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Abstract

In automated scientific document analysis, accurately interpreting math formulae is imperative alongside compre-
hending natural language. Ambiguity in math identifiers within a single document poses significant challenges to
understanding math formulae. While disambiguating math identifiers across documents has seen some progress,
resolving ambiguity within a document remains inadequately researched due to complexity and insufficient datasets.
The level of difficulty and information required to accomplish this task was uncertain. This study aims to determine
which information is necessary for the intra-document disambiguation of math identifiers. Our findings indicate that
the position data and local formula structure surrounding the identifiers, including modifiers, are particularly critical.
For our study, we expanded a dataset for formula grounding and doubled its size to include annotations for 27,655
math identifier occurrences. We have created a multi-layer perceptron model that performs similarly to humans, with
an 85% accuracy and a kappa value of 0.73, outperforming rule-based baselines. We trained and evaluated the
model with papers in natural language processing (NLP). Our findings were also confirmed valid in fields other than
NLP by applying the trained models to papers from various fields. These results will aid in improving mathematical
language processing, such as mathematical information retrieval.
Keywords:Math Linguistics, Math Information Retrieval (MathIR), Feature Engineering, Coreference Relations

1. Introduction

In the automatic comprehension of scientific doc-
uments, a significant challenge arises from the
inherent need to process mathematical expres-
sions, which differ significantly in nature from nat-
ural language. A crucial difference between nat-
ural language and mathematical expressions lies
in the nature of words versus math identifiers.
These math identifiers are often concise, occa-
sionally reduced to a single alphabetical charac-
ter, and lack descriptive depth. Even in a single
document, the meanings of math identifiers can
be unclear, requiring intra-document disambigua-
tion. This ambiguity has consistently been rec-
ognized as a significant hindrance in tasks such
as Presentation-to-Computable (P2C) conversion,
Math Reasoning, and Math Information Retrieval
(MathIR) (Meadows and Freitas, 2022; Shan and
Youssef, 2021; Youssef, 2017). Furthermore,
there has been a lack of clarity regarding what in-
formation would help resolve these ambiguities.
Our research aims to evaluate the important in-
formation needed for this disambiguation quanti-
tatively and presents an automated technique.

Figure 1 depicts an instance of intra-document
ambiguity in math identifiers (from Bishop (2006)).
The bolded y is used in two distinct meanings: as
a corresponding function to the behavior of a ma-
chine learning algorithm (Concept 1) and as the
output vector of the function (Concept 2). We aim
to assign Concept 1 to the first and third occur-
rences of y and Concept 2 to the second. Since
occurrences assigned to the same concept have
a coreference relation, this task can also be seen

Figure 1: An example of intra-document ambiguity

as coreference analysis for math identifiers.

In this study, we identified which information types
are crucial for assigning math concepts by train-
ing a multi-layer perceptron model using various
rule-based extracted features. Our experiments
discerned three effective features for the task. The
most critical of these is the position data within the
document. The second is affix type, or local for-
mula structure surrounding the math identifier oc-
currence, includes information such as the pres-
ence of superscripts or subscripts and whether
parentheses follow. Although the natural lan-
guage context surrounding the occurrence is the
least important among the three features, it still
provides benefits.

To address the complexity of the problem, in this
study, we provided math concept candidates for
each math identifier type (character and font) em-
ployed in the target papers. We included the posi-
tion data of the initial occurrence associated with
each math concept candidate. Although we pro-
vided this information, identifying the correspond-
ing math concept for each math identifier occur-
rence remains challenging due to their intricate
scopes. Assuming no scope switches occur ex-
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cept the provided initial occurrence for each math
concept (a cascade baseline), an 83% accuracy
and a kappa value of 0.64 are achieved. In
contrast, human inter-annotaor agreement (IAA)
range from 75–90% accuracy, with kappa values
ranging from 0.75 to 0.95 (Asakura et al., 2022).
The top-performing model we developed, combin-
ing position data and affix type, attained 85%accu-
racy and a kappa value of 0.73, which lies between
the cascade baseline and human performance.

Furthermore, we confirm that the information re-
quired for intra-document disambiguation of math
identifiers is uniform across disciplines. The re-
sults mentioned above stem from developing and
evaluating a model using 20 papers from the nat-
ural language processing (NLP) field. Upon eval-
uating the identical model with papers outside the
NLP field, findings show that the three features are
influential in the same order, consistent with eval-
uation for the NLP papers.

2. Related Work
Analyzing small structures within formulae, such
as math identifiers, is recognized as extractive
tasks within mathematical language processing
(MLP) (Meadows and Freitas, 2022). Over time,
multiple variations of the task have been pro-
posed. The most popular task among these is def-
inition extraction for math identifiers, also known
as description alignment. This is the task to link
each type of math identifiers within a document to
its corresponding description in natural language.

Several automated techniques, including rule-
based systems and machine learning-based
methods, have been proposed for definition ex-
traction. For instance, Pagel and Schubotz (2014)
utilized the Gaussian heuristic ranking, while later
on, Schubotz et al. (2016) and Schubotz et al.
(2017) introduced hybrid techniques that com-
bined Gaussian ranking with machine learning
techniques such as K-means clustering and SVM.
Recently, Alexeeva et al. (2020) put forth a rule-
based method based on the Odin grammar.

Two alternative tasks focus on math identifiers by
narrowing down the type of information attributed
instead of natural language description. First, vari-
able typing aims to deduce the mathematical type
of a math identifier. Stathopoulos et al. (2018) for-
malized the task as a link prediction problem and
utilized BiLSTM to solve the task. Secondly, Part-
of-Math (POM) tagging targets all math tokens, in-
cluding math identifiers, and assigns role labels
within math formulae (Youssef, 2017). The pri-
mary labels given in this task are syntactic and
consistent, such as operation, relation, and delim-
iter. A task similar to the POM tagging that cen-
ters on specific internal math structures, such as

superscripts and primes, has also been proposed
to classify their semantic roles (Shan and Youssef,
2021). The performance of variousmachine learn-
ing models, including random forests, SVM, and
LSTM, for this task was evaluated. Although the
target of disambiguation in this research differs
from ours, it resembles our study.

Each of the existing tasks described above aims to
address the problem of math identifiers having var-
ied meanings across documents but does not con-
sider the ambiguity of these identifiers within a sin-
gle document. Math identifiers can carry multiple
meanings and demonstrate complex scoping in a
document. The Symlink shared task of SemEval
2022 (Lai et al., 2022) partially addresses the intra-
document ambiguity but is limited to paragraph-
level analysis. Specifically, it involves extract-
ing coreference relationships among math tokens
within a single paragraph. The state-of-the-art
(SOTA) for this relation extraction task is a method
called JBNU-CCLab (Lee and Na, 2022), utilizing
SciBERT, though it achieves an F1 score of only
37.19, indicating significant room for improvement.
The context feature in our work essentially covers
this (see Section 5.1).

While datasets are scarce that address intra-
document polysemy of math identifiers, the For-
mula Grounding Dataset (Asakura et al., 2022) of-
fers annotations for the issue. Our research aims
to enhance the dataset and spearhead an initiative
to disambiguate math identifiers within documents
automatically.

3. Dataset and Task
3.1. Dataset Overview
We use a dataset that is an extension of the For-
mula Grounding Dataset (Asakura et al., 2022).
Originally consisting of 15 papers, our extended
dataset now contains a total of 40 papers1. The
extension followed the same methodology as the
original study, which involved manual annotation
using the MioGatto annotation tool (Asakura et al.,
2021). Each occurrence of a math identifier within
the 40 target papers in this dataset is labeled with
its correspondingmath concept. Thosemath iden-
tifiers that are coreferenced are associated with
the same math concept, while those not coref-
erenced are associated with different math con-
cepts. Thus, the annotations in this dataset inher-
ently contain coreference information.

To ensure the quality and reliability of the annota-
tions in the extended dataset, we calculated the
inter-annotator agreement rate on a random sub-
set of the data. Specifically, for seven out of the 40

1The dataset is available on https://sigmathling.
kwarc.info/resources/grounding-dataset/.
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Dataset #papers #words #types #occr #con

Original
(Asakura+, 2022) 15 86098 680 12352 1418
Extended (Ours) 40 237062 1742 27657 3603

Table 1: The extended formula grounding dataset

papers included in our dataset, the average agree-
ment rate was 95.7% (kappa value of 0.81). This
is consistent with the results of the previous work
(agreement rates of 84.2–96.5%, kappa values of
0.75–0.94), which we deemed sufficiently reliable.

Table 1 gives an overview of our extended dataset.
In the table, “#papers” denotes the number of an-
notated papers,“#words” denotes the total num-
ber of words in those papers, “#types” denotes
the total number of different types of math identi-
fiers (character or symbol type along with its font),
“#occr” denotes the total number of occurrences of
math identifiers, and “#con” denotes the number
of math concepts associated with the math iden-
tifiers in the papers. Due to a 2.6-fold increase
in the number of target papers from the original
dataset, the number of occurrences of annotated
math identifiers increased by a factor of 2.23.

In the original dataset, there were only a total of
15 papers, with just a few papers for each spe-
cific domain. However, our extended dataset in-
cludes 20 papers from the NLP domain, along with
eight papers from astronomy, five from other Com-
puter Science (CS) domains besides NLP, three
from economics, two from mathematics, and one
each from physics and biology2. This expansion
permits a somewhat quantitative analysis of vari-
ations across diverse domains. Primarily, our re-
search employs 20 NLP papers for model design
and evaluation. Additionally, we aim to evaluate
the model’s generalizability by applying it to pa-
pers from other fields.

3.2. Task Description
We propose a task of disambiguating math identi-
fiers within a single paper. The task aims to assign
math concepts to each math identifier occurrence.

Input:

• Structured document representation of the
target paper (in XHTML format)

• The initial occurrence position associated with
each math concept of the math identifiers

Output:

• Math concepts assigned to every occurrence
of the math identifier within the target paper

The input paper’s structured data is an XHTML

2We decided on the domain of the paper with respect
to the arXiv categories. For example, we treat papers
labeled with the category cs.CL on arXiv as NLP papers.

document converted from a LATEX document
source using LATEXML (B. Miller, 2018). Math for-
mulae are encoded in Presentation MathML for-
mat (Ausbrooks et al., 2014). Each occurrence of
a math identifier is represented by the <mi> tag.
We can determine the precise character or sym-
bol type and its typeface by examining the <mi>
tag content and attributes.

Information regarding candidate math concepts to
assign to each occurrence of a math identifier is
provided as position information for the initial oc-
currence of the identifier associated with each con-
cept. It indicates where a math concept is first
used in the paper, often where it is defined or
declared. This information only partially provides
correct labels and is limited in number. For in-
stance, our dataset (Table 1) contains 27,657 oc-
currences. The number of initial positions is equiv-
alent to the number of math concepts, which is
3,603. If we focus only on annotating these initial
positions, the manual annotation effort is reduced
to about one-tenth. Additionally, we plan to auto-
mate identifying these initial positions in the future.

We split our dataset into development and evalua-
tion data on a per-paper basis. During evaluation,
the model will assign math concepts to each oc-
currence of a math identifier based on input from
papers not in the training data. While a single pa-
per may contain numerous math identifier occur-
rences, these occurrences will not be divided be-
tween the training and evaluation datasets. This
data requirement is formulated assuming a realis-
tic scenario in which, when provided with the struc-
tured data of an unfamiliar paper and its initial po-
sition annotations, the objective is to complete the
remaining annotations.

3.3. Dataset Usage
Considering the varying writing styles and conven-
tions across different research fields, we primarily
utilized 20 research papers in NLP for both training
and evaluation purposes. The NLP subset con-
tains 9,314 instances of math identifiers (Table 2).
Each of these math identifiers has been annotated
with a math concept from a set of 1,518.

The dataset contains a limited number of papers
due to the costly nature of annotation, and it is
imperative to separate the evaluation data from
the development data reasonably. However, the
length of the paper and the complexity of the for-
mulae used in the paper cause the difficulty of solv-
ing the task to vary significantly from paper to pa-
per. We calculate the average candidate num-
ber to obtain a relatively accurate representation
of this difficulty (the “#cand” column in Table 2).
This metric is calculated as an average of the num-
ber of math concepts for each math identifier type
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arXiv ID #words #type #occr #con #cand Test?

2004.08500 8165 102 2528 308 5.6
1905.11006 4820 58 404 108 5.1 ✓
1711.02281 4108 49 402 85 4.7
2104.05336 9839 46 453 101 3.8
2002.08046 5415 73 1175 167 3.3
1802.08545 5900 44 1147 99 3.0
2103.04350 4451 33 237 61 2.9 ✓
1906.05149 2881 25 162 30 2.7
2002.06823 6255 34 510 74 2.7
2106.02134 5082 46 333 85 2.7
1508.01745 4267 42 266 73 2.6
2001.05139 5543 31 203 47 2.6 ✓
1609.06038 3563 38 433 79 2.5
2010.00710 4362 26 189 38 1.8
2012.14116 4261 31 186 39 1.7
1606.02821 2091 11 86 16 1.3
2011.09553 4444 37 165 35 1.2 ✓
2011.04946 4728 17 94 19 1.2
2105.12523 2257 23 124 27 1.2
2005.00175 4613 23 217 27 1.1
Total 97045 789 9314 1518

Table 2: Details for the NLP subset of our dataset

Figure 2: Architecture overview

weighted by the occurrence frequency. As a re-
sult, the expected probability of correctly guess-
ing at random would be in accordance with the in-
verse of this average number of candidates. Test
data was chosen to ensure the average number
of candidates in the development and evaluation
data was not heavily skewed (see “Test?” column
in Table 2).

This extracted test dataset was crucial and ex-
clusively reserved for the model’s final evaluation.
For all other processes, including model develop-
ment, hyperparameter tuning, and granular anal-
ysis, we relied on the residual 16 papers classi-
fied under development data. To obtain maximum
usefulness from this 16-paper dataset, we primar-
ily employed the Leave-One-Out Cross Validation
(LOOCV) approach for most experiments.

4. Machine Learning Model
In our task, the possible math concepts assigned
to a math identifier occurrence vary by document
and identifier type. Consequently, this task cannot
be considered a straightforward multi-class clas-
sification problem. Instead, feature vectors for
pairs of the occurrence and math concepts are
produced for each candidate math concept. A
three-layer perceptron is then trained to generate
the probability for each pair.

Figure 2 presents a summary of the inputs and
outputs of the perceptron. The input consists of
feature vectors corresponding to the target occur-

rence and candidate math concept pairs. A vector
of these is formed by concatenating the feature
vector voccr extracted from the target occurrence
with the feature vector vncand extracted from the first
occurrence associated with a candidate math con-
cept. The perceptron’s output indicates the likeli-
hood that the input pair is correct. For the final
concept assignment, we select the math concept
with the highest perceptron output, i.e., probability,
from each pair by taking the argmax.

The model’s performance was evaluated using the
method employed by Asakura et al. (2022) to cal-
culate IAA. The accuracy was determined by con-
sidering the human annotations as ground truth
and calculating the simple agreement rate. Addi-
tionally, Cohen’s kappa (Cohen, 1960) was calcu-
lated. This was calculated with the weighted av-
erage being determined by the number of occur-
rences for each identifier type.

Shifting our focus to the intricacies of our model’s
training, the Mean Squared Error (MSE) function
was used as the preferred loss function. We
methodically optimized hyperparameter using Op-
tuna (Akiba et al., 2019) although detailed informa-
tion has been included in Appendix A for brevity.
At a high level, our exploration included a range
of optimizers such as SGD, Adam, and RMSprop
and a suite of activation functions including ReLU,
ELU, Sigmoid, and tanh. Among the tested com-
binations, the combination SGD with ReLU con-
sistently produced superior results, cementing its
selection throughout our experimentation. We op-
timized other key hyperparameters, such as the di-
mension of the hidden layers, learning rates, and
batch sizes specific to each model. It is important
to note that, during the hyperparameter refinement
phase, we exclusively used LOOCV on our devel-
opment dataset.

5. Feature Engineering

In constructing the input for the multi-layer percep-
tron, we extract three types of information from
each math identifier occurrence (Table 3). The
first feature is context, i.e., the natural language
text surrounding the occurrence. To convert the
context into a vector representation, we utilize
embeddings generated by the Sentence Trans-
former (Reimers and Gurevych, 2019). The sec-
ond feature is affix type, which captures the local
formula structure around the targeted math iden-
tifier. This encompasses whether the occurrence
has been modified by elements such as a prime
or is followed by parentheses. The analysis of the
affix type is rule-based, and the resulting data is
transformed into a vector representation. Lastly,
the third feature is position data, which includes
two types of information. The first is the binary
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Feature Description Example

Context Natural language text surrounding the occurrence the feature vector $v'_{x}}$ extracted from the
Affix type Local structure in the math formula prime and subscript
Position data With or without cascade effect and distance from the first instance In cascade effect?: yes, Distance: 20 words

Table 3: Three types of the feature extracted from a math identifier occurrence

value of whether or not the target occurrence is
within the cascade effect. The second specifies
how far the target occurrence is from the initial in-
stance of the paired math concept.

Regarding feature engineering, all design deci-
sions were based on the development dataset,
which included 16 papers; the test dataset re-
mained untouched. To measure the effectiveness
of various features, we utilized LOOCV as our
evaluation tool. Anticipating potential variations in
model performance resulting from initial settings,
such as initial parameter values, our approach
involved training iterations using three different
seeds. Subsequently, we compared the perfor-
mances based on their averaged outcomes. An
early stopping was implemented to prevent over-
fitting, with a patience of 3 and a cap of 20 epochs.

5.1. Context Embeddings
Following recent advances in NLP techniques
based on the distributional hypothesis, we uti-
lize the context information of math identifiers.
To make context compatible with our perceptron,
we incorporated the functionality of the Sentence
Transformer. The feature vectors are constructed
for the occurrence of each math identifier and its
corresponding math concept, with both being con-
catenated. The context of the identifier occurrence
is extracted from the text surrounding it. On the
other hand, regarding the math concept’s context,
we base it on the position of its initial introduction.
We use the surrounding text from this debut posi-
tion as its context.

MiniLM (Wang et al., 2020) served as our pre-
trained model for Sentence Transformer. We used
LOOCV to compare the performance of various
pretrained models and concluded that MiniLM is
the fastest and the most effective for our task (Ta-
ble 4). The widely recognized high-performing
generic model, MPNet (Song et al., 2020), per-
forms slightly worse than MiniLM. We also used
the STS-fine-tuned versions of MPNet and SciB-
ERT (Beltagy et al., 2019; Deka and Jurek-
Loughrey, 2021) models, but their performance is
inferior to MiniLM for our task.

Variations in the context window size and repre-
sentationmethods for formulae haveminimal influ-
ence on task performance. We confirmed the neg-
ligible variance among these variations by LOOCV
(see Appendix B). In our evaluation experiments,

Model Accuracy Kappa

all-MiniLM-L6-v2 0.7682 0.3441
all-mpnet-base-v2 0.7583 0.3151
stsb-mpnet-base-v2 0.7260 0.2261
pritamdeka/
S-Scibert-snli-multinli-stsb 0.6911 0.0000

Table 4: Sentence Transformer models

Affix type (Example) Occurred Recall Precision F1

subscript (Ba) 1914 0.971 0.898 0.933
superscript (Ba) 548 0.987 0.646 0.781
comma (B(a0 ,a1)) 150 0.940 0.613 0.742
semicolon (B(a0;a1)) 26 0.961 0.641 0.769
colon (B(a0 ∶ a1)) 0 — — —
prime (B′) 117 0.931 1.000 0.964
asterisk (B∗) 92 1.000 0.978 0.989
circle (B∘) 0 — — —
hat (B̂) 93 0.924 0.934 0.929
tilde (B̃) 44 1.000 1.000 1.000
bar (B̄) 146 0.863 0.984 0.919

over (
a
B) 0 — — —

over right arrow ( ⃗⃗⃗ ⃗⃗B) 4 1.000 1.000 1.000
over left arrow (⃖⃖ ⃖⃖B⃖) 4 1.000 1.000 1.000
dot (Ḃ) 0 — — —
double dot (B̈) 0 — — —
open parenthesis (B(a)) 611 0.901 0.880 0.890
close parenthesis (B(a)) 611 0.901 0.880 0.890
open bracket (B[a]) 4 1.000 1.000 1.000
close bracket (B[a]) 4 1.000 1.000 1.000
open brace (B{a}) 5 1.000 0.454 0.625
close brace (B{a}) 5 1.000 0.454 0.625
vertical bar (B(a0 ∣ a1)) 82 0.878 0.900 0.888
leftside argument (aB) 2 — — —
rightside argument (Ba) 4 — — —
leftside base (aB) 13 1.000 0.812 0.896

Table 5: Performance of rule-based affix detection

we used a window size of 20 and LATEX represen-
tation for the math formulae in the contexts.

5.2. Affix Types
The term affix type refers to the type of affix that
accompanies math identifiers, such as subscripts,
accent marks, and others. Our dataset contains a
total of 26 annotated affix types, as shown in the
first column of Table 5. These affix types are uti-
lized to extract the inherent structural information
withinmath formulae that may not be fully captured
by context embeddings.

We developed a rule-based algorithm to distin-
guish the different types of affixes. After evaluating
the algorithm over the full development dataset,
we found a 90.56% accuracy rate. Table 3 pro-
vides a comprehensive performance breakdown
for each affix type. It is worth noting that certain
affix types, e.g., colon and circle, have not been
used in the NLP domain’s development data de-
spite appearing in the evaluation data and data
from other domains. Such affix types are not sup-
ported in our current algorithm.
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Most errors for the detection fall into the following:

• Indistinguishable by pattern: for these cases,
correct identification is challenging solely
based on patterns. For example, the preci-
sion for superscript is comparatively lower be-
cause discerning whether a superscript func-
tions as an exponent operator or forms a part
of the identifier is unfeasible through pattern
recognition alone. Similarly, discerning be-
tween omitted multiplications and left/right-
side arguments is also challenging, and thus,
these affix types are not supported.

• Annotation errors: Affix types such as the
comma, which are easy to overlook, primarily
contribute to errors resulting from annotation
issues rather than the algorithm’s design.

We assessed our perceptron using output from
a preliminary algorithm with 88.77% accuracy,
as well as our final rule-based algorithm. The
preliminary algorithm’s average LOOCV accuracy
was 82.88%, whereas the final algorithm achieved
83.19%. Despite improving the affix type identi-
fication accuracy by 1.79 percentage points, the
overall performance only increased by 0.31 per-
centage points. This indicates that addressing ad-
ditional corner cases have limited significance.

Some efforts have been made to acquire embed-
dings for the mathematical expressions (Greiner-
Petter et al., 2020; Youssef and B. R. Miller, 2018),
which might serve as alternatives for the affix type
feature, and their performance comparison could
be significant in efforts towards SOTA. However,
our objective is not to aim for SOTA but to identify
the crucial information for intra-document disam-
biguation of math identifiers. While exploring vari-
ous methods for formula embeddings is important,
it has little impact on our key finding according to
the error analysis of our models (see Section 6.2).

5.3. Position Data
Based on the annotation data analysis, position
data is integrated as a model feature. Observa-
tions regarding the scope of math identifiers in
documents uncovered a cascade effect (Asakura
et al., 2022). In most cases, a math identifier oc-
currence aligns with the preceding occurrence of
the same identifier type. The position data of the
target occurrence within a document is a powerful
clue for identifying the associated math concept.

As for themodel input, position data comprises two
distinct types. The first is a binary value that in-
dicates whether the target occurrence falls within
the cascade effect’s scope. The value is 1 (true)
if there is no initial position of another candidate
concept between the position of the target occur-
rence and the initial instance of the paired candi-
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Figure 3: Results of test evaluation

date concept and 0 (false) otherwise. We call a
method of concept assignment that relies solely on
this binary value a cascade baseline.

The second is the distance between the target
occurrence and the initial instance of the paired
candidate concept. This value is standardized to
[−1.0,1.0] when fed into the model. Although the
distance information has no impact in case the po-
sition data is the only feature given to the percep-
tron, it slightly boosts the performance (on aver-
age, 0.61 points in accuracy and 0.0084 in kappa
value) when combined with other features.

6. Experiment I: Model Comparison
To determine which information is most helpful
for intra-document disambiguation of math iden-
tifiers, we inputted the three types of features in
various combinations into a three-layer perceptron
and compared their performance. The model was
trained on all development data, which included 16
papers in the field of NLP, and then evaluated on
test data consisting of four other NLP papers.

For comparative analysis, we created three differ-
ent baselines. The random baseline conducts all
assignments at random. The mode baseline as-
signs to all occurrences the math concept first in-
troduced for each identifier type. Finally, the cas-
cade baseline takes advantage of the cascade ef-
fect (see Section 5.3).

The evaluation results are shown in Figure 3. Ex-
cept for the baseline labels on the x-axis, each in-
dicates the features used: ‘c’ for context, ‘a’ for
affix type, and ‘p’ for position data. The use of a
feature in a given model is indicated by ‘+’, while
its absence is indicated by ‘-’. Error bars attached
to each data point are derived from the standard
deviations. We also computed the agreement rate
between two human annotators on the same test
data for reference. The first annotator, a gradu-
ate student majoring in NLP, performed both the
listing of candidate math concepts and the assign-
ment of them. The second annotator, a postdoc-
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toral researcher majoring in fields other than NLP,
has prior experience with this type of annotation.

6.1. Feature Significance
We found that the three features we identified,
context, affix type, and position data each sig-
nificantly contribute to the effectiveness of our
models. Furthermore, all of these features, even
when used alone, outperform both the random
and mode baselines. The evaluation data contain
identifier types used unambiguously within a doc-
ument, and even the baselines demonstrate a cer-
tain degree of accuracy. However, it is essential
to note that the kappa value, intended to eliminate
random predictions, is meager for these baselines,
as expected. Including any of the features leads to
a substantial increase in kappa values.

Of the three features, position data stands out as
the most critical due to its inherent ability to en-
capsulate both the cascade effect and relative dis-
tance information. This results in the position-only
model (c-/a-/p+) has nearly identical, if not signifi-
cantly better, performance than the cascade base-
line. In contrast, while the other two features are
valuable, they do not match the level of perfor-
mance achieved by the cascade baseline and ap-
pear less significant compared to position data.

Shifting our attention to the outcomes of models
that blend two features, we observe that incorpo-
rating affix type with position data surpasses the
cascade baseline, resulting in the most success-
ful model detected in this evaluation. In contrast,
the addition of context to position data barely en-
hances performance. This implies that much of
the knowledge obtained from context is already
contained within position data. While the exper-
iments in Section 5.1 suggested limited integra-
tion of intra-formula information in the embedding
representation by the Sentence Transformer, our
present findings agree with this. In that, informa-
tion from context is majorly covered in position
data, while affix type provides exceptional insights
that are not accessible in position data.

When all features are combined, the model’s per-
formance slightly falls behind the position data and
affix type combination in our evaluation. This slight
difference could be due to the context acting as un-
intentional noise. However, this deviation as pos-
sibly falling within the margin of error since it con-
trasts with the performance order in the LOOCV.

6.2. Error Analysis
Differences by paper To estimate the difficulty
for various papers, we analyzed the performance
of our model on each of the 16 development data
papers. We depicted the correlation between the
average number of candidates per paper and the
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Figure 4: Performance by paper in LOOCV

Position 0–20% 20–40% 40–60% 60–80% 80–100%

Accuracy 0.9336 0.9137 0.8391 0.8395 0.8779
Kappa 0.7658 0.6909 0.6358 0.5080 0.4142

Table 6: Performance by position

models’ performances in Figure 4. Our focus is on
four models that employed two or more features.

Across all models, a strong negative correlation
was found between the two variables, with corre-
lation coefficients ranging from −0.944 to −0.849.
This means that the model’s performance tends
to deteriorate as the average number of candi-
dates increases, which indicates a more challeng-
ing task. This trend aligns with what would be ex-
pected when selecting candidates randomly.

Additionally, the performance was observed to
vary significantly among papers, even for the
samemodel. To thoroughly compare task difficulty
across diverse fields, a significant amount of data
is necessary to minimize the variations observed
among individual papers. As our existing dataset
consists of 40 papers, making task-difficulty com-
parisons across domains remains challenging.

Error trends Using the model c+/a+/p+ trained
in the LOOCV, we conducted an in-depth analysis
of specific error cases. Figure 5 presents a graphic
display of the contrast for paper 1711.02281 be-
tween human-annotated correct labels and the
output generated by the model. The horizontal
axis represents the positions in the paper, and
the vertical axis represents the math concepts as-
signed to math identifiers that occurred at each
position. In this figure, when the correct label
matches the model output, it is represented by a
single gray line. Discrepancies between the cor-
rect label and the model’s outputs are highlighted
with a thick blue line for the correct label and a
dotted red line for the model output. In this figure,
only the math identifier types with discrepancies
between correct labels and model outputs are ex-
tracted.

Observing Figure 5, two error trends can be iden-
tified: (1) errors occur more frequently towards
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Figure 5: Contrast of labels and model outputs

the end of the documents, and (2) the thick blue
line (correct labels) often appears above the dot-
ted red line (model outputs). Computing the per-
formance against the 16 papers in the LOOCV
by partitioning according to each paper’s position
yields results that agree with trend (1) (Table 6).
Quantitatively, the model performance, especially
the kappa value, decreases as the document pro-
gresses toward the latter sections. This can be at-
tributed to the fact that the initial sections of the pa-
pers introduce fewer math concepts, thus simplify-
ing the assignment. In contrast, the later sections
present many choices due to introducing numer-
ous concepts. Trend (2) suggests that our model
has difficulty with patterns where math concepts,
previously introduced in the document, are used
again at distant positions. In 90.97% of errors ob-
served during LOOCV, the correct math concept
is introduced at an earlier position than the model
output.

Frequent error patterns The most common er-
ror pattern identified was the scope-switch over-
sight, in which the model output failed to corre-
spond with the updated scope indicated by the
human annotation. This oversight accounted for
62.79% of all errors produced during the LOOCV.
In Figure 5, an illustration of this error type is given
by the discrepancy related to the math identifier L
in the latter part of §3. The thick blue line indi-
cates the correct scope, which diverges from the
preceding grey line. Nonetheless, the model’s out-
put, shown by the dotted red line, stays connected
to that previous grey line. This oversight happens
frequently for math identifiers that are used in mul-
tiple meanings even though they appear closely
together. For instance, in the paper 1711.02281,
the variables T and T′ occurred nearby within a
math formula. Additionally, the adjacent context
contains the matrix transpose symbol denoted as
T. While our rule-based affix type detector can dis-
tinguish between T and T′ accurately, the percep-
tron model heavily relied on the position feature.
Consequently, this preference led to frequent er-
rors in the output.

While rare, the model’s output sometimes sug-
gests a change in the meaning of a math identi-
fier despite the correct annotation not indicating a
scope switch. This phenomenon is referred to as
a false scope switch. These discrepancies con-
stitute 13.7% of the total errors. Although difficult
to visually discern from Figure 5, the error regard-
ing the identifier f can be observed in §4. Be-
fore the mismatch, there is a match aligned with
the y-coordinate of the thick blue line, from which
only the model’s output, represented by the dot-
ted red line, deviates. The cause for false scope
switches often remains unknown upon analyzing
individual instances. Despite the proximity of po-
sitions and matching affix types, the model some-
times mistakenly introduces false scope switches.
These errors may stem from the model’s priori-
tization dilemma between position and affix type
features. False scope switches are more likely to
occur in situations with regular scope changes or
math identifier types prone to affix type misclassi-
fication. For example, superscript judgments have
low precision (see Section 5.2), and identifiers in-
volving this are susceptible to false scope switch-
ing.

Errors that do not fall into the above two patterns
are more complicated, where the correct scope
and the model output shift to different scopes.
Identifying a consistent pattern in such errors
proves challenging. An interesting case from the
paper 1711.02281 in the second half of §3 illus-
trates this. An occurrence of the identifier f oc-
curs within a sentence beginning with “As shown
in Fig. 2.” Interestingly, “Fig. 2” refers to a topic
introduced much earlier, specifically in §2. Con-
sequently, the introduction of this first sentence ef-
fectively reintroduces the topic from §2. As a re-
sult, the correct math concept associated with the
identifier f in this case should be consistent with
its occurrence in §2. However, the output of the
model does not account for such cases. To en-
able the model to handle such complicated sce-
narios, capturing the topic to which “Fig. 2” refers
is a formidable challenge. While such instances
are rare in most papers, typically occurring once
or twice, several papers in our constructed dataset
contain sentences that revive previous topics.

7. Experiment II: Cross-domain
Through evaluation with a subset of our dataset
containing papers from non-NLP fields, we exam-
ined the effectiveness of our proposed model and
the findings presented in the previous section in a
cross-domain setting. We trained our model us-
ing the same 16 NLP papers previously used in
Experiment I and evaluated with 11 other papers
selected from the non-NLP subset of our dataset.
We limit the number of papers in a single field to a
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Figure 6: Results of cross-domain evaluation

maximum of three to prevent bias among the con-
stituent areas.

The result of the cross-domain experiment is
shown in Figure 6. Due to the uneven distribu-
tion of candidate numbers for each identifier, some
models’ accuracy appears outside the norm. How-
ever, the trend observed in the kappa values aligns
closely with the results of Experiment I: in terms
of feature importance, position data and affix type
rank highest, followed by context. The model that
combined position data and affix type exhibited
notably high performance. Adding context to this
model resulted in minimal impact on its effective-
ness. Evaluating the performance of these two
models based on kappa values demonstrates that
they exceed all the baseline models.

8. Conclusion
In this study, we investigated the information types
that aid in the intra-document disambiguation of
math identifiers by training a multi-layer percep-
tron with various features derived from our ex-
panded formula grounding dataset. Position data
is found to be the most important feature, followed
by the affix type and context. Although our ex-
periments focused on NLP papers for training and
evaluation, the model trained on such papers per-
forms consistently when evaluated on papers from
other disciplines. These domain-independent ob-
servations are expected to be advantageous for
developing more efficient models for future intra-
document disambiguation of math identifiers. Au-
tomating the intra-document disambiguation pro-
cess will be crucial in various MLP tasks. For in-
stance, this will allow text to be presented at a
finer granularity than the document level in MathIR
tasks and facilitate even more precise P2C con-
versions than previously achieved.
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Parameter Phase 1 Phase 2

optimizer SGD, Adam,
RMSprop SGD

activation Sigmoid, tanh,
ReLU, ELU ReLU

hidden size 2–input size 2–input size4

lr 10−5–1.0 10−3–1.0
batch size 10–512 20–512
Table 7: Settings of hyperparameter tuning
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A. Hyperparameters
In this study, we employed a three-layer percep-
tron to explore how various features, such as con-
texts surrounding math formulae and position data
within the document, can assist in disambiguat-
ing math identifiers. Due to the varying dimen-
sions of the input vector based on the combination
of features used, multiple machine learning mod-
els with distinct hyperparameters were necessary.
Neglecting to optimize hyperparameters may im-
pede the perceptron’s capacity to effectively uti-
lize the built-in features, thus generating inaccu-
rate evaluations of their importance.

We employed Optuna3, a hyperparameter opti-
mization framework utilizing Bayesian optimiza-
tion, to conduct an adequate search for the op-
timal hyperparameter. The optimization process
involved performing LOOCV on the development
data for each trial, with the primary objective of
maximizing accuracy.

The hyperparameter search was performed in two
phases. In the first phase, a broad hyperparame-
ter search was executed for a model that utilized
all three features identified in the study. Table 7
presents a comprehensive names of the parame-
ters and their search ranges for this phase. This
initial search comprised 150 trials and lasted about
seven hours on a 15-inch M2 MacBook Air (2023,
8-core CPU, 24GB RAM, 1GPU (mps)).

Figures 7 and 8 illustrate the progression of the ini-
tial search phase and the significance of each hy-
perparameter, respectively. It is worth noting that
selecting the optimizer and activation function is
paramount for our task. As a result, the optimizer
was fixed to SGD, and the activation function to

3https://optuna.org
4Exceptions were made when the input size was

smaller than five, in which case a range of one to five
was searched.
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ReLU for all further experiments. Although the im-
pact of other parameters was relatively limited, we
conducted the second phase search to fine-tune
the parameters for each model, given the signifi-
cant variation in input vector dimensions between
models.

In the second phase, we narrowed our search
based on findings from the first phase. The
rightmost column of Table 8 enumerates the re-
fined search ranges. We observed that the
speed of LOOCV was greatly influenced by batch
size. Although training time increased with smaller
batches, our investigation in the first phase re-
vealed that relatively larger batches did not neg-
atively affect performance. Thus, in the second
phase, we set a higher lower bound for the batch
size to reduce optimization time. Each model
underwent 50 trials during this phase, with each
search taking approximately two hours on the M2
MacBook Air.

After the second phase of the search, we final-
ized hyperparameters for each model (Table 8).
These hyperparameters were used for LOOCV
during feature engineering and evaluation experi-
ments on the test data. Throughout feature engi-
neering, multiple features with slightly varying in-
put dimensions were tested, and the values from
the table were usually reused unless there was a
considerable alteration in the input size. Nonethe-
less, there were two exceptions as follows.

• Given the significant difference in dimensions,
378 and 756, depending on the Sentence
Transformer type utilized, we conducted sep-
arate optimizations for each case.

• Individual adjustments were conducted for
models with a small input dimension, where
altering the hyperparameters impeded ade-
quate training.

B. Formatting inputs for Sentence
Transformer

Representation of math formulae Options in-
clude keeping the LATEX format, replacing all for-
mulae with special [MATH] tokens, or using a
[TARGET] token exclusively for the formula that
has the target occurrence while replacing other
formulae with [MATH]. No significant performance
differences were noted among these variations,
with accuracies slightly fluctuating around 76.82%
for the original LATEX format, 75.72% when using
the [MATH] tag consistently, and 75.11%when em-
ploying both [TARGET] and [MATH] (Figure 9). This
suggests that the embedding vectors generated
by the Sentence Transformer may not effectively
encode the innate structural data within the equa-
tions for this particular task.

Size of context window This means selecting
the number of words encompassing the math for-
mula to be considered context, where formulae
are deemed a single word. We tested 5, 10, 15,
20, 25, and 30 window sizes, with the results illus-
trated in Figure 10. The impact of window size on
model performance was insignificant, with no no-
ticeable correlation exceeding the margin of error
thresholds. All subsequent experiments utilized a
consistent window size of 20.

Based on these results, for the final evaluation ex-
periments, we use a window size of 20, keep the
math formulae in their LATEX format for context ex-
traction, and use MiniLM-generated embeddings
as the contextual feature vectors.

C. The non-NLP Subset
Details of the subset of papers used from fields
other than NLP are presented in Table 9. We se-
lected two papers each from fields such as astron-
omy and CS, as they had a relatively higher num-
ber of papers, to serve as test data. As with the
NLP subset, we ensured that the chosen test data
had an unbiased average number of candidates.
Papers from other domains were exclusively used
as test data and were not included in the training
set.
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model input size hidden size lr batch size

c+ (MiniLM) / a− / p− 768 694 0.639 23
c+ (Others) / a− / p− 1536 1136 0.722 67
c− / a+ / p− 52 47 0.328 70
c− / a− / p+ (w/dist) 2 3 0.244 85
c− / a− / p+ (wo/dist) 1 3 0.150 175
c+ / a+ / p− 820 701 0.310 21
c+ / a− / p+ 770 335 0.483 57
c− / a+ / p+ 54 34 0.698 35
c+ / a+ / p+ 822 108 0.414 36

Table 8: Optimized hyperparameters for each model

arXiv ID arXiv category Our category #words #type #occr #con #cand Test?

2106.09995 astro-ph.SR astronomy 7793 62 1349 191 5.7
2012.07856 astro-ph.SR astronomy 10032 59 1064 129 4.2
2201.05402 astro-ph.SR astronomy 5477 64 456 152 3.6
2003.10641 astro-ph.SR astronomy 6821 51 787 107 3.3
1903.02241 astro-ph.SR astronomy 6016 33 682 77 3.0 ✓
1911.11277 astro-ph.SR astronomy 9519 34 699 77 3.0
1805.00495 astro-ph.IM astronomy 7347 36 614 67 2.3 ✓
1005.1008 astro-ph.CO astronomy 5176 32 332 50 1.7
1808.02342 cs.IT cs 10976 40 935 104 6.4
1805.08522 stat.ML cs 10919 56 581 139 5.2
2203.00854 cs.LG cs 6835 28 120 55 3.8
2107.10832 cs.LO cs 3567 46 1648 64 1.9 ✓
2205.03055 cs.CV cs 4816 46 480 52 1.7 ✓
2110.13716 q-fin.ST economics 5963 46 676 110 3.6 ✓
1903.06478 q-fin.CP economics 4471 48 362 59 2.7 ✓
1807.00939 q-fin.ST economics 6443 10 35 8 1.2 ✓
math0303074 math.AG mathematics 13154 141 4628 424 5.2 ✓
2008.08349 math.CO mathematics 6091 49 1898 86 2.8 ✓
0912.3513 q-bio.NC biology 3738 31 470 61 2.7 ✓
1708.02771 cond-mat.mtrl-sci physics 4863 41 561 73 2.3 ✓
Total 140017 953 18377 2085

Table 9: Details for the other-domain subset of our dataset


