@inproceedings{sun-etal-2024-implications,
title = "What Are the Implications of Your Question? Non-Information Seeking Question-Type Identification in {CNN} Transcripts",
author = "Sun, Yao and
Tatlubaeva, Anastasiia and
Li, Zhihan and
Palen-Michel, Chester",
editor = "Calzolari, Nicoletta and
Kan, Min-Yen and
Hoste, Veronique and
Lenci, Alessandro and
Sakti, Sakriani and
Xue, Nianwen",
booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)",
month = may,
year = "2024",
address = "Torino, Italia",
publisher = "ELRA and ICCL",
url = "https://aclanthology.org/2024.lrec-main.1516",
pages = "17444--17448",
abstract = "Non-information seeking questions (NISQ) capture the subtle dynamics of human discourse. In this work, we utilize a dataset of over 1,500 information-seeking question(ISQ) and NISQ to evaluate human and machine performance on classifying fine-grained NISQ types. We introduce the first publicly available corpus focused on annotating both ISQs and NISQs as an initial benchmark. Additionally, we establish competitive baselines by assessing diverse systems, including Generative Pre-Trained Transformer Language models, on a new question classification task. Our results demonstrate the inherent complexity of making nuanced NISQ distinctions. The dataset is publicly available at https://github.com/YaoSun0422/NISQ{\_}dataset.git",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="sun-etal-2024-implications">
<titleInfo>
<title>What Are the Implications of Your Question? Non-Information Seeking Question-Type Identification in CNN Transcripts</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yao</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anastasiia</namePart>
<namePart type="family">Tatlubaeva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhihan</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chester</namePart>
<namePart type="family">Palen-Michel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Veronique</namePart>
<namePart type="family">Hoste</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alessandro</namePart>
<namePart type="family">Lenci</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sakriani</namePart>
<namePart type="family">Sakti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nianwen</namePart>
<namePart type="family">Xue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>ELRA and ICCL</publisher>
<place>
<placeTerm type="text">Torino, Italia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Non-information seeking questions (NISQ) capture the subtle dynamics of human discourse. In this work, we utilize a dataset of over 1,500 information-seeking question(ISQ) and NISQ to evaluate human and machine performance on classifying fine-grained NISQ types. We introduce the first publicly available corpus focused on annotating both ISQs and NISQs as an initial benchmark. Additionally, we establish competitive baselines by assessing diverse systems, including Generative Pre-Trained Transformer Language models, on a new question classification task. Our results demonstrate the inherent complexity of making nuanced NISQ distinctions. The dataset is publicly available at https://github.com/YaoSun0422/NISQ_dataset.git</abstract>
<identifier type="citekey">sun-etal-2024-implications</identifier>
<location>
<url>https://aclanthology.org/2024.lrec-main.1516</url>
</location>
<part>
<date>2024-05</date>
<extent unit="page">
<start>17444</start>
<end>17448</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T What Are the Implications of Your Question? Non-Information Seeking Question-Type Identification in CNN Transcripts
%A Sun, Yao
%A Tatlubaeva, Anastasiia
%A Li, Zhihan
%A Palen-Michel, Chester
%Y Calzolari, Nicoletta
%Y Kan, Min-Yen
%Y Hoste, Veronique
%Y Lenci, Alessandro
%Y Sakti, Sakriani
%Y Xue, Nianwen
%S Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
%D 2024
%8 May
%I ELRA and ICCL
%C Torino, Italia
%F sun-etal-2024-implications
%X Non-information seeking questions (NISQ) capture the subtle dynamics of human discourse. In this work, we utilize a dataset of over 1,500 information-seeking question(ISQ) and NISQ to evaluate human and machine performance on classifying fine-grained NISQ types. We introduce the first publicly available corpus focused on annotating both ISQs and NISQs as an initial benchmark. Additionally, we establish competitive baselines by assessing diverse systems, including Generative Pre-Trained Transformer Language models, on a new question classification task. Our results demonstrate the inherent complexity of making nuanced NISQ distinctions. The dataset is publicly available at https://github.com/YaoSun0422/NISQ_dataset.git
%U https://aclanthology.org/2024.lrec-main.1516
%P 17444-17448
Markdown (Informal)
[What Are the Implications of Your Question? Non-Information Seeking Question-Type Identification in CNN Transcripts](https://aclanthology.org/2024.lrec-main.1516) (Sun et al., LREC-COLING 2024)
ACL