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Abstract
Named Entity Recognition (NER) is a cornerstone natural language processing task while its robustness has been
given little attention. This paper rethinks the principles of the conventional text attack, as they can easily violate the
label consistency between the original and adversarial NER samples. This is due to the fine-grained nature of NER,
as even minor word changes in the sentence can result in the emergence or mutation of any entity, producing invalid
adversarial samples. To this end, we propose a novel one-word modification NER attack based on a key insight,
NER models are always vulnerable to the boundary position of an entity to make their decision. We thus strategically
insert a new boundary into the sentence and trigger the victim model to make a wrong recognition either on this
boundary word or on other words in the sentence. We call this attack Virtual Boundary Attack (ViBA), which is shown
to be remarkably effective when attacking both English and Chinese models with a 70%-90% attack success rate
on state-of-the-art language models, and also significantly faster than previous methods. We share the code in
https://github.com/yangyifei729/ViBA.
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1. Introduction

The goal of Named Entity Recognition (NER) is to
find the predefined named entities, such as loca-
tions, persons, and organizations in a given sen-
tence. It is a fundamental task in natural language
processing (NLP) behind various downstream ap-
plications (Clark et al., 2018; Sil and Yates, 2013;
Babych and Hartley, 2003; Nikoulina et al., 2012).

Language models have been shown to be vul-
nerable to cunningly crafted input data, producing
misjudgments, thereby undermining their security
and trustworthiness. Great attention has been paid
to the robustness of natural language understand-
ing (NLU), e.g., sentence classification (Jin et al.,
2020; Garg and Ramakrishnan, 2020), question an-
swering (Gan and Ng, 2019; Ribeiro et al., 2018), to
unravel their vulnerabilities and deficiencies, for the
sake of providing defense techniques. However,
the study on the robustness of sequence labeling
tasks like NER is still lacking.

Recently, Simoncini and Spanakis (2021) made
an initial foray into the field of attacking NER mod-
els, taking inspiration from text attack methods
designed for sentence classification and adapt-
ing them to NER tasks. In a parallel vein, Lin
et al. (2021) introduce RockNER, an adversarial
dataset generated through word substitution, a well-
established technique commonly used to attack
sentence classification models.

However, we find that the conventional princi-
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Ceremony for the 2000 Sydney Paralympics . 

Tournament for the 2000 soccer Paralympics . 
[GPE] 

[O] 

Text attack

为 了 促 进 世 界 和 平 与 发 展 的 崇 高 事 业 。
[O] Text attack

为 了 促 进 世 贸 和 平 与 发 展 的 崇 高 事 业 。
[ORG] 

Figure 1: Label shift issue on English and Chinese
adversarial samples.

ples of text attack on sentence classification can
easily violate the label consistency between orig-
inal and adversarial NER samples. Specifically,
these attackers apply word insertion, swapping, or
substitution to the sentence while maintaining its
semantics to keep the sentence label unchanged
as possible. Note that the labels of NLU tasks are
greatly correlated to the semantics. As opposed
to the sentence classification task, NER is often
modelled as a fine-grained structure labeling task.
In this context, any minor word changes like inser-
tion, swapping, and substitution, can result in the
emergence of new entities or mutation of original
entities.

We denote this issue as label shift. We show
two cases in Figure 1, where a GPE (geopolitical)
entity Sydney in the original sentence is substi-
tuted to soccer, and world (“世界”) is substituted to
WTO (“世贸”) by the attacker (Morris et al., 2020).
However, soccer is obviously not a GPE entity and
WTO should be an ORG (organization). As a result,
these two are invalid adversarial samples. We find

https://github.com/yangyifei729/ViBA
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such an issue widely exists in current attackers,
which has a significant negative impact on NER
adversarial samples.

The fine-grained nature of NER determines that
one should make as few modifications as possi-
ble to the sentence in order not to incur label shift.
Thus in this paper, we propose a novel NER at-
tacker, which only modifies one word in the original
sentence to maximumly alleviate label shift.

Our method is based on a key insight that
the nowadays NER models concern more on the
boundary tokens and tend to memory them for
entity recognition. Specifically, when inserting a
boundary token (i.e., the leftmost and rightmost
token of the entity) into the sentence, the state-
of-the-art NER models can be easily fooled and
exhibit abnormal behaviors. We refer to this phe-
nomenon as Entity Boundary Interference (EBI),
and our attack is a natural extension of it.

The contributions of this paper are below:
• We first reveals the problem of Entity Bound-

ary Interference (EBI). Based on it, we propose
Virtual Boundary Attack (ViBA), a novel NER at-
tacker which avoids the label shift problem that
other attackers suffer from. We evaluate ViBA on
several state-of-the-art pre-trained language mod-
els (PrLMs) on widely used English and Chinese
benchmarks. Experiments show that ViBA has a
high attack success rate and also maintains a high
semantic and syntax similarity with the original sen-
tences. Furthermore, it exhibits exceptional fluency
and has a good efficiency advantage with almost a
linear time complexity.
•We undertake a comprehensive analysis of the

factors contributing to EBI and elucidate how ViBA’s
effectiveness is influenced.
• We propose two defense techniques to train

robust NER models against EBI. Our defense strat-
egy has also been demonstrated to withstand vari-
ous word substitution NER attackers.

2. Method

2.1. Entity Boundary Interference
Previous studies assume that an NER model is
heavily reliant on the boundary of an entity when
making decisions (Peng and Dredze, 2016; Tan
et al., 2020a). Given an entity, the boundary refers
to its leftmost or rightmost token. In light of this
assumption, our vision is that NER models can be
vulnerable if the attackers attempt to manipulate
these boundary tokens. Figure 2 demonstrates
two representative phenomenons where the model
falls into mistakes when there is a new boundary
inserted in the sentence at some positions.
• S1: Insertion of a semantically unrelated

boundary may change the predictions of other enti-

ties. As shown in Figure 2 (S1), the model correctly
recognizes Paul Fischer as a PER (Person) en-
tity in (S1.a). When we insert the right boundary
Fischer at the beginning of the sentence in (S1.b),
surprisingly, the model no longer recognizes Paul
Fischer as a PER, even if it still is. Apparently,
humans will not make such a mistake.
• S2: The model may mistakenly assume a corre-

lation between the inserted boundary and the origi-
nal entity. In Figure 2 (S2), the model first wrongly
recognizes the inserted South as a GPE in (S2.b).
Paradoxically, it is no more after the original entity
South Korea is masked in (S2.c). It indicates that
the model pathologically assumes the co-occurring
boundaries are relevant, which is different from the
way humans perceive text and should be regarded
as another non-robust phenomenon.

S1 and S2 show that there is a coupling effect
between the model recognition of different entities
in the sentence. In S1, the emergence of a new
entity Fischer causes a flip in the prediction of Paul
Fischer. In S2, the erasure (being masked) of an
original entity South Korea causes a miss recall of
another entity South. The underlying is that the pre-
diction of South is coupled with the co-occurrence
of South Korea. We notice that these entities are
supposed not to have any connection. We denote
the above phenomenon as Entity Boundary Inter-
ference (EBI) issue.

2.2. ViBA
We introduce Virtual Boundary Attack (ViBA), a
novel attack algorithm for NER models based on
our finding of EBI. ViBA attacks the model by in-
serting a boundary token of some entities into the
sentence. The goal is to induce wrong predictions
of the model, as in S1 and S2. We denote the
inserted boundary as a “virtual boundary” for the
reason that the inserted boundary is not a real entity.
Algorithm 1 summarizes the procedure of ViBA:
(1) Prepare to Attack (line 1-3)

Given an input sentence X = x1,x2, · · · ,xn, we
first feed it to the victim model to obtain the original
prediction Y, which is a list of predicted named en-
tity tags corresponding to X . Each tag in Y is a pre-
defined abbreviated label such as “PER” (Person),
“LOC” (Location), etc. Following the convention,
“O” refers to a non-entity token. Then we cache
a set E of all the named entities as well as their
corresponding positions L in the sentence.
(2) Restrict Safety Areas (line 4)

We introduce safety areas to keep the original
entity tags unchanged. First, it is not allowed to
insert a boundary inside an entity because it would
undermine the entity and trigger label shift. Second,
the entity tag is likely to mutate when its local con-
text changes. For example, the inserted boundary
may form a new entity with its surrounding tokens.
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It works with South Korea .
[GPE]

This is an entity! Yes!

Emmm... This
should not
be an entity.

This is also an entity!

This is not an entity. ???
[O]

(S2.c)

(S2.b)

(S2.a)

South it works with South Korea .

[GPE][GPE]

South it works with [MASK] [MASK] .

(S2)

(S1)
His name is Paul Fischer .

[PER]
This is an entity! Yes!

This is not an entity. ???
(S1.b)

Fischer his name is Paul Fischer .

(S1.a)

[O]

Figure 2: Demonstration of Entity Boundary Inter-
ference.

The safety areas are obtained by setting a safety
distance w. A case is shown in Figure 3.
(3) Attack (line 5-9)

We next generate the candidate adversarial sam-
ples. We pick the leftmost and rightmost bound-
aries of all named entities e in E . For each boundary
b, we go through every position in the sentence out-
side the safety areas and insert the boundary to
generate a candidate sample X ′.
(4) Check Success (line 10-17)

We feed X ′ to the victim model and obtain its
prediction Y ′. The following two criteria are applied
to determine whether an attack is successful:

Criterion 1 (line 10-12) This criterion corre-
sponds to the S1 case in Figure 2, that the inserted
token should not affect the predictions of the origi-
nal entities. Note that we also set a safety area for
the inserted position during the comparison in order
to avoid label shift in case the inserted boundary
is an entity or forms a new entity with surrounding
tokens. What we do is to check the consistency
of Y and Y ′, and any inconsistency indicates the
success of the attack.

Criterion 2 (line 13-17) This criterion corre-
sponds to the S2 case in Figure 2, that the
model prediction of the virtual boundary should
not change after we mask its referential entity. We
mask the named entity e inX ′ and getX ′

m. Then we

Algorithm 1 Virtual Boundary Attack
Input: Victim model F , input sample X , safety dis-

tance w.
Output: Adversarial sample X.
1: Y ← F(X )
2: E ← Extract each entity in X following Y
3: L ← Locate each entity in X following Y
4: S ← Decide safety area following L and w
5: for e in E do
6: for j in {1 ∼ n} \ S do
7: for b in {eleft, eright} do
8: X ′ ← Insert b before X[j]

9: Y ′ ← F(X ′)
10: if Y ′ \ Y ′

[j−w:j+w+1] ̸= Y then
11: return X ′

12: end if
13: X ′

m ← Mask e in X ′

14: Y ′
m ← F(X ′

m)
15: if Y ′

[j] ̸= Y
′
m[j] then

16: return X ′

17: end if
18: end for
19: end for
20: end for
21: return None

[PER] [TIME]

w=2
Now , Greg has been playing computer games for an hour at home .

Figure 3: A case of safety areas.

feed it to the victim model and get Y ′
m. Any incon-

sistent prediction of b between Y ′ and Y ′
m indicates

the success of the attack.
It is worth noting that ViBA maximumly avoids

the label shift issue by the following properties:
• The safety areas guarantee that the original

entity tags will not be changed after the insertion
of a new boundary.
• Criterion 2 is independent of labels since we

only care about the consistency of the prediction of
the virtual boundary.

3. Experiments

3.1. Datasets
We explore the effectiveness of ViBA on three
widely used benchmarks of Chinese and English:
• OntoNotes5.0 (Weischedel et al., 2013) is a

multilingual NER dataset of Chinese, English and
Arabic. There are eighteen types of named entities,
eleven of which are types like Person, Organization
and seven are values such as Date and Percent.
In this paper, we select the popular Chinese and
English versions for our experiments.
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Test set WNUT OntoNotes-en MSRA OntoNotes-ch
Samples 686 / 1287 4561 / 9479 2344 / 4365 2392 / 4472
Entities per sample 1.57 2.45 2.61 3.13
Tokens per sample 19.67 24.08 47.3 45.06

Table 1: Statistics for each used test set.

• MSRA (Levow, 2006) is one of the commonly
used Chinese NER datasets which accommodates
three named entity types and the data in MSRA are
collected from the news domain.
•WNUT2017 (Derczynski et al., 2017) is an En-

glish NER dataset which has six types. It focuses
on identifying unusual, previously-unseen entities
and is more challenging.

These benchmarks have standard train/dev/test
split. Some statistical data of the test sets are
shown in Table 1. The total number of sentences
containing at least one entity / the sizes of datasets
are shown in the Samples row. We also count the
average amount of entities in each sentence and
the average sentence length.

3.2. Metric
• Attack Success Rate (ASR) is the main mea-

surement of the attacker’s effectiveness towards a
victim model, which is the ratio of the achieved ad-
versarial samples over all samples. A higher ASR
suggests a more effective attacker.
• Semantic Similarity (SS) measures semantic

distance between two sentences. We leverage
text2vec for evaluation (Xu, 2022). A greater SS
suggests the semantics of the adversarial sample
are close to the original one.
• Entity-Level Attack Success Rate (EASR) is

a ViBA-specific metric which is the proportion of en-
tities that can successfully trigger Entity Boundary
Interference out of all entities. EASR1 and EASR2
imply how frequently S1 and S2 occur.
•Edit Distance (ED) reflects the syntax similarity

between two sentences. We expect to generate
an adversarial sample with a high overlap with the
original one.
• Fluency (FLU) reflects the smoothness and

naturalness of generated adversarial samples. We
prompt the state-of-the-art AI model, ChatGPT, to
play the role of a professional linguist and provide
fluency scores between 0 and 100 for the sen-
tences, using their average as the metric.

3.3. Settings
We evaluate ViBA on the extractive models,
specifically the BERT-base (Devlin et al., 2019),
RoBERTa-large (Liu et al., 2019) models of Chi-
nese and English versions. In addition, DeBERTa-
large (He et al., 2020) is leveraged for the evalua-

English
WNUT OntoNotes

ASR SS ASR SS

BERTbase
57.1 98.0 73.2 98.1
59.6 95.4 75.1 96.5

RoBERTalarge
67.1 97.9 70.0 98.1
67.8 95.5 73.0 96.4

DeBERTlarge
56.1 98.0 70.7 98.1
62.5 95.7 74.7 96.4

Chinese
MSRA OntoNotes

ASR SS ASR SS

BERTbase
91.2 98.8 85.5 98.7
91.4 98.4 86.4 98.2

RoBERTalarge
91.7 98.8 86.9 98.1
92.3 98.3 89.1 98.2

MacBERTlarge
93.2 98.8 89.4 98.6
92.0 98.3 89.8 98.1

Table 2: Attack success rate (ASR) and semantic
similarity (SS) across various NER datasets. For
a victim model, the top row corresponds to ViBA,
and the bottom corresponds to ViBA-rep.

tion of the English datasets. MacBERT-large (Cui
et al., 2020) is used for the Chinese datasets. We
first fine-tune the models with multilayer perceptron
(MLP) as the classification heads on the training
sets for 6 epochs and select the best-trained check-
points by dev sets. Then we apply ViBA to attack
them on the test sets. We have heuristically set the
safety distance w = 2. We conduct experiments
on a single NVIDIA RTX 3090 GPU. It is worth not-
ing that according to the latest researches (Wang
et al., 2023; Xie et al., 2023), BERT-like models still
remain the state-of-the-art models for NER. Hence,
in this paper, we refrain from including generative
models such as ChatGPT1 for this purpose.

1https://chat.openai.com/
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English
WNUT OntoNotes

EASR1 EASR2 EASR1 EASR2

BERTbase 54.9 75.7 22.3 55.4
RoBERTalarge 41.0 67.9 17.1 52.6
DeBERTalarge 42.6 73.6 14.5 51.0

Chinese
MSRA OntoNotes

EASR1 EASR2 EASR1 EASR2

BERTbase 42.6 75.8 55.4 61.8
RoBERTalarge 37.1 76.8 56.6 65.7
MacBERTlarge 46.5 77.4 60.5 71.8

Table 3: EASR for ViBA on different datasets.

3.4. Main Results
We evaluate ViBA for multiple models on different
Chinese and English datasets, and the results are
shown in Table 2. Considering that the insertion will
change the length of the sentence and cause too
obvious a distinction, we also change the “insert”
operation in ViBA to the “replace” operation for com-
parison, named ViBA-rep. Overall, ViBA achieves
high ASR when attacking both Chinese and En-
glish datasets. The ASR on the Chinese datasets
is as high as 85% - 93%. Although relatively lower
on the English datasets, the ASR ranges from 55%
to 73%, which is still an ideal performance. It is
noteworthy that the English datasets generally have
shorter sentences and fewer entities. Their smaller
search spaces will lead to relatively lower ASR.
Comprehensively, ViBA is an ideal attacker on both
English and Chinese.

In Table 2, the average SS between the adver-
sarial and original samples of ViBA on all datasets
exceeds 97.9, which guarantees that (1) the seman-
tics of the adversarial samples are extremely close
to the original ones; (2) the adversarial samples
are natural and look similar to the original ones.

Generally, ViBA-rep exhibits higher ASR than
vanilla ViBA. But replacement fails to retain all the
tokens and generates samples with a greater se-
mantic difference, as its lower SS. Considering ASR
and SS comprehensively, we conduct follow-up ex-
periments all on vanilla ViBA.

To explore the occurrence frequency of S1 and
S2, we present in Table 3 the EASR1 and EASR2.
Since many entities can induce both S1 and S2,
their sum may exceed 1.0. We find that S1 and S2
are both frequent non-robust phenomena, as high
EASR1 and EASR2 suggest, which shows the NER
models are fragile to the boundary tokens. Further-
more, a consistently higher EASR2 indicates that
the model possesses a comparatively weaker ca-

WNUT OntoNotes-en MSRA OntoNotes-ch
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Figure 4: Comparison of attackers’ efficiency.

pability in resisting S2 compared to S1.
Since ViBA is an attack that operates at the word

level, for the sake of a fair comparison, we select
other latest and state-of-the-art word-level attack-
ers as baselines. We reproduce the context-level
RockNER (Lin et al., 2021) and CLARE (Li et al.,
2021) adapted for NER on the four datasets, using
RoBERTa-large as the victim model. It is worth
noting that our ViBA only replaces context words
instead of the entities to avoid the label shift, mak-
ing it a fair comparison with strong context-level
RockNER. When adapting the previous attackers,
we keep their algorithms but change the success
judgment to whether the predicted tag sequences
have changed.

We compare the ASR/SS/ED/FLU of different
attackers in Table 4. For ASR, it is displayed that
ViBA effectively outperforms the previous attack-
ers. Considering that transplant text attackers may
trigger the label shift problem, their actual ASR
should be even lower than the reported value. Bet-
ter SS proves that ViBA preserves more semantic
similarity. It is worth mentioning that ViBA is a one-
word modification attacker and always maintains
the ED to 1.0, which shows that it keeps better
syntax than all the other attackers. Both superior
SS and ED indicate the ViBA adversarial samples
are more imperceptible. The consistently higher
fluency also underscores that ViBA’s generated ad-
versarial samples are more fluent and natural com-
pared to other attack methods. To further validate
that the proposed ViBA can generate more natural
and fluent adversarial samples, we also conduct
manual evaluation, as demonstrated in appendix
A. Overall, ViBA maintains a significant advantage
over existing strong baselines.

3.5. Time Analysis
The time complexity for ViBA to attack a sentence
of length n is O(m× n), where m is the amount of
the named entities in this sentence. Usually, m is
much smaller than n. Thus, the time complexity is
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WNUT OntoNotes-en MSRA OntoNotes-ch
RockNER 64.3/90.3/2.2/53.1 17.1/84.1/2.1/54.7 53.6/94.8/2.3/53.1 72.2/95.0/2.3/47.3
CLARE 55.5/95.4/1.2/54.9 55.0/95.9/1.2/54.1 56.4/94.9/5.9/54.9 40.7/96.3/2.6/63.1
ViBA 67.1/97.9/1.0/59.8 70.0/98.1/1.0/66.6 91.7/98.8/1.0/59.8 86.9/98.1/1.0/66.2

Table 4: ASR↑/SS↑/ED↓/FLU↑ comparisons of ViBA and state-of-the-art attackers.

w 1 2 3 4
ASR 74.6 70.0 62.9 55.6

Table 5: The trend of ASR as safety distance w
varies, where w=2 is set for all other experiments.

almost linear with n, which makes ViBA efficient.
To verify it, we evaluate the number of samples that
can be processed by ViBA, RockNER and CLARE
within one second on the four datasets, as shown
in Figure 4. The victim model is RoBERTa-large.

3.6. Effect of Safety Distance
To investigate the impact of the safety distance w to-
wards ViBA, we conduct comparative experiments
by varying it. The experiments are conducted on
the OntoNotes-en dataset, with RoBERTa-large
chosen as the victim model, as shown in Table 5.

As w increases, the ASR decreases. However,
when w = 1, there remains a slight label shift issue.
But with w = 2, this issue is largely mitigated. Addi-
tionally, setting w = 2 maintains a high ASR, which
is why we have chosen this value in our paper.

4. Discussion

This section discusses the effectiveness of ViBA
and our motivation through empirical experiments.

4.1. Boundary as Trigger
As mentioned in (Lin et al., 2021), the NER mod-
els tend to memorize the entity patterns instead of
reasoning them by context, which hints us to ex-
plore which tokens play the key role for such entity
patterns (i.e., boundary tokens or non-boundary
tokens). Thus, we mask out the boundary or non-
boundary tokens respectively of an entity to expose
which one is more important for entity recognition.

Specifically, we fine-tune two RoBERTa-large
models on MSRA and OntoNotes-en datasets.
Then we examine the models’ dependence on
the boundary and inner tokens: (1) For each sen-
tence X = x1,x2, · · · ,xn, one of its entities e =
xi,xi+1, · · · ,xi+m is first recognized as type t with
the highest probability pt among all the types. (2)
We mask out the boundary tokens xi and xi+m of
e in X respectively to obtain two sentences and

MSRA OntoNotes-en
0%

10%

20%

30%

40%

50%

18.47%

48.09%

3.49%

26.16%

Boundary Inner

Figure 5: The probability drops caused by masking
out boundary and inner tokens.

OntoNotes-en OntoNotes-ch
Boundary Tokens 0.95 0.93
Inner Tokens 0.96 0.95

Table 6: The cosine similarity of the hidden-states.

feed them into the model again. The model sep-
arately estimates the probabilities p

′

t and p
′′

t that
the masked entities remain type t. Since p

′

t and
p

′′

t are always less than pt, we leverage the mean
value of two probability drops pt − p

′

t, pt − p
′′

t to
reflect the dependence of the model on boundary.
(3) Similarly, we mask out the inner tokens of e and
calculate the mean value of probability drops, as
shown in Figure 5.

On the Chinese MSRA dataset, the probability
drop caused by masking out boundary tokens is
more than five times that of masking out inner to-
kens. On English OntoNotes, masking out bound-
ary tokens even causes a probability drop of nearly
50%. It can be concluded that compared to mask-
ing out inner tokens, masking out the boundary
tokens will significantly hurt the probability that the
model maintains the original prediction, which in-
dicates that the models are more reliance on the
boundary of an entity for making final prediction
and provides evidence for our intuition to insert
boundary which triggers the misclassification.

4.2. Robustness of Encoder and Decoder
The BERT-style NER models can be summarized
into an encoder-decoder structure. The encoder
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OntoNotes-en OntoNotes-ch
ASR F1 ASR F1

FreeLB 70.5 89.5 86.0 85.2
ASA 72.2 89.3 86.8 85.3
Mixed 68.6 75.4 77.7 84.1
p ASR F1 ASR F1

0 73.2 89.2 85.5 85.0
0.3 63.7 88.8 87.1 84.7
0.5 67.7 88.3 85.4 83.6
0.8 69.8 83.1 71.5 63.0

Table 7: Results of masking out the boundary to-
kens.

usually leverages a strong PrLM, which encodes
the input into contextual hidden-states. The de-
coder is usually an MLP classifier, a conditional
random field (CRF), etc and classifies each token
into a pre-defined tag based on its hidden-states.

Since the hidden-states are the only medium be-
tween the encoder and decoder, we analyze their
robustness from the stability of the hidden-states
to further interpret ViBA. For each generated ad-
versarial sample X, it is fed into the encoder to
obtain its hidden-states H. Then we mask out the
original entity in X to get Xm and input it into the
encoder to obtain hidden-states Hm. We select
the representations of the inserted boundary from
the H,Hm and calculate the cosine similarity be-
tween them. Similarly, we also calculate the cosine
similarity for all the other tokens in the sentence.
We conduct experiments with BERT-base on the
OntoNotes dataset. The average values of the co-
sine similarities are displayed in Table 6.

We figure out that for the inserted boundary to-
kens, the cosine similarity of the hidden-states be-
tween the H and Hm exceeds 0.93 in two datasets.
It is worth noting that the hidden-states of the BERT-
base are as high as 768 dimensions, and the co-
sine similarity so close to 1 shows that the inserted
boundary does not cause a significant deviation in
the encoder output. Similar to this phenomenon,
other tokens also obtain an average similarity of
0.95 in two datasets, which further verifies that the
encoder is relatively stable against X and Xm. It
implies that even if the slight changes of the hidden-
states output by the encoder in the position of the
inserted boundary can confuse the decoder.

To summary up, (1) The NER models tend to
recognize the entities depending on the boundary
and perhaps memorize the boundary pattern. (2)
The decoder is not robust enough to resist slight
perturbation on hidden-states.

OntoNotes-en OntoNotes-ch
ASR F1 ASR F1

WP 70.4 88.4 88.4 84.7
p ASR F1 ASR F1

0 73.2 89.2 85.5 85.0
0.3 70.2 88.8 85.7 85.1
0.5 70.8 88.7 84.7 85.0
0.8 75.1 87.6 80.4 84.3

Table 8: Results of boundary dropout to the hidden-
states for the decoder and weight perturbation
baseline.

5. Defense Strategy: Boundary Cut

This section presents a Boundary Cut strategy that
enhances NER robustness against ViBA.

5.1. Decouple Boundary and Inner Words
Since the NER model recognizes the entity rely-
ing more on the boundary pattern, a very straight-
forward idea is to decouple the boundary words
and inner words, encouraging the model to capture
the pattern of inner words. We achieve this goal
by masking out the boundary words at the input.
In detail, we randomly mask out the left and right
boundary tokens of an entity with a probability p
during the fine-tuning phase. In addition, to explore
whether masking out the boundary words during
training will influence the model on entity recogni-
tion, we also report the F1 on the clean test set,
where a higher F1 indicates a higher recognition
performance. We apply BERT-base to conduct
experiments on OntoNotes in Table 7.

Compared to the case without masking (p = 0),
almost all ASR has a significant decrease after
masking out the boundary words, suggesting that
masking out boundary words is beneficial for resist-
ing ViBA. An exception happens when p = 0.3 on
OntoNotes-ch. Our explanation for this anomaly is
that masking out boundary words can be a trade-off.
On the one hand, it reduces the model sensitivity
to boundaries, thus decreasing ASR. On the other
hand, it will also bring noise, which may lead to
insufficient training and make the model vulnera-
ble. In some cases, the latter may outweigh the
former. When observing the recognition perfor-
mance, the F1 of all experiments slightly decreases
as p = 0.3, 0.5, which indicates that the noise in-
troduced by masking out the boundary does not
cause much performance reduction. It is also not
surprising that there is a large drop in F1 with such
big noise when p = 0.8. Overall, when p is within
a reasonable range, masking out boundary can
effectively resist ViBA without significantly reduc-
ing the recognition performance. Based on our
experiments, p = 0.5 works best.
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Adversarial Training (AT) is the commonly used
method to improve the model’s robustness. We
select FreeLB (Zhu et al., 2020) and ASA (Wu and
Zhao, 2022) as our baselines. Compared to them,
though F1 is relatively lower, our method achieves
a significantly advantageous ASR. Also, we re-train
the model on the mixture of adversarial and orig-
inal samples (Mixed), where we set the label of
the inserted boundary to “O” in an adversarial sam-
ple, and the rest of the tokens are consistent with
the original sample. To our surprise, Mixed sig-
nificantly reduces ASR and does not damage F1

substantially, especially for the Chinese dataset,
which indicates the distinction between generated
adversarial samples and the original samples is
really slight.

5.2. Dropout Hidden-States

Since the decoder is relatively non-robust to the
hidden-states and ViBA mainly fools it, improving
its robustness is also a direct idea. We propose to
apply dropout (Hinton et al., 2012) on the hidden-
states for enhancement. While also considering
that the NER model is sensitive to boundary words,
we randomly dropout the boundary of an entity on
top of the hidden-states with a probability p. We
conduct experiments on the OntoNotes dataset.
The victim model is BERT-base with a vanilla MLP
decoder. We take a classic weight perturbation
(WP) method (Wen et al., 2018), which can improve
model robustness as the baseline.

In Table 8, ASR drops significantly when p =
0.5. Meanwhile, the F1 on the test set is almost
unaffected. ViBA also outperforms WP with a lower
ASR and higher F1. We can conclude that such a
concise dropout can help the victim model resist
ViBA without affecting its recognition performance.
Also, the model is fragile due to the undertraining
problem, and it is understandable to have poor ASR
and F1 when p = 0.8 on OntoNotes-en.

5.3. Defense Against General Attacks

Since previous experiments have demonstrated
that the Boundary Cut strategy can help mitigate
Entity Boundary Interference, thus enhancing the
model’s robustness against ViBA adversarial sam-
ples, it prompts us to explore whether this strategy
can be extended to other word substitution attacks
(Lin et al., 2021; Li et al., 2021). To this end, we
verify whether Boundary Cut can assist the model
in defending against RockNER as a representa-
tive. Specifically, we train the BERT-base models
with the defense strategies: Mask out Boundary
Words (M), Dropout Hidden-States (D) both with
p = 0.5. And then we evaluate their F1 scores on
the adversarial samples generated by RockNER.

Model BERT-base +M +D
F1 65.3 68.7(↑ 3.4) 68.0(↑ 2.7)

Table 9: F1 scores on adversarial samples gener-
ated by RockNER, with +M representing the Mask-
ing out of Boundary Words during training and +D
indicating the addition of Dropout Hidden-States.

As illustrated in Table 9, our implementation of
the Boundary Cut strategy results in a significant
enhancement of the victim model’s proficiency in ac-
curately identifying entities within the RockNER ad-
versarial samples. This observation underlines the
broad adaptability of our Boundary Cut approach
when it comes to defending against a variety of
different attack techniques.

6. Related Work

In recent years, adversarial samples (Goodfellow
et al., 2015) generation has been a popular re-
search area in NLP, mainly focusing on evaluating
the robustness of NLP models.

Current studies on robustness concentrate on
text classification, question answering (QA), etc.
For instance, Gao et al. (2018) propose the Deep-
WordBug, which effectively fools the models in a
black-box scenario. SCPNs (Iyyer et al., 2018)
employ syntactic information to generate adversar-
ial samples specifically for text classification tasks.
The widely recognized TextFooler (Jin et al., 2020)
attacks the BERT-style models and has gained
prominence due to its remarkable effectiveness and
efficiency. BAE (Garg and Ramakrishnan, 2020) is
designed to perform adversarial attacks on text clas-
sification tasks and generates adversarial samples
through contextual perturbations, making it partic-
ularly effective in black-box scenarios. CLARE (Li
et al., 2021) is known for its ability to create adver-
sarial samples that exhibit fluency and grammatical
coherence by employing a mask-then-infill proce-
dure. Gan and Ng (2019) attacks the question
paraphrasing in the QA dataset. Tan et al. (2020b)
perturb the inflectional morphology of words to gen-
erate plausible and semantically similar adversarial
samples. However, despite the numerous works
on generating adversarial samples for NLP tasks,
they have all overlooked NER.

Recently, some researchers have begun to fo-
cus on the robustness of NER models. Mayhew
et al. (2020) investigate the influence of capitaliza-
tion on NER models. Das and Paik (2022) delve
into the examination of how perturbations in the
surrounding context impact entities. But none of
them propose an efficient NER attacker. Nowa-
days, there are only a few studies that propose
attackers for NER systems. While Seqattack (Si-
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moncini and Spanakis, 2021) does adapt some of
the previously mentioned attack methods from text
classification to NER, it does not introduce a novel
approach, and the success rates of these meth-
ods are in need of improvement. While there are
some rare NER attackers like RockNER (Lin et al.,
2021) and Breaking BERT (Dirkson et al., 2021),
they essentially introduce a label shift issue and
face challenges related to low efficiency and a poor
success rate.

7. Conclusion

This paper studies the robustness of current domi-
nant NER models. Due to the label shift problem,
existing attackers easily generate invalid adversar-
ial samples. We first reveal a noteworthy problem,
the Entity Boundary Interference that is particularly
prevalent in NER models. Subsequently, we pro-
pose a novel one-word modification attacker ViBA
that alleviates label shift. Moreover, we interpret the
effectiveness of it and further propose a boundary
cut strategy that enhances the model’s robustness
against a variety of word substitution attackers.

Limitations

Typically, the Chinese boundary token is a single
character and the English boundary token is a
meaningful word. We do not explore how much
this distinction affects our attack in depth.

8. Bibliographical References

Bogdan Babych and Anthony Hartley. 2003. Im-
proving machine translation quality with auto-
matic named entity recognition. In Proceedings
of the 7th International EAMT workshop on MT
and other language technology tools, Improving
MT through other language technology tools, Re-
source and tools for building MT at EACL 2003.

Elizabeth Clark, Yangfeng Ji, and Noah A. Smith.
2018. Neural text generation in stories using en-
tity representations as context. In Proceedings
of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Vol-
ume 1 (Long Papers), pages 2250–2260, New
Orleans, Louisiana. Association for Computa-
tional Linguistics.

Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin,
Shijin Wang, and Guoping Hu. 2020. Revisiting
pre-trained models for Chinese natural language
processing. In Findings of the Association for

Computational Linguistics: EMNLP 2020, pages
657–668, Online. Association for Computational
Linguistics.

Sudeshna Das and Jiaul Paik. 2022. Resilience of
named entity recognition models under adversar-
ial attack. In Proceedings of the First Workshop
on Dynamic Adversarial Data Collection, pages
1–6.

Leon Derczynski, Eric Nichols, Marieke van Erp,
and Nut Limsopatham. 2017. Results of the
WNUT2017 shared task on novel and emerg-
ing entity recognition. In Proceedings of the 3rd
Workshop on Noisy User-generated Text, pages
140–147, Copenhagen, Denmark. Association
for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training
of deep bidirectional transformers for language
understanding. In Proceedings of the 2019 Con-
ference of the North American Chapter of the As-
sociation for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and
Short Papers), pages 4171–4186, Minneapolis,
Minnesota. Association for Computational Lin-
guistics.

Anne Dirkson, Suzan Verberne, and Wessel Kraaij.
2021. Breaking bert: Understanding its vul-
nerabilities for biomedical named entity recogni-
tion through adversarial attack. ArXiv preprint,
abs/2109.11308.

Wee Chung Gan and Hwee Tou Ng. 2019. Improv-
ing the robustness of question answering sys-
tems to question paraphrasing. In Proceedings
of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 6065–6075,
Florence, Italy. Association for Computational
Linguistics.

Ji Gao, Jack Lanchantin, Mary Lou Soffa, and Yan-
jun Qi. 2018. Black-box generation of adversarial
text sequences to evade deep learning classifiers.
In 2018 IEEE Security and Privacy Workshops
(SPW), pages 50–56. IEEE.

Siddhant Garg and Goutham Ramakrishnan. 2020.
BAE: BERT-based adversarial examples for text
classification. In Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP), pages 6174–6181, Online.
Association for Computational Linguistics.

Ian J. Goodfellow, Jonathon Shlens, and Christian
Szegedy. 2015. Explaining and harnessing ad-
versarial examples. In 3rd International Confer-
ence on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings.

https://aclanthology.org/W03-2201
https://aclanthology.org/W03-2201
https://aclanthology.org/W03-2201
https://doi.org/10.18653/v1/N18-1204
https://doi.org/10.18653/v1/N18-1204
https://doi.org/10.18653/v1/2020.findings-emnlp.58
https://doi.org/10.18653/v1/2020.findings-emnlp.58
https://doi.org/10.18653/v1/2020.findings-emnlp.58
https://doi.org/10.18653/v1/W17-4418
https://doi.org/10.18653/v1/W17-4418
https://doi.org/10.18653/v1/W17-4418
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://arxiv.org/abs/2109.11308
https://arxiv.org/abs/2109.11308
https://arxiv.org/abs/2109.11308
https://doi.org/10.18653/v1/P19-1610
https://doi.org/10.18653/v1/P19-1610
https://doi.org/10.18653/v1/P19-1610
https://doi.org/10.18653/v1/2020.emnlp-main.498
https://doi.org/10.18653/v1/2020.emnlp-main.498
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1412.6572


1743

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2020. Deberta: Decoding-
enhanced bert with disentangled attention. ArXiv
preprint, abs/2006.03654.

Geoffrey E Hinton, Nitish Srivastava, Alex
Krizhevsky, Ilya Sutskever, and Ruslan R
Salakhutdinov. 2012. Improving neural networks
by preventing co-adaptation of feature detectors.
ArXiv preprint, abs/1207.0580.

Mohit Iyyer, John Wieting, Kevin Gimpel, and Luke
Zettlemoyer. 2018. Adversarial example genera-
tion with syntactically controlled paraphrase net-
works. In Proceedings of the 2018 Conference of
the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages
1875–1885, New Orleans, Louisiana. Associa-
tion for Computational Linguistics.

Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter
Szolovits. 2020. Is BERT really robust? A strong
baseline for natural language attack on text clas-
sification and entailment. In The Thirty-Fourth
AAAI Conference on Artificial Intelligence, AAAI
2020, The Thirty-Second Innovative Applications
of Artificial Intelligence Conference, IAAI 2020,
The Tenth AAAI Symposium on Educational Ad-
vances in Artificial Intelligence, EAAI 2020, New
York, NY, USA, February 7-12, 2020, pages
8018–8025. AAAI Press.

Gina-Anne Levow. 2006. The third international
Chinese language processing bakeoff: Word
segmentation and named entity recognition. In
Proceedings of the Fifth SIGHAN Workshop on
Chinese Language Processing, pages 108–117,
Sydney, Australia. Association for Computational
Linguistics.

Dianqi Li, Yizhe Zhang, Hao Peng, Liqun Chen,
Chris Brockett, Ming-Ting Sun, and Bill Dolan.
2021. Contextualized perturbation for textual
adversarial attack. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Hu-
man Language Technologies, pages 5053–5069,
Online. Association for Computational Linguis-
tics.

Bill Yuchen Lin, Wenyang Gao, Jun Yan, Ryan
Moreno, and Xiang Ren. 2021. RockNER: A
simple method to create adversarial examples
for evaluating the robustness of named entity
recognition models. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 3728–3737, Online
and Punta Cana, Dominican Republic. Associa-
tion for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei
Du, Mandar Joshi, Danqi Chen, Omer Levy,
Mike Lewis, Luke Zettlemoyer, and Veselin
Stoyanov. 2019. Roberta: A robustly opti-
mized bert pretraining approach. ArXiv preprint,
abs/1907.11692.

Stephen Mayhew, Nitish Gupta, and Dan Roth.
2020. Robust named entity recognition with
truecasing pretraining. In The Thirty-Fourth
AAAI Conference on Artificial Intelligence, AAAI
2020, The Thirty-Second Innovative Applications
of Artificial Intelligence Conference, IAAI 2020,
The Tenth AAAI Symposium on Educational Ad-
vances in Artificial Intelligence, EAAI 2020, New
York, NY, USA, February 7-12, 2020, pages
8480–8487. AAAI Press.

John Morris, Eli Lifland, Jin Yong Yoo, Jake Grigsby,
Di Jin, and Yanjun Qi. 2020. TextAttack: A frame-
work for adversarial attacks, data augmentation,
and adversarial training in NLP. In Proceedings
of the 2020 Conference on Empirical Methods in
Natural Language Processing: System Demon-
strations, pages 119–126, Online. Association
for Computational Linguistics.

Vassilina Nikoulina, Agnes Sandor, and Marc
Dymetman. 2012. Hybrid adaptation of named
entity recognition for statistical machine transla-
tion. In Proceedings of the Second Workshop on
Applying Machine Learning Techniques to Opti-
mise the Division of Labour in Hybrid MT, pages
1–16, Mumbai, India. The COLING 2012 Orga-
nizing Committee.

Nanyun Peng and Mark Dredze. 2016. Improv-
ing named entity recognition for Chinese social
media with word segmentation representation
learning. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguis-
tics (Volume 2: Short Papers), pages 149–155,
Berlin, Germany. Association for Computational
Linguistics.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2018. Semantically equivalent adver-
sarial rules for debugging NLP models. In Pro-
ceedings of the 56th Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume 1:
Long Papers), pages 856–865, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Avirup Sil and Alexander Yates. 2013. Re-ranking
for joint named-entity recognition and linking. In
22nd ACM International Conference on Informa-
tion and Knowledge Management, CIKM’13, San
Francisco, CA, USA, October 27 - November 1,
2013, pages 2369–2374. ACM.

https://arxiv.org/abs/2006.03654
https://arxiv.org/abs/2006.03654
https://arxiv.org/abs/1207.0580
https://arxiv.org/abs/1207.0580
https://doi.org/10.18653/v1/N18-1170
https://doi.org/10.18653/v1/N18-1170
https://doi.org/10.18653/v1/N18-1170
https://aaai.org/ojs/index.php/AAAI/article/view/6311
https://aaai.org/ojs/index.php/AAAI/article/view/6311
https://aaai.org/ojs/index.php/AAAI/article/view/6311
https://aclanthology.org/W06-0115
https://aclanthology.org/W06-0115
https://aclanthology.org/W06-0115
https://doi.org/10.18653/v1/2021.naacl-main.400
https://doi.org/10.18653/v1/2021.naacl-main.400
https://doi.org/10.18653/v1/2021.emnlp-main.302
https://doi.org/10.18653/v1/2021.emnlp-main.302
https://doi.org/10.18653/v1/2021.emnlp-main.302
https://doi.org/10.18653/v1/2021.emnlp-main.302
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://aaai.org/ojs/index.php/AAAI/article/view/6368
https://aaai.org/ojs/index.php/AAAI/article/view/6368
https://doi.org/10.18653/v1/2020.emnlp-demos.16
https://doi.org/10.18653/v1/2020.emnlp-demos.16
https://doi.org/10.18653/v1/2020.emnlp-demos.16
https://aclanthology.org/W12-5701
https://aclanthology.org/W12-5701
https://aclanthology.org/W12-5701
https://doi.org/10.18653/v1/P16-2025
https://doi.org/10.18653/v1/P16-2025
https://doi.org/10.18653/v1/P16-2025
https://doi.org/10.18653/v1/P16-2025
https://doi.org/10.18653/v1/P18-1079
https://doi.org/10.18653/v1/P18-1079
https://doi.org/10.1145/2505515.2505601
https://doi.org/10.1145/2505515.2505601


1744

Walter Simoncini and Gerasimos Spanakis. 2021.
Seqattack: On adversarial attacks for named
entity recognition. In Proceedings of the 2021
Conference on Empirical Methods in Natural
Language Processing: System Demonstrations,
pages 308–318.

Chuanqi Tan, Wei Qiu, Mosha Chen, Rui Wang,
and Fei Huang. 2020a. Boundary enhanced neu-
ral span classification for nested named entity
recognition. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 34, pages
9016–9023.

Samson Tan, Shafiq Joty, Min-Yen Kan, and
Richard Socher. 2020b. It’s morphin’ time! Com-
bating linguistic discrimination with inflectional
perturbations. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 2920–2935, Online. Association
for Computational Linguistics.

Shuhe Wang, Xiaofei Sun, Xiaoya Li, Rongbin
Ouyang, Fei Wu, Tianwei Zhang, Jiwei Li, and
Guoyin Wang. 2023. Gpt-ner: Named entity
recognition via large language models. arXiv
preprint arXiv:2304.10428.

R Weischedel, M Palmer, M Marcus, E Hovy,
S Pradhan, L Ramshaw, N Xue, A Taylor, J Kauf-
man, M Franchini, et al. 2013. Ontonotes re-
lease 5.0 ldc2013t19. linguistic data consortium,
philadelphia, pa (2013).

Yeming Wen, Paul Vicol, Jimmy Ba, Dustin Tran,
and Roger B. Grosse. 2018. Flipout: Efficient
pseudo-independent weight perturbations on
mini-batches. In 6th International Conference
on Learning Representations, ICLR 2018, Van-
couver, BC, Canada, April 30 - May 3, 2018, Con-
ference Track Proceedings. OpenReview.net.

Hongqiu Wu and Hai Zhao. 2022. Adversarial
self-attention for language understanding. ArXiv
preprint, abs/2206.12608.

Tingyu Xie, Qi Li, Jian Zhang, Yan Zhang, Zuozhu
Liu, and Hongwei Wang. 2023. Empirical study
of zero-shot ner with chatgpt. arXiv preprint
arXiv:2310.10035.

Ming Xu. 2022. Text2vec: Text to vector toolkit.
https://github.com/shibing624/
text2vec.

Chen Zhu, Yu Cheng, Zhe Gan, Siqi Sun, Tom
Goldstein, and Jingjing Liu. 2020. Freelb: En-
hanced adversarial training for natural language
understanding. In 8th International Conference
on Learning Representations, ICLR 2020, Ad-
dis Ababa, Ethiopia, April 26-30, 2020. OpenRe-
view.net.

A. Manual Evaluation

We employ five participants with a computer sci-
ence background and five with a humanities back-
ground to compare the fluency and naturalness
of the adversarial samples generated by different
attackers.

Specifically, we select 30 sentences each from
OntoNote-en and OntoNote-ch to generate a to-
tal of 60 sets of adversarial samples using ViBA,
RockNER, and CLARE. Participants are required
to score the naturalness and fluency of each set
of adversarial samples, where the most fluent and
natural samples are rated as 3, followed by 2, and
the poorest as 1. The average scores are shown
in Table 10.

OntoNotes-en OntoNotes-ch
RockNER 1.93 1.83
CLARE 1.83 1.97
ViBA 2.23 2.20

Table 10: The average scores assigned by partici-
pants to samples generated by different attackers.

From Table 10, it can be observed that partici-
pants are inclined to perceive that ViBA generates
more fluent and natural adversarial samples, which
aligns with the results presented in Table 4.
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