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Abstract
Decoding semantic meanings from brain activity has attracted increasing attention. Neurolinguists have found that
semantic perception is open to multisensory stimulation, as word meanings can be delivered by both auditory and
visual inputs. Prior work which decodes semantic meanings from neuroimaging data largely exploits brain activation
patterns triggered by stimulation in cross-modality (i.e. text-audio pairs, text-picture pairs). Their goal is to develop a
more sophisticated computational model to probing what information from the act of language understanding is
represented in human brain. While how the brain receiving such information influences decoding performance is
underestimated. This study dissociates multisensory integration of word understanding into written text, spoken text
and image perception respectively, exploring the decoding efficiency and reliability of unisensory information in the
brain representation. The findings suggest that, in terms of unisensory, decoding is most successful when semantics
is represented in pictures, but the effect disappears in the case of congeneric words which share a related mean-
ing. These results reveal the modality dependence and multisensory enhancement in the brain decoding methodology.
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1. Introduction

Brain decoding is a complex task that in-
volves both neuroscience and computational lin-
guistics.Pereira et al. (2001) presented the first
neural network to distinguish brain activation pat-
terns in reading tasks. Since then, in-depth ex-
plorations have been conducted to demonstrate
that semantic clues are encoded in neural patterns
and can be decoded by extrinsic representational
models (Mitchell et al., 2004, 2008; Murphy et al.,
2009; Anderson et al., 2013, 2017; Wang et al.,
2020; Srikant et al., 2022; Murphy et al., 2022).
The primary approach is to establish a predictive
relationship between the neural activation recorded
by neuroimaging equipment and the word distribu-
tional representation produced by embedding mod-
els (Pennington et al., 2014; Peters et al., 2018;
Devlin et al., 2019).

As a prerequisite for brain decoding, neural acti-
vation needs to be recorded with highly-controlled
stimuli. Part of studies adopted plain texts as stim-
uli (Pereira et al., 2018; Murphy et al., 2022). While
others exploited text-picture pairs (Mitchell et al.,
2008) or pictures with auditory words (Zinszer et al.,
2017) as stimuli. The intuition behind these studies
is that semantic perception is open to both auditory
and visual inputs, as word meanings can be con-
veyed through both modalities. The neural patterns
collected in these studies are either monomodal
or induced by cross-modal integration of semantic
perception as a whole. However, the impact of how

*Zhenting Li is the corresponding author.

Figure 1: Brain decoding methodology. We first col-
lect human brain activation in response to unimodal
stimuli, then train decoders which take neural pat-
terns as input and output corresponding semantic
vectors, thereby predicting the presented stimuli.

semantic information conveyed in each modality
affects brain decoding is less well understood.

In this study, we ask whether neural activation
triggered by same semantic meaning in different
sensory modalities contains equivalent information
which is reliable and efficient for neural decoding.
The focus is on processing semantically clear stim-
uli through reading a particular word, viewing a
drawing of object, or hearing a spoken word respec-
tively, which activate different unisensory modal-
ity separately (Figure 1). Following Zinszer et al.
(2017) and Cao et al. (2021), we collect data by
fNIRS and train linear regression models to map
neural activation into representations of words pro-
duced by GloVe (Pennington et al., 2014). Zinszer
et al. (2017) and Cao et al. (2021) have revealed
that semantic representations triggered by multisen-
sory integration are encoded in fNIRS neural data.
We further extend and precise their results to the
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brain signals of three separate modality, decompos-
ing the neural bases of language understanding.

Empirically, we have two salient findings. First,
decoding efficiency diverges significantly as seman-
tic meaning is presented in different modality. Im-
age perception can encode feasible information
with words in different classes, but written or spoken
text fails, which shows the modality dependence
in brain decoding. Second, multisensory informa-
tion shows decodibility in both between- and within-
category conditions, but unisensory in the form of
picture perception shows decoding efficiency only
in between-category condition, which is easier than
within-category condition. This highlights the role of
multisensory enhancement in decoding seman-
tic clues. We publicly release our gathered fNIRS
neural pattern datasets for future research1.

2. Methods

The basic idea is to learn a mapping from brain
activation patterns to particular semantic dimen-
sions. Figure 1 describes the experimental design.

Brain activity We exploit fNIRS (functional near-
infrared spectroscopy) for neuroimaging. Measur-
ing brain activity through non-invasive methods (e.g.
fMRI, EEG, MEG and fNIRS) has no skull trans-
gression and can be setup outside clinical environ-
ments with low risk and high flexibility, thus has gar-
nered significant attention from both neuroscience
researchers and natural language processing ex-
perts. fMRI, EEG and MEG have been studied
extensively and have a wealth of datasets available
(Bhattasali et al., 2020; Oseki and Asahara, 2020;
Zou et al., 2022), but datasets for fNIRS are rela-
tively scarce. Our research aims to contribute to
the community by collecting brain signals through
fNIRS and making the dataset publicly available.
This work holds the potential to broaden the scope
of non-invasive brain activity research and enhance
our understanding of the relationship between brain
activity and natural language processing.

For the purpose of functional neuroimaging,
fNIRS uses near-infrared spectrum, which is
emitted by sources, propagating through the
scalp, and then received by detectors, to es-
timate blood oxygenation changes in the cor-
tical surface. Hemoglobin is a significant
absorber of near-infrared light, thus changes
in light absorption can be used to measure
changes in oxygenated-hemoglobin (oxy-Hb) and
deoxygenated-hemoglobin (deoxy-Hb) concentra-
tion, which is response to neural activity 2 (Watan-
abe et al., 2017). To date, the decoding ability of

1https://github.com/hddbang/fNIRS
2Hemodynamic response to neural activation consists

of an increase in oxy-Hb and an antiphase decrease in

Figure 2: Each trained model is tested by first pre-
dicting word vectors for the two held-out fNIRS im-
ages and then matching them to the corresponding
GloVe vectors.

fNIRS data on semantic information has also been
proved in brain mapping studies (Emberson et al.,
2016; Zinszer et al., 2017; Mercure et al., 2020; Cao
et al., 2021). These studies have demonstrated the
feasibility of decoding oxy-Hb density from the brain
activation patterns to semantic vectors produced
by neural networks.

Semantic vectors The stimuli are single words
without sentential contex, so we select the word
level embedding model GloVe (Pennington et al.,
2014) to estimate semantic representations of each
stimulus. GloVe has successfully served as a se-
mantic representation in prior work which decodes
linguistic meaning from neural brain data (Pereira
et al., 2018; Gauthier and Ivanova, 2018; Abnar
et al., 2019; Gauthier and Levy, 2019; Zou et al.,
2022). Neural network representations capturing
language information distributed across a high-
dimensional space have been put forward, but their
improvements in brain decoding are marginal at
best. For example, Gauthier and Levy (2019) takes
BERT (Devlin et al., 2019) and its fine-tuned vari-
ants as embedding models. Results show that
none of them yield significant increases in brain
decoding performance, while syntax-light represen-
tations do. Cao et al. (2021) finds the limits of de-
coding fine-grained semantic clues encoded in high-
dimensional embeddings from fNIRS neuroimag-
ing, suggesting that a relatively lower dimensional
GloVe word embeddings (i.e. 50) can achieve bet-
ter decoding performance for fNIRS patterns. Re-
cently, Zou et al. (2022) also find that BERT em-
bedding does not capture semantics well compared
to GloVe in a fMRI-based brain-to-word decoding
task. Based on these findings, we exploit GloVe
representation and let e(wi) be the 50-dimensional
GloVe embedding for stimulus word wi. The word
embeddings are obtained through a two-step pro-
cess: global matrix factorization and local context
windows. As GloVe provides pre-trained word em-
beddings for various languages and corpus sizes,
we can directly run it. For an input token wi, the
output of the GloVe model is a corresponding 50-
dimensional contextualized representation e(wi).

deoxy-Hb.
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Decoding methodology Following early stud-
ies (Mitchell et al., 2008; Pereira et al., 2018),
we use ridge regression to train a linear decoder
δ : Hi → e(wi) for each subject, predicting the 50-
dimensional GloVe word vectors given neural data
by minimizing the cost function:

J = ||δHi − e(wi)||22 + α||δ||2, (1)
where Hi is oxy-Hb concentration transferred from
near-infrared light wavelength in response to the ith

stimulus, and α is a regularization hyperparameter.
Each linear regression model is trained and

evaluated by the leave-two-out pairwise classifi-
cation (Mitchell et al., 2008). Given N stimuli and
its corresponding brain imaging, each time we use
N − 2 samples for training and the remaining two
for validation. As Figure 2 shows, for stimuli pair
(w1, w2), we predict vectors (p(w1), p(w2)) from
brain patterns and match them to corresponding
GloVe word vectors (e(w1), e(w2)). The cosine sim-
ilarity is used for comparing whether each predicted
vector has more similarity with its respective GloVe
vector or the left out vector:

match [p(w1) = e(w1), p(w2) = e(w2)] =

cosine(p(w1), e(w1))+

cosine(p(w2), e(w2)).

(2)

If the decoded vector is more similar to its respec-
tive GloVe vector than the alternative one, we deem
the classification correct. The training and testing
processes repeat for C2

N times. The correct classi-
fication percentage represents model accuracy.

Baseline Chance level accuracy for matching the
left-out neural data to words is 0.50. Following prior
work which adopt a ramdon baseline (Cao et al.,
2021; Zou et al., 2022), we take random scrambled
pairs as a baseline to enhance the reliability of
results. In this setting, the brain activities and word
vectors are randomly shuffled.

3. Experimental Setting

Participants Nine right-handed native speakers
(four males, mean age 21) are enrolled for the study.
None of them has motor or neurological disorders.
Procedure We present subjects with ten stimuli
drawn from two broad categories (Table 1). Each
subject is presented successively with stimuli in the
format of text, picture and audio. During each con-
dition, there is a break at least 60 minutes to avoid
semantic priming effects3 (Sperber et al., 1979).
The task for participants is to passively view in the
first two rounds and listen in the last round, trying to

3Semantic priming refers to a facilitation of responding
that occurs as a result of the preceding presentation of a
semantically related prime.

Category Exemplar
animal cat, dog, horse, cow, panda
vehicle car, train, aircraft, truck, bicycle

Table 1: Exemplars used in the experiment. The se-
lection criteria is word familiarity in daily life to avoid
ambiguity and difficulty in understanding.

Text Image Audio Zinszer et al.
Acc 0.48 0.62 0.50 0.66
RSP 0.52 0.48 0.52 \

Table 2: Decoding performance across subjects. Acc
denotes the average accuracy of models. RSP denotes
the accuracy of random scrambled pairs.

perceive the meaning as stimuli presented. Each
textual and pictorial stimulus presentation lasts for
3 seconds and is followed by a 10-second rest pe-
riod. Each audio stimulus is naturally stopped and
followed by a 10-second rest period. Subjects are
instructed to fixate on an X on the screen center
during rest period. The stimuli are permutated ran-
domly and repeat 7 times in each session.

fNIRS measurement and preprocessing We
use NIRx NIRScout fNIRS system4 to measure
subjects’ blood oxygenation changes throughout
the experiment. As shown in Figure 3, the mul-
tichannel fNIRS system comprises eight sources
and seven detectors, resulting in 22 measurement
channels arranged in the left hemisphere. Cerebral
hemodynamic responses from fNIRS do not vary
significantly across recording regions in either left
or right hemisphere (Cao et al., 2021). While in
the left hemisphere, there are cortical areas known
to be involved in language processing: temporo-
parietal cortex and inferior frontal cortex thought
to subserve phonological decoding, and occipito-
temporal cortex and visual word form area thought
to subserve orthographic processing. Thus the left
hemisphere would be our regions of interest.

Following Cao et al. (2021), we set the sampling
rate as 7.8Hz and perform data preprocessing with
nirsLab (Xu et al., 2014). Data preprocessing in-
cludes artifacts removal, 0.01∼0.1Hz bandpass
filtering, oxy-Hb and deoxy-Hb concentration com-
putation according to the modified Beer-Lambert
law (Kocsis et al., 2006) .

4. Results

We train separate decoders for each participants.
Results are validated by permutation test, with
statistics being created by permutation test 1000
times. The significance level is 0.05.

Overall decoding As Table 2 shows, the average
cross-validated accuracy is 0.48, 0.62, 0.50 for text,

4https://nirx.net/nirscout
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Figure 3: fNIRS probe arrangement. The eight
red circles and seven blue circles represent laser
sources and detectors respectively. The green lines
represent the path between sources and detectors
(i.e. channels). There are 22 channels in total.

image and audio stimuli respectively. Image per-
ception exhibits decoding performance significantly
above the RSP baseline (p < 0.003) and chance
levels, while written or spoken text is inferior to the
baseline (p > 0.05), failing to show equivalent de-
coding effect. Zinszer et al. (2017) reports an accu-
racy of 0.66 with multi-sensory inputs in the format
of picture plus auditory word, which is slightly better
than unisensory image perception in the current
study. Alone with previous studies (Palatucci et al.,
2009; Pereira et al., 2018; Murphy et al., 2012)
which use other neuroimage equipment to demon-
strate the feasibility of using distributed semantic
representations to probe meaning representations
with multisensory integration of word understanding
in the brain, this result shows modality dependence
in brain decoding methodology. We concluded that
decoding is most successful when triggered by mul-
tisensory stimuli, then unisensory pictorial stimuli.
Textual and spoken word alone cannot stimulate
enough neural features for decoding.

Between vs within-category decoding Our
stimuli are organized into two broad categories, five
for animals and five for vehicles. We hypothesized
that category-based differences may contribute to
decoding accuracy when choosing between items
in different categories. To test whether decoding
accuracy of unisensory word understanding relies
on category differences, we divide the pairwise
decoding trials into between-category and within-
category conditions, thereupon examine the accu-
racy of each set of trials. In the between-category
case, the two held-out test words come from differ-
ent groups (e.g. cat versus car), while in the within-
category case, the two held-out test words come
from the same category (e.g. cat versus dog). Un-
der cross-modality setting, Zinszer et al. (2017) re-
ports that average within- and between-category ac-
curacies do not significantly differ. Cao et al. (2021)
also reports a robust differentiation power both in

Text Image Audio
between-category 0.49 0.75 0.49

within-category 0.46 0.47 0.49

Table 3: Decoding performance across semantic cate-
gories.

within-category and between-category conditions.
We compare the performance of our models trained
on unisensory information when predicting words
in the same or divergent semantic categories. As
shown in Table 3, textual and audio stimuli fail to
demonstrate decoding feasibility in both between-
category and within-category settings, consistent
with the overall decoding performance (as shown
in Table 2). For the picture stimuli, the decoding ac-
cturacy is 0.75 for between-category, significantly
higher than chance level (p < 0.001). However, it
drops dramatically to 0.47 in the within-category
condition, even worse than chance level. The de-
coding effect vanishes for unisensory modality in
the harder within-category case in our study, which
sees evidence to suggest that there is multisensory
enhancement in the brain decoding.
Activation pattern For reasons behind the de-
coding advantages of visual stimuli over other
modalities, we trace back to the brain activation
patterns triggered by stimuli in different unisensory
modality. As Figure 4 shows, the oxy-Hb concentra-
tion fluctuates when the stimuli onset and reaches
the extremum in 2-4 seconds before coming back
to original level. The image stimuli induces the high-
est oxy-Hb intensity at 5.46µm, followed closely by
text stimuli at 4.81µm, while sound stimuli responds
the most quickly and causes the weakest activa-
tion levels at 3.27µm. The faster reaction of sound
accords with previous findings that word learners
are faster at acquiring phonology than orthography
because they are better at store phonological rep-
resentation (Dehaene, 2009). But the disparity in
oxy-Hb concentration may reflect the less specificity
in phonological representations and the greater dis-
tinctiveness for visual stimuli. As for visual stimuli,
image perception induces stronger oxy-Hb fluctua-
tion than text, we assume that one important factor
is the modality asymmetry: that a pictorial repre-
sentation for a word conception is more likely to
contain cross-modality information.

5. Conclusion

We present an empirical study to understand
modality influence for semantic understanding and
brain decoding. We collect brain activity data that
dissociates multisensory integration of word mean-
ing. Results suggest that 1) different perception
modalities induce different decoding effects, high-
lighting the importance of considering modality in
brain decoding research; 2) in terms of unisensory,
image-induced patterns can be reliably decoded,
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Figure 4: Visual inspection of the average brain ac-
tivation patterns induced by text, image and sound
stimuli. The stimuli onset at time 0, before which
the subject is at a resting state and the oxy-Hb con-
centration during this period is the benchmark for
comparison.

whereas textual and auditory stimulation fail; 3)
unisensory modality cannot show robust decoding
effects for words within same semantic category,
indicating the importance of multisensory enhance-
ment in brain decoding. These confirm our hypothe-
ses concerning the modality dependence and mul-
tisensory enhancement in semantic decoding.
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Limitations

This work is a pilot study to evaluate the feasi-
bility of brain decoding by dissociating multisen-
sory integration of language understanding. Due
to expenses and difficulty in managing human ex-
periments, the study is limited in word understand-
ing with a small dataset and has not extended to
sentence-level research. The amount of data we
adopted is relatively small but comparable to previ-
ous literature. For example, Zinszer et al. (2017)
used eight stimuli, and Cao et al. (2021) also used
eight stimuli in his pilot study. In the future work, we
will enlarge the dataset and expand to sentence-
level research.
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