the integral in Eq. (2), we
employ amortized variational inference (Kingma
and Welling, 2014) to derive the lower bound of
log p(x, y) as follows.

log p(x, y) = log

∫
z

p(y|z)p(x|z)p(z) dz

= log

∫
z

p(y|z)p(x|z)p(z)q(z|x)
q(z|x)

dz (3)

= logEz∼q(z|x)

[
p(y|z)p(x|z)p(z)

q(z|x)

]
(4)

≥ Ez∼q(z|x)

[
log

p(y|z)p(x|z)p(z)
q(z|x)

]
,

(5)
where q(z|x) in Eq. (3) is the amortized varia-
tional approximator of the true posterior p(z|x), and
Jensen’s inequality is applied in Eq. (5). The last
quantity in Eq. (5) is the evidence lower bound of
log p(x, y), which can be rewritten as:

LELBO = Ez [log p(y|z)]︸ ︷︷ ︸
Target #1: ID supervised training

+

Ez [log p(x|z)]−DKL(q(z|x)||p(z))︸ ︷︷ ︸
Target #2: Unsupervised variational training

, (6)

where the first term is the ID supervised training
objective, and the second and third terms corre-
spond to the unsupervised learning objective for
an amortized variational Bayesian autoencoder.

3.2. Transformer-based Textual OOD
Detection with VI-OOD

Our proposed VI-OOD framework is a general prob-
abilistic approach for learning data representations,
which can be applied to various types of data, in-
cluding image, textual, audio, and video. However,
in this work, we focus on textual data. In the fol-
lowing, we outline the instantiation of VI-OOD for
textual OOD detection, which involves designing
the encoder (posterior approximator) q(z|x), the de-
coder (reconstructor) p(x|z), and the discriminator
p(y|z), as depicted in Figure 2.

Encoder for learning textual representations.
Encoder-based Transformers have become a pre-
vailing standard in learning contextual represen-
tations of text due to their excellent performance
in numerous NLP tasks. Hence, the transformer
architecture is a natural choice for the encoder
q(z|x). In this paper, we utilize models from the
BERT family (Devlin et al., 2019). Given an input
x, which is a sequence of tokens with a length
of N , denoted as [x0, · · · , xN−1], BERT adds a
special token [CLS] at the start of the input se-
quence, i.e., [CLS, x0, · · · , xn−1]. The inclusion of
the [CLS] token is intended for classification tasks.
Unless otherwise specified, we use the hidden
states of the [CLS] token as the textual represen-
tations. The input sequence x is passed through
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each layer of BERT, resulting in a series of interme-
diate hidden states at the [CLS] position, denoted
as hCLS = [h0

CLS, · · · , h
L−1
CLS ], where L is the total

number of layers. As shown in Figure 2, we in-
stantiate the encoder q(z|x) and the prior p(z) as
diagonal Gaussian distributions, i.e., N (z|µ,Σ) and
N (0, I) respectively, where µ and Σ are obtained
by mapping the last hidden state hL−1

CLS with a single-
layer MLP respectively.

Decoder for reconstructing the textual repre-
sentations. In the case of image data, selecting
the original input image as the decoder target for
reconstruction is straightforward since it contains
the most informative content. However, when work-
ing with textual data, the input token sequence only
represents embeddings from a predefined dictio-
nary, while the intermediate hidden states of the
Transformer capture valuable contextual seman-
tics. As a result, determining the appropriate recon-
struction target for p(x|z) in textual data poses a
challenging task. To leverage the potential of the
intermediate hidden states, our approach aims to
condition the reconstruction target on the hidden
states. Based on our preliminary experiments, we
observed that different hidden layers have vary-
ing effects on different ID datasets. Consequently,
it is difficult to predefine a fixed combination pat-
tern for integrating the intermediate hidden states.
Therefore, we introduce a learnable weight vector
s = [s0, · · · , sL−1] ∈ RL to dynamically integrate
the intermediate hidden states of the Transformer.
Then, we derive the reconstruction target:

xtarget = (h0
CLS · s0) + (h1

CLS · s1) + · · · (hL−1
CLS · sL−1),

where · denotes multiplication. In this way, xtarget

contains rich contextualized semantic information.
Referring to Figure 2, we realize the reconstruc-
tor (decoder) p(x|z) as a single feed-forward block,
taking a sample z from N (z|µ,Σ) as input and out-
putting a reconstructed version of xtarget to maxi-
mize p(xtarget|z). The ID classifier fID is a single-
layer MLP that takes the latent representation z as
input.

Discriminator for ID classification and binary
OOD detection. At the inference stage, we only
need the trained posterior approximator (encoder)
q(z|x) and the ID classifier fID. Note that both the ID
classification task and the binary outlier detection
task are performed w.r.t. the latent variable z. For
each x, we only sample one z during training and
inference respectively.

4. Experiments

In this section, we present a comprehensive eval-
uation of textual out-of-distribution (OOD) detec-

tion with pervasive OOD detection methods. Be-
sides, we demonstrate the effectiveness of our
proposed OOD detection method on challeng-
ing natural language understanding benchmarks.
To achieve a comprehensive evaluation, we em-
ploy both encoder-based and decoder-based pre-
trained language models as backbone models of
our method. We start this section by describing
our evaluation methodology and then present our
experimental results.

4.1. Evaluation Methodology

4.1.1. Datasets

OOD detection in the natural language process-
ing (NLP) domain is generally under-explored and
only discussed in limited scenarios such as out-of-
scope intent detection in dialogue machines (Zhan
et al., 2021a; Zhang et al., 2021a; Yan et al., 2020).
As such, evaluating OOD performance in the NLP
domain does not have a consensus. To scale the
evaluation process as general as possible, we fol-
low the evaluation in (Hendrycks et al., 2020) and
(Zhou et al., 2021b) to present our main analysis.
Hendrycks et al. (2020) firstly proposes to use the
sentiment analysis benchmark SST-2 as the in-
distribution dataset and select five other datasets
as out-distribution evaluation sets, which includes
20 Newsgroups, WMT16 and Multi30K, RTE, and
SNLI. Zhou et al. (2021b) further extend this bench-
mark by adding more natural language understand-
ing tasks including topic classification, and question
classification.

In-distribution Tasks We use four benchmark
datasets as in-distribution (ID) tasks: 20 News-
groups (20NG) (Lang, 1995), IMDB (Maas et al.,
2011), SST-2 (Socher et al., 2013) and TREC-10 (Li
and Roth, 2002). When setting each of them as
in-distribution, other ones are recognized as out-
distribution.

Besides the above ID four tasks, we also use
another four unrelated datasets as OOD test sets
(not for training) for all of the four ID tasks. We
refer them as the out-distribution datasets: the En-
glish source side of English-German WMT16 (Bojar
et al., 2016) and English-German Multi30K (Elliott
et al., 2016), and concatenations of the premise
and hypothesis of RTE (Dagan et al., 2006) and
MNLI (Williams et al., 2018). WMT16 and Multi30K
are for machine translation while RTE and MNLI
are for natural language inference. We use the
respective test sets of each out-distribution dataset
to measure OOD performance.
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4.1.2. Baselines

To demonstrate the effectiveness of our proposed
framework, we compare our method comprehen-
sively with four commonly used OOD detection al-
gorithms:

• Maximum Softmax Probability
(MSP) (Hendrycks and Gimpel, 2017):
The MSP confidence score leverages the
maximum softmax probability outputted by the
softmax function for out-of-domain detection.
As correct samples tend to have higher
probability scores, samples below a threshold
are more likely to be outliers. Specifically, the
confidence score is C(x) = maxy p(y|x).

• Mahalanobis Distance (Maha) (Lee et al.,
2018b): The Mahalanobis Distance (MD)
method fits K-class conditional Gaussian
distributions {N (µi,Σ)}Ki=1 for the K in-
distribution classes upon the output of the
penultimate layer in the model. The Maha-
lanobis Distance and the MD confidence score
are computed by:

MDk(z) = (z − µk)
TΣ−1(z − µk),

C(x) = −min
k

{MDk(z)}.
(7)

• Energy score (Energy) (Liu et al., 2020):
The energy score confidence score is inspired
by the energy-based models (LeCun et al.,
2006). It defines an energy of an input (x, y)
as E(x, y) = wT

y · z, where wy is the weight
of the softmax layer for the yth in-distribution
class. The energy score confidence score is
defined as:

C(x) = log

K∑
i

ew
T
i ·z. (8)

• Cosine distance (Cosine) (Zhou et al.,
2021b): The cosine distance OOD confidence
sore defines as the maximum cosine similar-
ity of a test input representation with repre-
sentations in the validation set, i.e., C(x) =
−maxVi=1 cos(z, zvali ).

4.1.3. Metrics

We employ three commonly used metrics for OOD
detection and introduce them as follows:

• AUROC: Area Under the Receiver Operating
Characteristic curve(AUROC) reveals the re-
lationship between True Positive Rate (TPR)
(i.e., Recall) and False Positive Rate (FPR). It
represents the probability of assigning a higher
score to a positive example than a negative ex-
ample. The pioneering work (Hendrycks and

Gimpel, 2017) firstly proposed to use this met-
ric for OOD detection. A higher AUROC score
indicates a better classifier, and An AUROC
score of 50% means random guessing.

• FAR@95: False Alarm Rate at 95% Re-
call(FAR@95) is the probability that a negative
example is misclassified as positive when Re-
call or TPR is 95%. In this paper, we take the
OOD class as negative.

• AUPR: Area Under the Precision-Recall curve
(AUPR) is another commonly used metric
based on the Precision-Recall Curve. It is a
better indicator in the case of imbalanced in-
and out-rate (Manning and Schutze, 1999). A
perfect classifier has an AUPR of 100%.

4.1.4. Experimental Setup

For the encoder-based pre-trained language model,
we employ the RoBERTaLARGE (Liu et al., 2019b)
model from HuggingFace (Wolf et al., 2019) as the
backbone of our framework. We use the optimizer
AdamW (Loshchilov and Hutter, 2019) with a linear-
scheduled learning rate 10−5 to fine-tune the model
for 20 epochs. For the variational terms in Eq. 6,
we apply a linear annealing strategy which is a
common practice in variational methods (Fu et al.,
2019). All reported results are obtained in 5 runs
with different random seeds.

For the decoder-based large language model,
we validate the effectiveness of our method on
LLaMA-2-7B. To reduce training costs, we perform
parameter-effective fine-tuning through the LoRA
module provided by the HuggingFace PEFT pack-
age. Our hyperparameters for LoRA are set as fol-
lows: α = 16, r = 16, and loradropout = 0.05. We
fine-tune the model for 20 epochs with a learning
rate of 1e−4. For additional training details, please
refer to the code repository we have released.

4.2. Main Results
To showcase the adaptability of our VI-OOD detec-
tion framework, we evaluate it on comprehensive
datasets and compare it with competitive baselines.
The summarized averaged results can be found in
Table 1.

VI-OOD benefits a diverse collection of tasks
and OOD score functions. According to Table 1,
one notable observation is that our proposed ap-
proach consistently outperforms all compared base-
lines in terms of the overall average performance.
This can be observed across various metrics. For
instance, when comparing our method to the best-
performing baseline, the Maha method, we achieve
a significant reduction in the average FAR@95 from
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SST-2 IMDB
Methods AUROC ↑ FAR@95 ↓ AUPR ↑ AUROC ↑ FAR@95 ↓ AUPR ↑

MSP 89.85 66.20 86.40 94.30 41.90 98.80
MSPContrast 85.04 63.42 69.34 94.51 44.69 98.89

MSPVI 92.85 51.58 89.72 95.95 28.03 99.12
Maha 97.98 11.50 97.30 99.67 0.70 99.95

MahaContrast 99.42 2.98 98.73 99.89 0.05 99.97
MahaVI 99.33 3.62 98.52 99.90 0.21 99.97
Cosine 95.65 22.65 94.68 99.50 1.53 99.88

CosineContrast 98.38 8.64 96.36 99.87 1.93 99.96
CosineVI 98.87 6.62 98.06 99.57 1.43 99.88
Energy 89.80 67.00 86.53 93.30 56.70 98.63

EnergyContrast 84.93 63.16 69.29 94.44 44.46 98.86
EnergyVI 92.79 51.25 89.26 96.05 27.97 99.12

TREC-10 20NG
Methods AUROC ↑ FAR@95 ↓ AUPR ↑ AUROC ↑ FAR@95 ↓ AUPR ↑

MSP 97.94 8.43 89.26 93.89 30.49 87.39
MSPContrast 98.43 4.06 91.19 93.19 28.00 83.17

MSPVI 98.91 2.77 90.39 93.29 25.61 80.09
Maha 98.99 4.87 95.11 98.39 7.77 95.91

MahaContrast 99.57 0.97 98.59 98.78 5.89 97.29
MahaVI 99.46 0.79 97.67 99.80 0.61 98.93
Cosine 98.89 3.96 94.54 97.73 10.84 88.71

CosineContrast 99.14 1.42 93.34 98.03 8.86 95.27
CosineVI 99.36 1.19 96.09 99.39 2.92 97.19
Energy 97.19 10.07 82.16 95.76 17.93 88.71

EnergyContrast 98.45 4.73 91.18 96.04 15.70 88.62
EnergyVI 99.21 2.84 90.84 94.34 17.04 79.67

Average AUROC ↑ FAR@95 ↓ AUPR ↑

avg. (MSP / Maha / Cosine / Energy) 94.00 / 98.78 / 97.94 / 94.01 36.76 / 6.21 / 9.75 / 37.93 90.46 / 97.07 / 94.45 / 89.01
avg.Contrast (MSP / Maha / Cosine / Energy) 92.79 / 99.17 / 98.86 / 93.47 35.04 / 3.93 / 5.21 / 32.01 85.65 / 97.43 / 96.23 / 86.99

avg.VI (MSP / Maha / Cosine / Energy) 95.25 / 99.62 / 99.30 / 95.60 27.00 / 1.31 / 3.04 / 24.78 89.83 / 98.77 / 97.81 / 89.72

Table 1: Main results of our proposed framework. MSP, Maha, Energy, and Cosine are baseline methods
trained with the discriminative loss, while each corresponding method with the VI subscript denotes the
model trained with our VI framework. The Contrast subscript denotes the method proposed by Zhou et al.
(2021b). The best result is marked in bold. At the bottom row, averaged results across four ID datasets
are included. All the reported results are presented in percentage values.

6.21% to 1.31%, resulting in a relative increase of
78.9%. Similarly, for the second best baseline, the
Cosine score function, our method demonstrates
substantial improvement by reducing the average
FAR@95 from 9.75% to 3.04%. Moreover, there are
significant performance gains in terms of AUROC
as well. For example, the average AUROC score
for the Cosine method increases from 97.94% to
99.3% with the use of our method. It is worth noting
that our method achieves these improvements with-
out the need for real OOD examples, which makes
these results even more encouraging. Upon closer
examination of each of the four in-distribution (ID)
datasets, it becomes apparent that detecting out-of-
distribution (OOD) test examples using the model
trained on TREC-10 is comparatively easier than
with the other datasets. In fact, all OOD score func-
tions achieve AUROC scores above 97%. Improv-
ing upon these already competitive results poses a
significant challenge. However, our method still
manages to outperform all four score functions
on TREC-10. Notably, for the Energy score func-
tion, our method enhances the AUROC score from
97.19% to 99.21%, while simultaneously reducing
the FAR@95 score from 10.07% to 2.84%. Fur-

thermore, for the Maha method on TREC-10, our
method achieves a near-perfect FAR@95 score of
0.79%.

Superior Performance of Our Method with
Large Decoder-Only Models. To further validate
our method’s efficacy, we conduct experiments
on SST-2 and TREC-10 using LLaMA-2-7B. For
training the in-distribution classifier, we utilize Lla-
maForSequenceClassification from the Hugging
Face transformers package (Wolf et al., 2020).

Results are presented in Table 2. As shown,
when using SST-2 as the in-distribution (ID) dataset,
our method significantly outperforms the baselines
across all three metrics. In the case of TREC-10,
our method elevates the Mahalanobis (Maha) and
Cosine OOD scores to nearly perfect levels. How-
ever, for logit-based OOD scores, specifically MSP
and Energy, our method demonstrates slightly in-
ferior performance relative to the respective base-
lines. This discrepancy may stem from the fact that
Maha and Cosine benefit more from the enriched
information in sentence representations, whereas
this richer information introduces more ambiguity
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SST-2 TREC-10
Methods AUROC ↑ FAR@95 ↓ AUPR ↑ AUROC ↑ FAR@95 ↓ AUPR ↑

MSP 78.22 70.40 74.34 99.29 0.64 98.79
MSPVI 83.05 65.32 69.54 98.69 5.69 94.48
Maha 46.08 84.41 47.34 84.41 71.94 64.13

MahaVI 95.41 12.47 85.38 99.96 0.12 99.39
Cosine 89.24 26.52 79.47 98.24 11.06 93.05

CosineVI 95.95 7.21 85.70 100 0 99.92
Energy 70.13 67.78 64.87 99.86 0.14 99.27

EnergyVI 80.16 66.90 65.76 98.64 7.40 92.44

Table 2: Results of our proposed framework on LLaMA-2-7B, fine-tuned with a classification head. The
best result is marked in bold. All the reported results are presented in percentage values.

Figure 3: Heatmap of the hidden state combination
factor s. The horizontal axis stands for four ID tasks
and the vertical axis represents the layer number.

in the logits.

4.3. ID Classification Performance
In this subsection, we investigate the ID classifica-
tion performance. Besides the binary ID vs. OOD
task, OOD detection also concerns the ID clas-
sification task. We summarize the test accuracy
of the corresponding ID test sets for the four ID
datasets in Table 3. It can be seen that for 20NG,
SST-2, TREC-10, and IMDB, ID test performances
are very similar and all the gaps are lower than
1%. Therefore, models trained with our proposed
p(x, y) target do not bring significant detrimental
impacts to ID classification. However, although we
consider these gaps can be ignored in practical
applications, it also indicates that our method can
be further improved in further works.

4.4. The Combination Factor s
Finally, we analyze the learned combination vec-
tor s in our framework. We visualize the heatmap

Test Accuracy SST-2 IMDB TREC-10 20NG
p(y|x) 96.21 95.33 97.8 93.99
p(x, y) 96.38 94.54 97.0 93.35

Table 3: Performance comparison of the ID K-class
classifier for different training objectives. p(y|x) is
the commonly used discriminative objective and
p(x, y) is our proposed objective.

of the learned s for the in-distribution (ID) tasks in
Figure 3. It is evident that the hidden state combi-
nation patterns vary significantly across different ID
tasks. This observation confirms that our proposed
combination vector can automatically adapt and
learn appropriate combination policies for distinct
ID tasks. This analysis provides further evidence of
the flexibility of our framework in effectively leverag-
ing the potent hidden states of pre-trained models.

5. Related Work

OOD detection based on density estimation.
Besides the problem setting discussed in Sec-
tion (2), another line of works tries to address the
OOD detection problem by solving a more general
problem – density estimation. Unlike the setting of
our work, the focus of these works is solely on the
binary classification task of distinguishing between
in-distribution (ID) and OOD samples, disregard-
ing the ID classification task. Their learning target
is the density function of the training set – pID(x)
– such that OOD examples are assumed to yield
lower probabilities than the ID ones. However, in
high dimensional spaces, this assumption is not
held in practice and many previous works (Choi
et al., 2018) have found that OOD examples may
be assigned higher likelihoods than ID examples.
Recent works (Ren et al., 2019; Nalisnick et al.,
2019; Morningstar et al., 2021) are still trying to
correct this pathology.

In particular, numerous prior studies have lever-
aged the density estimation capabilities of varia-
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tional autoencoders (VAEs) for OOD detection. For
instance, Floto et al. (2023) enhance VAEs for OOD
detection by substituting the standard Gaussian
prior with a more versatile tilted Gaussian distri-
bution. Likelihood Regret (Xiao et al., 2020) and
Likelihood ratios (Ren et al., 2019) adopt a simi-
lar perspective of training two distinct models–one
capturing the semantic content of the data, and the
other capturing background information. Their ma-
jor difference is the training data of the background
model and semantic model.

OOD detection in NLP. OOD detection in the
NLP domain has recently attracted increased atten-
tion (Liu et al., 2023). OOD intent detection (Zhang
et al., 2021b; Zhan et al., 2021b) investigates the
OOD detection problem for anomalous utterances
in dialogue systems. Podolskiy et al. (2021b) em-
pirically find out that Mahalanobis Distance is the
best performing OOD scoring function for OOD in-
tent detection. A few attempts has been made to
study the general textual OOD detection problem.
Hendrycks et al. (2020) point out that pre-trained
Transformers are more robust for OOD detection
than previous model architectures (Hochreiter and
Schmidhuber, 1997). Zhou et al. (2021b) and Cho
et al. (2022) employ a contrastive regularizer to
learn better representations for textual OOD detec-
tion. Uppaal et al. (2023) conduct an evaluation
on RoBERTa and point out that ID fine-tuning may
pose a detrimental effect on textual OOD detection.

6. Conclusion

This paper concentrates on exploring Out-of-
Distribution (OOD) detection within Natural Lan-
guage Processing (NLP) classification tasks using
Transformer-based large language models (LLMs).
Building on our detailed analysis of hidden states in
Transformers, we introduce a Variational Bayesian
framework named VI-OOD. This framework opti-
mizes the joint distribution p(x, y) during the train-
ing phase. Our methodology is reinforced by both
experimental evidence and theoretical analysis, un-
derscoring its validity. We have rigorously tested
our approach with mainstream Transformer archi-
tectures, encompassing both encoder-based and
decoder-based models. Comprehensive experi-
ments on diverse textual classification tasks affirm
the efficacy and superiority of our OOD detection
framework.

This research is dedicated to enhancing AI safety
and the robustness of models. As such, our find-
ings are poised to benefit various AI applications
without presenting a direct risk of misuse. Fur-
thermore, our proposed methodology relies exclu-
sively on open-source benchmarks for training data,
avoiding the introduction of additional datasets for

training the OOD detector. As such, our approach
sidesteps potential ethical concerns associated
with data collection. Additionally, by building upon
open-source LLMs, our method avoids substantial
increases in resource consumption, aligning with
principles of sustainable and responsible AI devel-
opment.
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