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Abstract
Hierarchical Text Classification (HTC) is a challenging task which aims to extract the labels in a tree structure
corresponding to a given text. Discriminative methods usually incorporate the hierarchical structure information into
the encoding process, while generative methods decode the features according to it. However, the data distribution
varies widely among different categories of samples, but current methods ignore the data imbalance, making
the predictions biased and susceptible to error propagation. In this paper, we propose an IMplicitly Augmented
GenerativE framework with distribution modification for hierarchical text classification (IMAGE). Specifically, we
translate the distributions of original samples along various directions through implicit augmentation to get more
diverse data. Furthermore, given the scarcity of the samples of tail classes, we adjust their distributions by transferring
knowledge from other classes in label space. In this way, the generative framework learns a better beginning of
the feature sequence without a prediction bias and avoids being misled by its wrong predictions for head classes.
Experimental results show that IMAGE obtains competitive results compared with state-of-the-art methods and prove
its superiority on unbalanced data.
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1. Introduction

Hierarchical Text Classification (HTC), a subtask of
multi-label text classification, is an essential tech-
nique in scenarios requiring structural information
like fine-grained entity typing (Xu and Barbosa,
2018), news classification (Lewis et al., 2004) and
so on. In particular, the labels in HTC are hierarchi-
cal and usually represented as a tree from coarse-
grained to fine-grained labels. However, since each
label path starts at the root node and ends at in-
termediate or leaf nodes, the nodes closer to the
root node appear much more frequently than those
far away, making the label distribution extremely
imbalanced.

This challenging task requires extracting the hier-
archical structure information and overcoming the
biases caused by imbalance. Early methods for
HTC adopt Tree-LSTM (Zhou et al., 2020) as the
encoder to get the text features level by level. Such
an encoder is similar to the structure of the label
tree, but directly using it to encode the text will pro-
hibit the interaction between the semantics of text
and labels. Specifically, Tree-LSTM just encodes
text level by level, and then the classifier predicts
the probabilities of different levels of labels. Conse-
quently, the features of labels and the interaction
between text and labels are neglected. Hence, con-
necting the hierarchical structure information and
the text representation has become the main issue
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Figure 1: The diagram of the imbalance of HTC.
Only a few labels (head classes) frequently ap-
pear, while others (medium and tail classes) rarely
appear. The global frequency of labels shows a
long-tailed distribution.

in the field.
With the rapid development of Graph Convolu-

tional Networks (Kipf and Welling, 2016; Deffer-
rard et al., 2016) and Transformers (Vaswani et al.,
2017), many methods have started to utilize vari-
ous graph models to get the representation of the
label hierarchy and made some progress. For in-
stance, HiMatch (Chen et al., 2021) uses two GCNs
to encode the label tree in a top-down approach as
well as a bottom-up approach, respectively. HG-
CLR (Wang et al., 2022a) uses Graphormer, a spe-
cial Transformer designed for graphs, to obtain the
label hierarchy in the dataset. These discriminative
methods successfully incorporate the hierarchical
structure information into the text features to some
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extent. Nevertheless, their dependence on aux-
iliary graph models requires more computational
resources and increases time cost. In contrast,
some methods do not rely on external tools any
more. HBGL (Jiang et al., 2022), for example, re-
places the graph modules with trainable label em-
beddings, which makes BERT work as a graph en-
coder. However, the label hierarchy here just acts
as prior knowledge that facilitates the acquirement
of sophisticated features. The enhanced represen-
tation is finally fed into classifiers and processed
separately. Consequently, the final classification
is still several mutually independent processes of
matching text with each label.

Given that the auto-regressive model has a seri-
alized structure, recent studies apply the genera-
tive pre-trained models to HTC. Compared to the
traditional discriminative approaches, these gener-
ative ones will consider all the previous predictions
while predicting a label sequence. For instance,
Seq2Tree (Yu et al., 2022) proposes a generation
framework with a constrained decoding strategy
that effectively maintains the labels’ consistency
in prediction. And HPT (Wang et al., 2022b) uti-
lizes a hierarchy-aware prompt tuning method and
classifies layer by layer. Unfortunately, the predic-
tion is usually biased because of imbalanced data.
The labels closer to the root appear much more fre-
quently but only account for a small proportion, and
the global frequency of labels shows a long-tailed
distribution (as shown in Figure 1). According to the
previous work of long-tailed recognition (Li et al.,
2022; Park et al., 2022; Alshammari et al., 2022),
these head classes are always allocated with large
weights, which distorts the label space. Actually,
almost all the decoding strategies follow a fixed top-
down order, hence there’s a strong preference for
the head classes from the beginning. What’s worse,
the phenomenon’s impact will be amplified further
due to error propagation in the sequence prediction.
Once a wrong prediction for head classes occurs
in the beginning, all the subsequent predictions will
be influenced.

To sum up, most discriminative models are over-
reliant on external graph modules, which consumes
too much computational resources and time. Mean-
while, their classifiers work independently and over-
look the connections between predictions. Addi-
tionally, there are some generative methods. They
usually ignore the data imbalance so that their pre-
dictions are easily biased and susceptible to error
propagation.

The problems mentioned above motivated us
to propose an IMplicitly Augmented GenerativE
framework with distribution modification for hierar-
chical text classification (IMAGE). Almost all exist-
ing discriminative methods directly divide HTC into
several separate multi-label classification tasks ac-

cording to the hierarchy. Given that, we adopt the
generative framework to predict a label sequence.
Moreover, in order to overcome the adverse effect
of long-tailed label distribution, we introduce an
implicit augmentation method. Specifically, the dis-
tributions of original samples are translated along
various directions, which increases the data diver-
sity. Considering that the statistics of tail classes
are limited because of the scarcity, we utilize a
distribution modification strategy to adjust their dis-
tributions. In addition, we employ random shuffling
while training the model to prevent the serialized
predictions from being dominated by biased head
classes. As a result, no longer limited by the data
imbalance and fixed predicting order, the model can
get a better representation and predict balanced
label sequences flexibly. In a word, we enhance
the model’s decoding process (predicting process)
to have a better beginning of the feature sequence,
eliminating the predicting bias and misleading pref-
erence for the head classes. Just as our title says,
"Well begun is half done."

In summary, the contributions of this paper are
as follows:

• Through a detailed analysis of the existing
methods, we point out the problems in pre-
vious frameworks of HTC.

• We propose an implicitly augmented genera-
tive framework with distribution modification.
To the best of our knowledge, it is the first time
to solve the problem of long-tailed label distri-
bution for HTC.

• We conduct experiments on the three bench-
mark datasets. Compared with those strong
baselines, the results demonstrate the effec-
tiveness of implicit augmentation with distri-
bution modification and random shuffling in
improving sequence prediction.

2. Related Work

2.1. Long-tailed Recognition
The long-tailed data poses great challenges for
classification tasks on how to deal with the class
imbalance (Kang et al., 2019). The head classes
only account for a small proportion of all classes,
but the samples belonging to them make up a large
proportion of the whole dataset. Such a lopsided
distribution usually results in a prediction bias to-
wards head classes, which affects the global clas-
sification.

Most existing methods are based on various re-
balancing strategies, like re-weighting the loss (Lin
et al., 2017), re-sampling the data (Chawla et al.,
2002), adjusting the training process according to
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confusion matrix (Kozerawski et al., 2020), trans-
ferring knowledge from head to tail classes (Cui
et al., 2018), and so on. Unfortunately, these ap-
proaches are inapplicable to multi-label classifica-
tion because they have to handle each class sepa-
rately.

2.2. Implicit Data Augmentation
Data augmentation is a data-space solution to the
problem of limited data (Shorten and Khoshgoftaar,
2019), which can be divided into explicit and im-
plicit augmentation. Based on the original data and
external tools, explicit augmentation generates real
and observable data (hard samples) with strong
interpretability. For instance, AAAS (Feng and Ma,
2022) generates metaphorical sentences by mask-
ing and predicting the words in original samples. In
contrast, without the constraint of data authenticity,
implicit augmentation (Wang et al., 2019) replaces
the hard samples with virtual ones. Not being the
regular images or text comprehensible to humans,
these samples may be just a group of tensors se-
mantically similar or different to the original sam-
ples.

Implicit data augmentation is more suitable for
HTC because the correspondence between sam-
ples and labels in multi-label classification is too
complex to generate real samples. Fortunately,
rather than distinguishing which words determine
the labels and which do not, implicit data augmen-
tation adopts tensors with semantic information in-
stead of observable data, making augmentation
much easier. However, owing to the dependence
on the data distribution statistics, the effectiveness
of implicit augmentation will be sharply reduced for
tail classes (Chen et al., 2022).

2.3. Distribution Modification
The data distribution is usually imbalanced in real-
world scenarios, significantly influencing the mod-
els’ performance. The current study focuses on
how to correct the biased distribution. PBSA (Feng
et al., 2023), for example, adopt a self-supervised
method to generate the expected distribution and
use Kullback-Leibler to optimize the data distribu-
tion. Nevertheless, generating supervision informa-
tion requires a lot of extra computation. The time
cost can be catastrophic when the data volume is
enormous.

3. Methodology

3.1. Task Formulation
Given a document D consisting of n words D =
[x1, x2, ..., xn], HTC aims to predict all the matching
labels Y in the label tree H = (Y,E), where Y =

[y1, y2, ..., yNc
] is the label set (the nodes of H) and

E is the edge set (the edges of H). Specifically, H
is constructed from coarse-grained to fine-grained
labels and the target labels Y can be regarded as
one or more label paths of the tree. Each starts at
the root node and ends at the intermediate or leaf
nodes.

3.2. Generative Backbone
As explained in Section 1, the generative model has
a serialized structure predicting new labels based
on all the previous predictions. Given that, we
adopt the generative framework, and here we take
BART (Lewis et al., 2019) as an example. BART’s
encoder first encodes the input document D to get
a vector HE :

HE = Encoder([x1, x2, ..., xn]) (1)

The encoder’s output HE is then fed into BART’s
decoder with the previous predictions Y<t =
[y1, y2, ..., ym] to get HD = [h1, h2, ..., hT ], where
ht is the last hidden state of the current time step t
and T is the length of each predicted sequence.

ht = Decoder(HE ;Y<t) (2)

Further, the probability distribution gt is calcu-
lated by:

zt =Wht

gt =softmax(zt)

W =[w1, w2, ..., wNc
]

(3)

where W ∈ RNc×d is the learnable parameters of
a linear layer (classifier), and wk is the weight of
classification head for class k.

Finally, we can obtain the classification loss:

Lcls = − 1

Q

1

T

Q∑
q=1

T∑
t=1

log g(q,t) (4)

where Q is the number of samples and g(q,t) in-
dicates the probability distribution of q-th sample
at step t. Approximatively, the whole process can
be regarded as a single-label classification task of
Q× T samples.

3.3. Random Shuffling
The decoding strategies of traditional generative
methods usually follow a fixed top-down order (e.g.
BFS, DFS and so on). Nevertheless, due to the
long-tailed data distribution, there’s a strong prefer-
ence for the head classes from the beginning. The
labels in a higher hierarchy have a larger sample
size, attracting more models’ attention in prediction.
Consequently, the model tends to predict a struc-
turally matched label rather than a semantically
matched one, especially in confusing cases.
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Figure 2: The diagram of our method. We propose implicit augmentation with distribution modification to
enhance the generative model: (a) first, we get the feature sequence (decoder’s last hidden states) of
input sample. (b) Then we calculate their original distributions and modify them by agnate nodes and
co-occurring labels. (c) Finally, we augment original features under the modified distributions (the number
of augmented features is discussed in Section 3.6), which can be regarded as the process of sampling
data points in the transformed feature space. Merely, these data points are pseudo samples not really
existing.

Given the above predicting bias, we use random
shuffling instead of common decoding strategies.
The only difference between random shuffling and
traditional decoding orders is that "random" initial-
izes the label sequence order randomly before the
start of the training, serving as a one-time opera-
tion. Specifically, the predicting order is no longer
restricted, so the model is encouraged to predict
any target label without following fixed orders. As
shown in Figure 2, the target order should have
been [l1, l2, l5, l6] and [l1, l5, l2, l6] under the strat-
egy of BFS and DFS, respectively. However, af-
ter applying random shuffling, predicting any com-
bination of the target labels is acceptable (e.g.
[l5, l2, l6, l1], [l2, l5, l1, l6], [l6, l1, l2, l5], [l1, l6, l5, l2]
and so on are all correct), which means we focus
more on the completeness and accuracy of the out-
put sequence than on its order. In this way, without
the order constraint, the model can predict the most
appropriate label of the current time step.

Random shuffling captures the co-occurrence in-
formation of target labels. For a text sample in HTC,
we define the length of its corresponding labels as
T , and there are T ! different permutations, which
means that we have T ! different text-labels pairs for
training, including but not limited to BFS and DFS
pairs. Therefore, Random shuffling helps the model
capture the hierarchical information between labels
and the co-occurrence information between labels.
The trick can be seen as data augmentation.

3.4. Implicit Augmentation

Instead of generating real and observable samples,
implicit augmentation aims to produce new features
loaded with semantic information. Given the fea-
ture h(q,t), the q-th sample’s last hidden state at

step t (the decoder’s output which is then fed into
the classifier head), we can randomly sample along
N (0, σk) to generate new features with different se-
mantic transformations. Given that, the augmented
new feature obeys a Gaussian distribution which
can be formulated as:

h̃p(q,t) ∼ N (h(q,t), σk)

k = Y (q, t)
(5)

where h̃p(q,t) is the p-th augmented feature whose
class k (determined by q and t) is the same as the
original feature h(q,t). σk is the covariance matrix
of the class k, which is calculated based on k’s
feature centre hk:

hk =
1

|Sk|
∑

(q,t)∈Sk

h(q,t)

σk(a, b) =
1

|Sk| − 1

∑
(q,t)∈Sk

(h(q,t)(a)− hk(a))

(h(q,t)(b)− hk(b))

(6)

where Sk is the set of features belonging to class
k. σk(a, b) indicates the value of position (a, b) in
the covariance matrix of k and h(q,t)(a) is the value
of a-th dimension of h(q,t). The meanings of hk(a),
hk(b), and h(q,t)(b) are similar to h(q,t)(a). On ac-
count of the computation cost, the parameters of
distributions in Equation 6 are calculated by online
estimation.

Figuratively, the implicit augmentation can be re-
garded as locating pseudo sample points in the fea-
ture space formulated as N (h(q,t), σk). However,
the statistical information on tail classes is limited
due to the scarcity of samples. In other words, their
sampling space is determined by quite a few data
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points, which severely undermine the effectiveness
of implicit augmentation on tail classes. Therefore,
we propose a distribution modification approach to
address this issue by adjusting their feature space
based on other classes.

3.5. Distribution Modification
In traditional long-tailed recognition, most methods
transfer the knowledge from similar classes to the
target class based on the confusion matrix. Un-
fortunately, HTC is a multi-label classification task
where the confusion matrix is inapplicable. Given
that, we use the label hierarchy to modify h(q,t) and
σk. Specifically, we use agnate (ancestors and de-
scendants) and co-occurring labels to adjust them,
respectively. Intuitively, the agnate labels share
certain partial features according to the inheritance
relationship, so we use them to adjust the expected
value. As Figure 2 shows, for instance, the ag-
nate labels of l5 are l1 and l10. They have intra-
class similarities because of the homology based
on the tree structure. Noteworthily, the previous
study (Chen et al., 2021) finds that the generative
framework easily confuses the target label with its
sibling nodes (e.g. the siblings of l5 are l3 and
l4), so these misleading nodes are not taken into
consideration while modifying distributions. On the
other hand, the part of their features similar to the
target label has already been contained in their
common ancestors. Based on that, we can get the
modification of h(q,t):

△h(q,t) =
∑

i∈Sagn
k

wikhi

wik = Norm(
1

log |ri − rk|+ 1
)

(7)

where Sagnk is the set of agnate labels of k and ri
is k’s level and wik weights them by their relative
distance in the tree.

As for the adjustment of σ, inspired by hypernet-
works (Ha et al., 2016), we use the frequency of
co-occurrence to supervise a set of parameters.
The co-occurring labels capture the inter-class se-
mantic directions of the training data. Specifically,
the more frequently any two classes co-occur, the
more consistent the sampling directions are. Mathe-
matically, a positive correlation exists between their
weights ŵik and the frequency of co-occurrence.
The modification and loss function can be given by:

△σk =
∑
i∈Sco

k

wikσk

Lσ =

Nc∑
k=1

1

|Scok |
∑
i∈Sco

k

(wik − logXik)
2

(8)

where Scok is the set of co-occurring labels of k and

Xik is the frequency of the co-occurrence of i and
k.

Ultimately, the distribution of features is modified
and defined as:

h̃p(q,t) ∼ N (h(q,t) + α△h(q,t), β(σk +△σk)) (9)

where α and β are decaying factors to control the
degree of modification.

3.6. Upper Bound of the Loss Function
A naive method to implement the implicit augmen-
tation is to explicitly augment each original feature
h(q,t) for P times. Following Equation 9, we can
generate P samples for each sample. The training
loss is:

Laug = − 1

P

1

Q

1

T

P∑
p=1

Q∑
q=1

T∑
t=1

log gp(q,t)

= − 1

P

1

Q

1

T

P∑
p=1

Q∑
q=1

T∑
t=1

log
e
wkh̃

p
(q,t)∑NC

j=1 e
wj h̃

p
(q,t)

(10)

where gp(q,t) is the probability distribution of p-th
augmented feature for q-th sample at time step t
and wk is the weight for class k (the class of gp(q,t)
where k = Y (q, t)) in the whole weight matrix W
of the classifier. P is the number of augmented
features. As we mentioned in Section 2.2, cer-
tain directions in the feature space correspond to
meaningful semantic transformations. However,
searching for these semantic directions is difficult,
especially for large-scale problems. So, we approx-
imate the procedure by sampling random vectors in
semantic space. Theoretically, the value of P (the
augmentation times or the number of augmented
features) should be as large as possible. It is simi-
lar to the times of flipping the coin in a coin-tossing
simulation (As the number of times increases, the
probability distribution gets closer to the theoretical
value). Nevertheless, the time cost will be catas-
trophic when P is enormous (we can not generate
so many augmented features and train the model
based on them).

Considering that, we simplify the computation
by deducing the upper bound of Laug while P in-
creases towards infinity. The original loss can be
written as:

Laug
P→∞

=
1

Q

1

T

Q∑
q=1

T∑
t=1

G

G = Eh̃p
(q,t)

[log

NC∑
j=1

eU ]

U = ψjkh̃
p
(q,t), ψjk = wj − wk

(11)

The logarithm function is a convex function so
that we can get the following inequality based on
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Jensen’s inequality: E[f(X)] ≤ f(E[X])

G ≤ logEh̃p
(q,t)

[

NC∑
j=1

eU ] = log

NC∑
j=1

Eh̃p
(q,t)

[eU ] (12)

According to Equation 9, we can infer that
ψjkh̃

p
(q,t) also obeys a Gaussian distribution which

can be formulated as:

U ∼N (ψjk(h(q,t) + α△h(q,t)),Σjk)

Σjk = βψjk(σk +△σk)ψjk
T (13)

Then we can leverage Moment Generating Func-
tion of Gaussian distributions:

E
[
etX

]
= etµ+

1
2σ

2t2 , X ∼ N
(
µ, σ2

)
(14)

to further simplify G. We substitute Equation 14
with Equation 12 and obtain:

log

NC∑
j=1

Eh̃p
(q,t)

[eU ] = log

NC∑
j=1

eV (15)

where V = ψjk(h(q,t) + α△h(q,t)) + 1
2βψ

j
k(σk +

△σk)ψjk
T . Then the upper bound is:

Laug =
1

Q

1

T

Q∑
q=1

T∑
t=1

log

NC∑
j=1

eV = − 1

Q

1

T

Q∑
q=1

T∑
t=1

log(
ewk(h(q,t)+α△h(q,t))∑NC

j=1 e
wj(h(q,t)+α△h(q,t))+

1
2βψ

j
k(σk+△σk)ψ

j
k

T )

(16)
which is the final loss to train the IMplicitly
Augmented GenerativE framework with distribution
modification (IMAGE). The whole training process
is listed in Algorithm 1. We first use Lcls to get a
trained generative backbone (feature network and
classifier). Then we use Laug and Lσ to train it
to solve the predicting bias caused by long-tailed
distribution.

4. Experiments

We conduct extensive experiments to verify the
effectiveness of our proposed model IMAGE and
analyze it with ablation studies and visualization
results. In this section, we attempt to answer the
following questions: RQ1: Does IMAGE perform
better than existing methods? RQ2: Are the implicit
augmentation and distribution modification the key
factors affecting the performance? RQ3: Is "Well
Begun is Half Done" right?

4.1. Datasets
To evaluate the effectiveness of our model, we con-
duct experiments on three widely used datasets for

Algorithm 1: Training Process
Input: train set Dtrain, validation set Dval,

pre-trained generative model M0,
pre-training epochs E1,
IMAGE-training epochs E2.

for i = 1, , 2..., E1 do
Train the model M0 on Dtrain by Lcls.
Update the parameters of M0.
Get F1-score on Dval.

end
Get the best model M1 for highest F1-score.
for i = 1, , 2..., E2 do

Train the model M1 on Dtrain by Laug
and Lσ.

Update θ.
Get F1-score on Dval.

end
Get the best model M2 for highest F1-score.
return M2

HTC, including Web Of Science (WOS) (Kowsari
et al., 2017), RCV1-V2 (Lewis et al., 2004), and
BlurbGenreCollection(BGC). The detailed dataset
statistics are listed in Table 1, where Depth is the
max depth of the label tree, and Avg(T ) indicates
the average number of labels for each sample. To
make a fair comparison, we use the same train,
validation, and test splits as those in previous work.

Dataset Nc Depth Avg(T ) Train Validation Test
WOS 141 2 2 30,070 7,518 9,397

RCV1-V2 103 4 3.24 20,833 2,316 781,265
BGC 146 4 3.01 58,715 14,785 18,394

Table 1: Detailed dataset statistics.

4.2. Experimental settings
We adopt BART-Base, a typical generative model,
as the backbone of our experiments. The maximum
length of the WOS, RCV1-V2, and BGC output
sequences are set to 6, 20, and 16, respectively.
And each sequence starts from a token "<s>", ends
at a token "</s>" and then is padded by several
tokens "<pad>". The number of total epochs is set
to 150, where E1 is set to 30 and E2 is set to 120.
We set the batch size to 10 and optimized the model
with AdamW with a learning rate of 2e-5. During
the training stage, we train the model with the train
set and evaluate it with the validation set at each
epoch. As for the validation and inference stage,
we use greedy search to predict label sequences.
All of our experiments are conducted on Tesla P40.

We compare our models with current strong
baselines, including: TextRNN (Liu et al., 2016):
Use the multi-task learning framework based on
RNN to share information while modelling the text.
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Model WOS RCV1-V2 BGC
Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

TextRNN 77.94 69.65 - - - -
TextCNN 82.00 76.18 76.60 43.00 - -

TextRCNN 83.55 76.99 81.57 59.25 - -
HiAGM 85.82 80.28 83.96 63.35 77.22 57.91

BERT+HiAGM 86.04 80.19 85.58 67.93 - -
HTCInfoMax 85.58 80.05 83.51 62.71 - -

BERT+HTCInfoMax 86.30 79.97 85.53 67.09 - -
HiMatch 86.20 80.53 84.73 64.11 76.57 58.34

BERT+HiMatch 86.70 81.06 86.33 68.66 78.89 63.19
HGCLR 87.11 81.20 86.49 68.31 - -

HPT 87.16 81.93 87.26 69.53 - -
SGM-T5 85.83 80.79 84.39 65.09 77.84 60.91

Seq2Tree 87.20 82.50 87.20 70.01 79.72 63.96
PAAM-HiA-T5 90.36 81.64 87.22 70.02 - -

IMAGE 87.76 82.38 87.69 70.77 81.16 67.37

Table 2: Experimental results of on three benchmarks. The best result is in red, the second is in green,
and the third is in blue. The table is divided into three parts, and from top to bottom they are: discriminative
methods, generative methods, and our method.

TextCNN (Chen, 2015): Introduce Parallel CNN
and Deep CNN to capture local semantic features.
TextRCNN: Apply a recurrent structure to capture
contextual information so that less noise will be
introduced compared to traditional window-based
neural networks. HiAGM (Zhou et al., 2020): For-
mulate the hierarchy as a directed graph and utilize
hierarchy-aware encoders (Tree-LSTM) to model
label dependencies. HiMatch (Chen et al., 2021):
Regard HTC as a semantic matching problem
and model the matching relationship from coarse-
grained labels to fine-grained ones. HGCLR (Wang
et al., 2022a): Apply Graphormer, a graph encoder,
to embed the hierarchy into the text feature instead
of modelling them separately. HPT (Wang et al.,
2022b): Utilize prompt tuning methods to handle
HTC from a multi-label MLM view. SGM-T5 (Yang
et al., 2018): View HTC as a sequence genera-
tion problem and use T5, a generative model, as
the backbone. Seq2Tree (Yu et al., 2022): Pro-
pose a constrained decoding strategy to tackle label
inconsistency problems based on the generative
framework. PAAM-HiA-T5 (Huang et al., 2022):
Use path-adaptive attention mechanism to lead the
model to adaptively focus on the path where the
currently generated label is located, shielding the
noise from other paths.

Among them, TextRNN, TextCNN, TextRCNN,
HiAGM, HiMatch, HGCLR, and HPT are discrim-
inative methods, while SGM-T5, Seq2Tree, and
PAAM-HiA-T5 are based on genrative frameworks.

4.3. RQ1: Does IMAGE perform better
than existing methods?

Table 2 shows the experimental results of IMAGE
compared with other baselines on three datasets,
and the overall results indicate its effectiveness. We
can find that the performance of IMAGE is good on
all datasets and it almost surpasses all the existing
methods, especially on the more complex datasets
- RCV1-V2 and BGC. Nevertheless, on the simpler
task - WOS, Micro-F1 and Macro-F1 of IMAGE
may not be the best but are still quite competitive
compared with state-of-the-art methods.

Notably, the performance of generative models
is generally better than discriminative methods. To
prove that the improvement does not come from
the larger size, we list the parameters of some typ-
ical backbones in Table 3, including BERT+GCN,
BERT+Graphormer, T5 and BART. Our method, by
contrast, achieves a good performance with the
least parameters.

Model Size
BERT+GCN 148M

BERT+Graphormer 156M
T5 220M

BART 140M

Table 3: The size of different backbones.

4.4. RQ2: Are the implicit augmentation
and distribution modification the key
factors affecting the performance?

The results of the ablation study are shown in Ta-
ble 4. Compared with vanilla BART, our method
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Figure 3: The average entropy of the beginning’s output score of 1,000 mini-batches sampled randomly.

significantly improves the performance of genera-
tive models. The results drop when removing the
Distribution Modification, which proves its effec-
tiveness and necessity. Meanwhile, BART without
the whole Implicit Augmentation module obtains
a similar result. Therefore, we conclude that ad-
justing distribution is the critical factor for implicit
augmentation on long-tailed data, and eliminating
it will affect the augmentation effect. Moreover, we
can find that Random Shuffling also plays an es-
sential role in the training. It enforces the model to
make the most proper predictions without the limita-
tion of fixed orders, which helps the decoder focus
more on the output’s accuracy and completeness
to select a semantically matched label rather than
a structurally matched one, making the predicting
process immune to the bias caused by the strong
preference for the head classes. Overall, the mod-
ules and tricks mentioned above work together and
alleviate the adverse impacts of data imbalance
and fixed orders.

Model Micro-F1 Macro-F1
IMAGE 87.69 70.77
-w/o Distribution Modification 87.43 69.26
-w/o Implicit Augmentation 87.06 69.22
-w/o Random Shuffling 86.67 69.35
BART (Backbone) 86.51 68.15

Table 4: The results of the ablation study on the
benchmark dataset - RCV1-V2.

4.5. RQ3: Is "Well Begun is Half Done"
right?

We observe the final output score and plot his-
tograms to verify how IMAGE achieves the anticipa-
tion. We make a comparison with the typical gener-
ative framework - BART, which uses the traditional
decoding strategy in previous work. As shown in

Figure 4, the predictions of the traditional genera-
tive method are strongly associated with the time
step. Due to the prediction bias, it tends to predict a
wrong head class rather than a correct tail class at
the beginning. What is worse, the error will further
affect the following predictions, which results in the
deviation of the whole output sequence from the
target. However, through Random Shuffling and
Implicit Augmentation with Distribution Modification,
IMAGE has a much better feature sequence. Each
target class is allocated with a high score, even if it
is a tail class. In other words, the model can predict
a semantically matched label rather than a struc-
turally matched one. In this way, the model learns
a better beginning of the feature sequence without
a prediction bias and avoids being misled by its
wrong predictions for head classes. Therefore, we
can say "Well begun is half done."

Figure 3 proves its correctness from a global view.
We randomly sample 1,000 mini-batches and cal-
culate the average entropy of their beginning output
score. It is obvious that IMAGE’s output has less av-
erage entropy. We speculate that IMAGE focuses
more on the target labels, so the output distribu-
tion is relatively concentrated. On the contrary, the
traditional generative framework has a strong pref-
erence for all head classes, hence the relatively
dispersed output distribution.

5. Conclusion

This paper summarizes existing HTC methods, in-
dicating that almost all of them ignore biased pre-
dictions caused by the long-tailed distribution. We
propose IMAGE, an implicitly augmented genera-
tive framework, and conduct massive experiments
on the three benchmark datasets. The remarkable
performance demonstrates the effectiveness of our
method for getting better feature sequences, es-
pecially their beginnings. We expect our work will
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direct more scholarly attention to the representation
learning of generative frameworks.

(a) BART-1 (b) IMAGE-1

(c) BART-2 (d) IMAGE-2

(e) BART-3 (f) IMAGE-3

(g) BART-4 (h) IMAGE-4

Figure 4: The output of BART (the left graph) com-
pared with IMAGE (the right graph). Class 0, 1 and
2 (green bars) corresponds to <s>, <pad>, and </s>
which are ignorable in the global predictions.
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