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Abstract
The study of ancient Middle Eastern cultures is dominated by the vast number of cuneiform texts. Multiple languages
and language families were expressed in cuneiform. The most dominant language written in cuneiform is the Semitic
Akkadian, which is the focus of this paper. We are specifically focusing on letters written in the dialect used in
modern-day Baghdad and south towards the Persian Gulf during the Old Babylonian period (c. 2000-1600 B.C.E.).
The Akkadian language was rediscovered in the 19th century and is now being scrutinised by Natural Language
Processing (NLP) methods. However, existing Akkadian text publications are not always suitable for digital editions.
We therefore risk applying NLP methods onto renderings of Akkadian unfit for the purpose. In this paper we want to
investigate the input material and try to initiate a discussion about best-practices in the crossroad where NLP meets
cuneiform studies. Specifically, we want to question the use of pre-trained embeddings, sentence segmentation and
the type of cuneiform input used to fine-tune language models for the task of fine-grained Part-of-Speech tagging.
We examine the issues by theoretical and practical approaches in a way that we hope spurs discussions that are
relevant for automatic processing of other ancient languages.
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1. Introduction

Amongst ancient text corpora, the cuneiform cor-
pus is one of the largest and in a time where com-
putational analysis is increasingly dominating re-
search, it must naturally follow that digitisation of
cuneiform texts is essential for evolving the study of
cuneiform texts and cultures. However, digitisation,
and in that vein linguistic augmentation of data, of
the cuneiform corpus is a complex case. We will
discuss some core elements of working with dig-
ital cuneiform texts and the decisions necessary
for reaching a successful outcome. To do so, we
will first outline our corpus and research goals in
Section 2. Section 3 describes various aspects
of the cuneiform corpus, while Section 4 gives an
overview of useful Natural Language Processing
(NLP) methods. Following, is a description of our
preliminary NLP experiments (Section 5), which
is the basis for a discussion of how to approach
the cuneiform corpus with NLP in mind (Section 6).
The discussion is meant as a preliminary view on
our corpus’ functionality in connection with NLP
and will hopefully result in further discussions on
how to approach digital ancient texts.

2. CUNE-IIIF-ORM and NLP

The CUNE-IIIF-ORM project is a cooperation be-
tween the Royal Museums of Art and History,
KU Leuven and Ghent University. It aspires to
test different avenues of digital methods to imple-

ment state-of-the-art solutions for dissemination,
automatic reading and computational analysis of
cuneiform texts. In this paper we focus on the au-
tomatic reading and computational analysis part or
NLP. We are examining the corpus of Old Babylo-
nian (OB) Akkadian texts (c. 2000-1600 B.C.E.)
by using freely available NLP Machine Learning
frameworks to create robust language models. The
first objective is to semi-automatically increase the
number of linguistically annotated texts in the cor-
pus and the second objective is to examine the OB
Akkadian language through computational analy-
ses of the corpus. We are currently exploring the
first step and have completed a set of preliminary
experiments for fine-grained Part-of-Speech tag-
ging (see Section 5), which has highlighted both
the potential and the pitfalls of our approaches. Ad-
dressing these pitfalls should allow us to improve
the results of our future NLP analyses. In the pro-
posed research, we will focus on the usage of pre-
trained embeddings, sentence segmentation and
Unicode cuneiform.

3. Cuneiform

3.1. The Script

Cuneiform is a logo-syllabic script with signs made
up of a number of wedges impressed or engraved
onto various materials, where clay tablets domi-
nate the corpus (seeFigure 1 for an example). It
was used to write multiple languages, notably are
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the linguistic isolate Sumerian, the Semitic Akka-
dian and the Indo-European Hittite. The earli-
est cuneiform writing is first attested around 4500
B.C.E. in modern-day southern Iraq to write Sume-
rian and it was last used in the 1st cent. C.E. The
current number of cuneiform texts is likely past
500.000 ((Streck, 2010)) and many historic sites
are still untouched or only partially excavated.

Figure 1: Front side of an Old Babylonian cuneiform
clay tablet written in Akkadian. It is kept in the Royal
Museums of Art and History in Brussels (museum
number O.222).

3.2. Cuneiform for Akkadian
The cuneiform used to write Akkadian has three
different types of signs: syllables, word signs or
logograms, and determinatives or classifiers. The
syllabic signs are used to write the words by ap-
proximating their pronunciation in writing and are for
Akkadian transliterated with lowercase italic letters.
It is common to see spelling variations of words
with syllables, since not all double consonants and
vowel lengths are consistently written. Word signs
can have pre- or suffixes, but they are typically writ-
ten in simple form without inflections. In Akkadian,
word signs are mostly inherited from Sumerian, why
they are also called Sumerograms and for Akka-
dian texts they are transliterated with uppercase
letters. The determinatives disambiguate the of-
ten semantic ambiguity of word signs and words in
general. They are not pronounced in speech but
only used in writing where they are usually translit-
erated as superscript. Signs are not limited to only
one of these categories, dingir (U+1202D) can
be read as the syllable an, the Sumerogram DIN-
GIR and the classifier d. To complicate the matter

further, cuneiform also exhibits polyphony and ho-
mophony. Polyphony means that one cuneiform
sign can represent different phonologically unre-
lated syllables e.g., the sign ur (U+12328) can be
read ur, lik and tas. Where homophony means
that one syllable can be represented by multiple
signs e.g., bi (U+12049) can be bi, but so can ne
(U+12248) and pi (U+1227F), amongst others. We
distinguish between the same phonetic values writ-
ten with different signs by using subscript numerals,
they would in the mentioned case be bi, bi2 and bi3,
respectively. Which sign is used for a given sound
can carry meaning, such as the rather consistent
use of the sign u3 (U+12147) for the conjunction
u, instead of u (U+1230B) or u2 (U+12311). But
there is no system that encompass the whole set
of signs and sounds. Furthermore, even the use
of u3 for the conjunction u is inconsistent across
Akkadian and not all sound values of a given sign
is applicable across different time periods of Akka-
dian.

3.3. Akkadian Texts
The Akkadian language is a highly inflectional
Semitic language attested from c. the 24th cent.
B.C.E. to the 1st cent. C.E. It has mainly been found
in modern-day Iraq and Syria. As typical for Semitic
languages, Akkadian words are mainly constructed
by three radicals or consonants surrounded by a
pattern of consonants and vowels that determines
the Part-of-Speech (PoS), semantics and inflection
of a word. These radicals carry meaning in their
combination such as the paradigmatic PRS, which
as a verb typically means ‘to cut off’ (parāsu) and as
a noun can mean ’a separated place’ (parsu). The
variations from the patterns stem from phonologi-
cal influences that dominate different dialects and
they act predictable in many cases. Akkadian was
highly influenced by the isolate language Sumerian.
Akkadian inherited the cuneiform script itself, word
signs and its word order from Sumerian. That is
why Akkadian has a great number of Sumerian loan
words and different from most Semitic languages,
Akkadian predominantly wrote in the order Subject-
Object-Verb (SOV) with syllabic signs. Across the
many different text genres and periods Akkadian
is used for, the texts vary significantly. The OB
contracts exhibit a very limited vocabulary, the con-
tinuously used lexical lists have a rich vocabulary
but typically no syntactical structure and the Neo-
Assyrian (c. 911-612) royal reliefs has an excessive
use of word signs.

For the presented experiments, we work on OB
Akkadian letters. We chose to work with these texts
because they contain many different topics, the oc-
casional direct quote, they seem to express a lan-
guage closer to the vernacular, and most often we
also know who conveyed the messages and who

https://en.wiktionary.org/wiki/%F0%92%80%AD
https://en.wiktionary.org/wiki/%F0%92%8C%A8
https://en.wiktionary.org/wiki/%F0%92%81%89
https://en.wiktionary.org/wiki/%F0%92%89%88
https://en.wiktionary.org/wiki/%F0%92%89%BF
https://en.wiktionary.org/wiki/%F0%92%85%87
https://en.wiktionary.org/wiki/%F0%92%8C%8B
https://en.wiktionary.org/wiki/%F0%92%8C%91
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was meant to receive them. It is also our opinion
that Akkadian had limited external influence from
other languages during the OB period.1 Nonethe-
less, it has to be taken into account that the OB
corpus covers around 400 years of a language’s
history in a very volatile political reality.

3.4. Rediscovery of Akkadian
Since the last known cuneiform text from the 1st

cent. C.E. until the 19th cent. C.E. the knowledge
of how to read cuneiform and Akkadian was lost.
When studying OB Akkadian in the 21st cent. we ap-
proximate understanding of the texts within a mod-
ern and largely Western conceptual field.2 Most
texts have been published as line drawings (Fig-
ure 2: above) and/or transliterations (Figure 2: be-
low), which are alphabetic and phonetic approxima-
tions of the language. In some cases publications
also contain transcriptions of the language where
the information of the written reality of the texts is
removed in favour of including more explicit gram-
matical information (see Figure 3 for an example of
the differences in notation). For many years these
formats were the most suitable for the context of
their publications.

3.5. Digital Cuneiform Editions
In digitised corpora we see that the ASCII transliter-
ation format or ATF dominates accessible text pub-
lications with and without annotations. It is used
in different versions by the Cuneiform Digital Li-
brary Initiative (CDLI), The Open Richly Annotated
Cuneiform Corpus (ORACC) and the electronic
Babylonian Library, just to mention a few. Besides
ATF, also the CoNLL-U format is growing in popular-
ity for cuneiform studies e.g., BabyLemmatizer 2.0
(Sahala and Lindén, 2023), CDLI-CoNLL (Chiar-
cos et al., 2018), Luukko et al. 2020 and Ong and
Gordin 2024, but it is still not as widely used as ATF.
Digital publications are usually based on translit-
erations as the basic textual data. Both ATF and
CoNLL-U provide ample possibility to annotate a
word based on its place in a text,3 its morphological
features and its lemma. It is typical to provide a
citation form, a translation, PoS-tag and a transcrip-
tion, like often seen in ORACC. The parsing of the
word level information might differ in digital publica-
tions, but the template from ORACC is considered
a representable example of current digital editions

1For a short overview of OB Akkadian language con-
tact see Streck, 2022 (pp. 11–15).

2We will not consider the impact of an Eurocentric or
Occidental lens, but acknowledge that such efforts could
likely be beneficial in the context of our discussion.

3We do not go so far as to say syntax. Even though
ATF should provide the functionality for it, we are yet to
see it implemented.

Figure 2: Above: typical line drawing of a tablet
(King, 1900 no. 71). Below: corresponding translit-
eration to line drawing above, notice the 66 years
between publications (Frankena, 1966 p. 32).

Figure 3: Typical example from the preamble of
an OB Akkadian letter displaying the difference
between Unicode cuneiform, the phonetic interpre-
tation of the signs, an analysis of the composed
words and a translation of the passage

of Akkadian texts. This template is also well aligned
with physical publications that at most provide tran-
scriptions, but more commonly only have sporadic
notes for difficult words when going from transliter-
ation to translation e.g., the Altbabylonische Briefe
series (Kraus and Veenhof, 1964–2005). CoNLL-
U can support a similar structure as ORACC ATF,

https://cdli.mpiwg-berlin.mpg.de/
http://oracc.museum.upenn.edu/index.html
https://www.ebl.lmu.de/
https://www.ebl.lmu.de/
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but it differs in grammatical annotation. Instead of
including a transcription, CoNLL-U has each mor-
phological feature tagged. This is more in line with
our project, as we wish to provide our textual edi-
tions with grammatical feature tags. By doing so,
one avoids ambiguities that can be found in tran-
scriptions and it makes the content more accessible
for people without inside knowledge of Akkadian.
Currently, there is no dominant CoNLL-U standard
for Akkadian.

4. Cuneiform NLP

4.1. Enlarging the Corpus
With the modest number of freely available digitised
editions of OB cuneiform, it seems obvious to imple-
ment NLP for both automatic annotation and textual
analysis. Few projects are currently trying to utilise
NLP on cuneiform texts; for a more comprehensive
account see Sahala, 2021 (pp. 31–72).

A first challenge is the moderate size of the dig-
ital corpus that can be used to train and evaluate
NLP approaches for Akkadian. There are different
approaches to increase the number of available
digital editions, either by (1) digitising physical pub-
lications or (2) creating them from new. (1) The
first is typically done by manually copying the texts
from physical publications to a digital format. In
best case scenario this is done by specialists that
understand the specifics of Assyriological notation,
which varies across scholarly traditions, types of
texts and research history. Alternatively, line draw-
ings or transliterations can be automatically read
from scans of physical publications. The Cuneiform
Recognition (CuRe) utilises a machine learning
model trained to recognise line drawings (Gordin
and Romach, 2022) and Cuneiform Recognition
Documents (CuReD) uses an OCR model to read
transliterations. Both are developed within the Digi-
tal Pasts Lab (DigPasts-Lab). (2) The process of
automatically extracting new texts relies on images
of cuneiform tablets. Currently, there is no general
OCR model for cuneiform tablets. However, ac-
cording to Sahala, 2021 (p. 42), it is not unlikely
that there will soon be domain-specific models (see
for instance Gordin et al., 2020) that can (semi-)au-
tomatically recognise cuneiform signs on certain
types of images.

4.2. Linguistically Augmenting the Data
In parallel with increasing the size of the corpus, it
is necessary to augment the digital editions with lin-
guistic annotations. ORACC has a glossary-based
automatic lemmatizer called L2 that can draw from
any glossary within the ORACC framework. The
lemmatizer is quick and increasingly effective as
glossaries grow, but it does not account for spelling

variations and glossary mistakes can be difficult to
root out. Despite the effectiveness of L2, especially
for specialists in the subject, it cannot recognise
unseen forms, which is important for a highly in-
flectional language like Akkadian and a complex
script like cuneiform. We will mention two attempts
to mitigate this. The first is a finite-state based
morphological model for the Babylonian dialect of
Akkadian developed at the University of Helsinki
(Sahala et al., 2020). It relies on the regularity of
the inflections of Akkadian words. By knowing the
root consonants of a word and their use of vowels, it
is possible to reconstruct all possible inflections ex-
pressed in transcriptions. For Akkadian words this
method works fine and the rules of the language
could potentially be changed quickly between texts
of different genres, periods and places. The evalu-
ation of the model reached a recall of up to 93,65 %
on tokens in Standard Babylonian texts. We can-
not ascertain how well this model works for OB
Akkadian letters as they are largely missing from
the evaluation data taken from ORACC. There are
two main issues with this model, one is that the
coverage is limited to Akkadian words or loanwords
that have been ascribed an Akkadian equivalent,
the other is the issue of disambiguation of identical
forms. The former issue is dominated by the na-
ture of the cuneiform script where word signs from
Sumerian are included in Akkadian mostly without
any indicator of morphological reality. Furthermore,
the word signs do not have a fixed Akkadian transla-
tion across dialects. The latter issue of transcription
disambiguation was not solvable with the current
model as the data necessary to weigh the final-state
model was not available. More recently a different
Akkadian lemmatizer was developed, also by the
University of Helsinki. It is called BabyLemmatizer
and it uses the Open Neural Machine Translation
Toolkit (OpenNMT, see Klein et al., 2017) in order
to predict the PoS and lemma of a word given the
transliteration formatted in CoNLL-U+ (Sahala and
Lindén, 2023). The implementation of OpenNMT
with post-correction rules scores an accuracy of c.
94 % for the combined PoS and lemma predictions
of texts written in the 1st mill. Babylonian dialect
of Akkadian (Sahala and Lindén, 2023 p. 209).
However, where the PoS-tag and lemma might be
helpful for downstream predictions, the model does
not offer morphological analyses. For many of the
questions Assyriologists typically ask, this would
be a minimum.

As will be mentioned below (Section 6.2), sen-
tence segmentation or chunking is a difficult task
with the current data structure of the digital editions.
To solve this issue, Luukko et al. (2020) have devel-
oped a treebank that could potentially be used to
do automatic syntactical annotation. This Akkadian
treebank is built on Neo-Assyrian royal inscriptions

https://universaldependencies.org/akk/index.html
https://digitalpasts.github.io/index.html
http://oracc.museum.upenn.edu/doc/help/lemmatising/howl2works/index.html
https://github.com/asahala/BabyLemmatizer
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for which it works well. However, the inscriptions
are written more than 1000 years later than the
OB Akkadian letters. They are meant to convey
a political message and the material reality of the
stone slabs they are engraved into results in very
long lines of text. Such factors could have played a
role in how the scribes conceived coordination be-
tween sentences, which would make the sentence
coordination very different from those written in OB
Akkadian letters.

5. Part-of-Speech Tagging
Experiments

Our aim is to provide a corpus of OB Akkadian let-
ters annotated with PoS-tags, citation forms and a
morphological analysis. In order to develop a Part-
of-Speech and morpheme tagger for Akkadian, we
have first created a fully annotated training corpus
of 121 letters from the city of Sippar. By limiting
ourselves to Sippar, which has a large corpus of
extant letters, we hope to have good immediate re-
sults that can make the process of semi-automatic
annotation of all Sippar letters quicker. The spe-
cific texts were chosen because they are fairly well
preserved and thereby provide more content per
text. Three specialists in the field of Old Babylonian
Akkadian annotated all the texts. Firstly, they anno-
tated each word with a PoS-tag, citation form and
transcriptions in the ORACC framework. Annotat-
ing in the ORACC framework reduces mistakes for
already seen words by doing dictionary look-up in
the annotation project glossary. Secondly, the tran-
scriptions were analysed with regular expressions
in Python to get the morphemes and those that
could not be disambiguated were manually anal-
ysed by the specialists. The dataset used for the
presented experiments is made publicly available,
and can be used for replication experiments4.

In order to perform preliminary tests with vari-
ous machine-learning approaches, we used the
FLAIR toolkit transformer-based architecture for se-
quence tagging. We considered it a good entry
point as it is easy to use and provides a number of
readily available pre-trained embeddings. Bansal
et al. (2021) also experimented with the FLAIR
sequence tagger to see how to best improve PoS
tagging of Sumerian, but they reported poor re-
sults (p. 49). They used monolingual Sumerian
data to pre-train, whereas we used stacked em-
beddings with forward and backward embeddings
pre-trained on the following languages: multilin-
gual (343 languages, see Agić and Vulić, 2019)5,
Arabic, Spanish and Japanese6. We chose to

4https://github.com/assyrugent/LREC-Coling2024.
5The dataset is currently not available for download.
6The three latter languages are only described on

test the multilingual pre-trained embeddings be-
cause we hypothesised it might have benefits as
OB Akkadian shows traits of the agglutinative lan-
guage Sumerian, the Semitic language family and
the logo-syllabic cuneiform script. These traits are
not shared by any single pre-trained embedding
we could access, but they can all be found in the
multilingual model. Arabic was included because
of its affinity with Akkadian as they are both Semitic
languages, Japanese was included because it is
logo-syllabic like the cuneiform script and Spanish
was included as a control language because it does
not have any major similarity with Akkadian.

To begin with, we trained a sequence tagger that
predicted PoS-tags and in some cases a limited
number of morphemes. This gave us a fairly stable
baseline to evaluate different approaches on our
data. Because of the modest size of our corpus, we
opted for a k-fold cross-validation setup, where the
text segments are randomly divided into 5 equal
parts (folds), and training and testing is performed
5 times on different partitions of 80% (4 folds) and
20% (1 fold) of the data, respectively.

5.1. Pre-trained Models of Different
Languages

Akkadian is a highly inflectional logo-syllabic lan-
guage and digitally a low-resourced language. In
future research, we aim to build our own language
model for Akkadian, and increase our corpus with
Akkadian from other periods than OB, which could
significantly increase the amount of resources. Pre-
vious research for ancient languages has indeed
shown that texts from different periods of a lan-
guage’s history can be useful in augmenting sim-
ilar data. This was, for instance, the case for An-
cient and Byzantine Greek, where adding modern
Greek texts considerably improved the language
model (Swaelens et al., 2023). Potentially, this
can be extended to languages of the same fam-
ily, as related work showed that typologically simi-
lar languages can provide useful data to improve
the language model as well (Singh et al., 2023;
de Vries et al., 2022). In this research, we wanted
to test if there were indications that this would be
a viable path to follow for Akkadian as well. To
investigate this idea, we performed experiments to
predict the following PoS-tags and select number
of morphemes:

• Verbs: Stem, Tense,7 Person, Genus and
Number

• Nouns: Genus, Number, Case and State

GitHub, see Arabic, Spanish and Japanese.
7The definition of tense here covers tense, aspect and

mood (TAM) in Akkadian. Choosing the term tense is for
simplicity.

https://flairnlp.github.io/
https://flairnlp.github.io/docs/tutorial-embeddings/flair-embeddings
https://github.com/assyrugent/LREC-Coling2024
https://github.com/flairNLP/flair/issues/614
https://github.com/flairNLP/flair/issues/80
https://github.com/flairNLP/flair/issues/527
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• Independent and Possessive Pronouns:
Person, Genus, Number and Case

• Adjectives and Demonstrative Pronouns:
Genus, Number and Case

• Interrogative and Reflexive
Pronouns: Case

The input data consists of transliterations sep-
arated into sentences. Sentences are defined by
ending in verbs excluding those with the suffixes
-u and -ma. We chose to also include a limited
number of morphemes, because the simple test of
only predicting PoS-tags can potentially draw infor-
mation other than the patterns of consonants and
vowels. Whereas, the more complex task of also
predicting a limited number of morphemes requires
the ability to distinguish between smaller variations
in the consonant and vowel structures. As illus-
trated by Table 1, fine-tuning the Semitic language
model for Arabic with our training data for Akkadian
PoS-tagging performed the best, obtaining an av-
erage accuracy of 76 % over 5 runs. Second best
was Spanish (average accuracy of 74 %), whereas
Japanese performed just slightly better than the
multilingual pre-trained embeddings. These results
are supported by the Macro and Weighted average
F1-results which are listed in the Appendix (Table
4). It is not surprising that Arabic performed the
best considering that Semitic languages share a
structure very different from what we see in Indo-
European languages such as Spanish. We could
likely expect a larger advantage for Arabic if the
input was given as transcription instead of translit-
erations, because that would remove the influence
of the cuneiform script on Akkadian. Choosing an
Arabic pre-trained model with more focus on his-
toric sources would possibly improve the results
further.

Embeddings Accuracy
Multilingual 71,0%
Arabic 76,2%
Spanish 74,1%
Japanese 72,6%

Table 1: The average accuracy over five folds
from the results of predicting PoS and morpholog-
ical tags with transliterated text as input and verb
separated text (excluding the suffixes -u and -ma).
The first column mentions the pre-trained FLAIR
embeddings used for fine-tuning the model on.

5.2. Line Separations
The data we are using to fine-tune should be di-
vided into sentences for the model to deliver the
best results, as context is very important for a

sequence-tagging task such as PoS-tagging. How-
ever, cuneiform Akkadian does not use punctua-
tion and our data has not been syntactically tagged.
This lead us to consider the best way to segment
our data into sentences. As mentioned in Sec-
tion 3.3, Akkadian generally uses the word order
SOV and we will therefore test that word order as
our definition of a sentence. As noun cases can be
inconsistent in Akkadian, we did not consider the
subject for sentence beginnings, but we chose to
only use the verbs to define sentence endings. We
also wanted to test the effect of grouping clauses
based on subordination, typically marked with the
verbal suffix -u, and two markers of clause coordi-
nation: the verbal conjunctive suffix -ma and the
conjunctions (CNJ) directly following a verb. We
are aware that breakage complicates the matter,
but we have chosen to ignore that (see Zemánek,
2007 for a discussion of the fragmentary state of
cuneiform texts). These tests were compared to
simple line separation i.e., based on the physical
lines of a tablet (see Figure 2:above), and sepa-
ration into the individual texts. All tests predicted
PoS-tags based on transliterated text with the Ara-
bic pre-trained embeddings.

As shown by Table 2, our results indicate that
it is worthwhile not using lines as sentence defini-
tions for only predicting PoS-tags. There is a 2,3
percentage points difference from the best perform-
ing verb separation (94,8 %) and line separation
(92,5 %). As seen in the Appendix (Table 5), the
case is slightly different for the Macro average F1.
Line separation outperforms ’Verb – u’ and ’Verb –
u & ma & CNJ’, but not ’Verb’ and ’Verb – u & ma’.
However, based on these experiments we can not
draw final conclusions on what level of clause co-
ordination should be included. All four verb based
separation types were within 1,3 percentage points
(93,5-94,8 %). These results will likely change a
lot depending on type of object, genre and period
as they can exhibit varying sentence lengths and
complexity, and conjunction choices.

Separation type Accuracy
Text 88,2%
Line 92,5%
Verb 94,8%
Verb – u 93,9%
Verb – u & ma 94,1%
Verb – u & ma & CNJ 93,5%

Table 2: The average accuracy over five folds for
predicting PoS-tags with Arabic pre-trained embed-
dings and transliterated text as input, for different
sentence splitting approaches.
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5.3. Unicode Cuneiform

After Gutherz et al. (2023) recorded promising re-
sults by using Unicode cuneiform in Akkadian to
English translations, we wanted to test the differ-
ence of predicting PoS-tags based on translitera-
tion and Unicode cuneiform. From our corpus we
could construct datasets based on transliteration
and Unicode cuneiform. The transliterations were
already given from our corpus and the Unicode
cuneiform was made by comparing the transliter-
ations with a sign list made by T. Jauhiainen pub-
lished as Nuolenna.8 We again experimented with
predicting PoS-tags based on the pre-trained mul-
tilingual, Arabic, Spanish and Japanese embed-
dings.

It can be seen in Table 3 that the rather simple
task of only predicting PoS-tags on the transliter-
ated text, shows no clear best performer of the
three monolingual pre-trained embeddings, as they
are within less than 1 percentage point. However,
Japanese is outperforming all other pre-trained em-
beddings by at least 4,5 percentage points of accu-
racy when predicting PoS-tags based on Unicode
cuneiform. This trend is especially clear when mea-
suring the Macro average F1 differences in the
Appendix (Table 6), here Japanese outperforms
the Arabic pre-trained embeddings by 8,9 percent-
age points. It is worth noticing that all embed-
dings have a considerable performance loss rang-
ing from 19,5 percentage points (Japanese) to 30,7
percentage points (Spanish). Both Akkadian and
Japanese are logo-syllabic languages, so when
Unicode cuneiform is used as input data, it is no
surprise that the relative performance of Japanese
increases. The question arising from this test is
how a mixture of Japanese and Arabic pre-trained
embeddings would perform on Unicode cuneiform.

Embeddings Translit. Unicode Loss
Multilingual 91,3% 61,3% 30%pt.
Arabic 94,1% 69,4% 24,7%pt.
Spanish 93,7% 63,0% 30,7%pt.
Japanese 93,4% 73,9% 19,5%pt.

Table 3: The average accuracy over five folds
from the results of predicting PoS-tags on verb-
separated (excluding -u and -ma) sentences with
different pre-trained embeddings and input in either
transliteration or Unicode cuneiform.

8We have not been able to verify the quality of the
sign list.

6. Discussion

6.1. Augmenting Training Data
If we want high performing transformer models
for Akkadian, it is necessary to augment the
training data. Streck estimates that there are c.
9.900.000 Akkadian words extant and out of these
c. 2.560.000 would be from the OB period (Streck,
2010 p. 54). It is currently impossible to verify
Streck’s estimates, but even if the Akkadian corpus
contains c. 10 million words, we do not know how
many of the words and texts are unique.9 As the
Akkadian corpus is estimated by Streck to be ap-
proximately 20 times as large as all other ancient
Semitic languages put together (Streck, 2010 p.
55), there is little data to augment from these. That
is why it is important to establish the best possible
candidates of larger resourced languages to use
for augmentation. Based on the results of our ini-
tial testing, Semitic languages could be worthwhile
using for augmentation (see Table 1) and if the in-
tention is to work on Unicode cuneiform it seems
reasonable to assume that Japanese would be a
beneficial addition to the augmentation corpus (see
results Table 3).

6.2. Sentence Segmentation
Currently, no treebank for OB Akkadian exists and
creating one is outside the scope of this project.
The main bulk of the data we intend to include lacks
syntactical information. We therefore have to think
alternatively to get the best sentence segmentation
with what is available. Similarly to Sukhareva et al.
(2017 p. 99), our approach was to define a sen-
tence based on the word order. We also considered
expressed syntactical features. The former was
simple, a verb defines the sentence end. For the
latter, we considered both the subordinate -u and
conjunctive -ma as they are distinctly marked. They
indicate a coordination of clauses and therefore,
not a sentence division. The data we have avail-
able tends to have no morphological tagging, but a
transcription. For transcribed verbs where the stem
is known, neither suffix -ma or -u have ambiguity.
The latter suffix is not expressed when the verb has
a vocalic ending or the ventive (see Huehnergard,
2011 pp. 183–4). In these cases the other indica-
tors are either a number of words that can intro-
duce a subordinate clause e.g., kīma or īnuma (see
Huehnergard, 2011 pp. 283–7), or the negation lā.
The former group could be used to define the fol-
lowing verb as a subordinate, but most of them can
also be used as other parts-of-speech and it is our
experience that the data available do not have the

9As there is still a possibility that many Akkadian texts
can be found in the earth of the Middle East, we might
have a sufficiently large corpus in the future.

https://researchportal.helsinki.fi/en/persons/tommi-jauhiainen/datasets/
https://github.com/tosaja/Nuolenna/blob/master/sign_list.txt
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granularity that gives us the option to automatically
distinguish between the two. The use of the nega-
tion lā instead of the more common ul is determined
by multiple factors between which we cannot auto-
matically distinguish, so lā can currently only serve
as an subordinate clause marker while performing
manual annotation. Taking the approach we have,
the data has uniform standards for clause coordina-
tion that are clearly marked in the texts. However,
this does not account for asyndetic paratactic re-
lations i.e., two or more non-subordinate clauses
that have a semantic dependency.10 Because we
cannot currently account for that, we argue that we
should also not account for coordinated paratactic
relations marked with a conjunction immediately
following a non-subordinate verb (in Table 2 this is
’Verb – u & ma & CNJ’).

6.3. Unicode Cuneiform
As of yet, we are not aware of any discussions
about why one should feed the machine-learning
models with Unicode cuneiform instead of translit-
erations. In our opinion, we see two reasons for
doing so: for developing models that can poten-
tially use computer read cuneiform signs as input
and having data closer to the original material. We
will not delve into the development of OCR models
here. The latter argument, that Unicode cuneiform
is closer to the original material than phonological
approximations, is at face value reasonable. If it
would be possible to get closer to the original text,
less external bias would presumably be included.
The question is, however, if Unicode cuneiform ac-
tually is closer to the original texts than translitera-
tions. Since there is no OCR model able to read
cuneiform signs directly off images and transform
them into Unicode solely based on the graphical in-
put, we rely on the available data. This data can be
a modern reader’s interpretations of signs based on
their graphical appearance, such as line drawings
(Figure 2: above), or conversion of transliterations
into Unicode cuneiform (Figure 3). Both types of
data obviously have human interpretation, but the
question is if they vary significantly. First, we need
to consider how a text can be read by a human.
Reiner already suggested half a century ago an
algorithmic approach to reading an Akkadian text
(1973). It relies on reading the cuneiform signs,
recognising the possible sign interpretations, spec-
ifying word boundaries based on a simple set of
phonetic rules (see Reiner, 1966 chap. 4.3) and
morphosyntactical rule-based analyses. These
four steps require information from a sign list, a
grammar and a dictionary. Strictly following this
approach would result in a reasonable lack of hu-
man interpretation, where the main issue would

10See Deutscher, 2000 p. 14 for this definition.

lie in our need to transform the texts into a format
readable for Western scholars. The resources that
the computer has available are also defined by
our understanding of different Akkadian dialects
and related languages, knowledge that the ancient
scribes did not possess (Reiner 1973 p. 41n51).
Furthermore, the presented method is not feasible
as it either assumes that every line can be broken
into words in one way only or knowledge of how
a certain type of text behaves. This is where we
claim that the human interpretation can hardly be
taken out of consideration in any way that the mate-
rial has been transformed. When identifying signs
in a text, most are fairly simple to read, but not
all are graphically clear, correct or disambiguated
from similar signs. This means we have to rely
on someone deciding of all the possible readings,
which is the “correct” one in order to give the right
sign ID. If the reader is making a transliteration,
the same decision needs to be taken, but now the
transliteration makes the choice of sign reading
explicit. The transformation from transliteration to
Unicode cuneiform simply reintroduces ambiguity,
which also explains the performance loss as seen
in Section 5.3. As long as cuneiform signs cannot
be delineated solely based on their graphical ap-
pearance, the computer will always need human
interpretation. We might reduce that by modern
scanning methods that can make graphically un-
clear signs readable or disambiguate similar signs
by small variations not understood by humans. But
correcting a spelling or not will likely always be
based on a normative reading of a text. Therefore,
we cannot see that any current text format will be
free of or considerably reduced in human bias. We
have not yet had the possibility to test the influence
of human bias on sign readings, but we believe it
can be tested and we intent to do so in the future.
What we can say is that, the influence of human
interpretation will likely vary a lot for a text depend-
ing on genre, period, writing material and state of
preservation. It is therefore important to consider
the purpose for using Unicode cuneiform as a text
representation.

7. Conclusion

As the use of digital and computational methods
are rapidly spreading for ancient languages, it
can be worthwhile having a discussion about how
cuneiform and computational researchers go about
the material. What might seem like a tweak of a
few lines of code can have a large impact on the
outcome of any analysis, both on the performance
scores, but also on how the given language is mod-
elled.

In this study, we performed a set of preliminary
experiments of fine-grained Part-of-Speech tagging
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for Akkadian. To this end, we applied a transformer
architecture, and fine-tuned a pre-trained language
model. Our results show that the Semitic language
Arabic could work well as pre-trained embeddings
for Akkadian and when the data is in the form of Uni-
code cuneiform it seems beneficial to also include
a logo-syllabic script like Japanese as pre-trained
embeddings. Furthermore, when fine-tuning a lan-
guage model for Akkadian, the training data should
be segmented into sentences. That is possible
based on PoS-tags, but when a transcription is
supplied a more detailed segmentation can be per-
formed. In future research, we will experiment with
a mixture of Semitic and languages written in a
logo-syllabic script as pre-trained embeddings for
Akkadian. In addition, we will also build our own
Akkadian language model, incorporating text from
various periods and genres. Based on the outcome
of the current research, we think it is also useful to
investigate the impact of incorporating data from
other (Semitic or logo-syllabic) languages.

It seems that conscious decisions on corpus
enrichment and formatting in the process of fine-
tuning language models for Akkadian, plays a big
role on the output. This leads us to conclude, in
a very similar vein to Sommerschield et al. (2023),
that interdisciplinary teams are the best way for-
ward (p. 26). In this way it is possible to account
for the essential discussions relating to the philologi-
cal, linguistic and material aspects of the texts while
implementing the most suitable computational so-
lutions to reach the research goals.
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Embeddings Accuracy Macro avg F1 Weighted avg F1
Multilingual 71,0% 25,6% 69,8%
Arabic 76,2% 32,8% 75,5%
Spanish 74,1% 30,6% 74,4%
Japanese 72,6% 28,3% 72,3%

Table 4: The average of the accuracy, macro average F1 and weighted average F1 over five folds from
the results of predicting PoS and morphological tags with transliterated text as input and verb separated
text (excluding the suffixes -u and -ma). The first column mentions the pre-trained FLAIR embeddings
used for fine-tuning the model on. This table elaborates on the results relevant for Table 1.

Separation type Accuracy Macro avg F1 Weighted avg F1
Text 88,2% 52,3% 87,4%
Line 92,5% 73,6% 92,3%
Verb 94,8% 74,4% 94,6%
Verb – u 93,9% 70,1% 93,6%
Verb – u & ma 94,1% 75,9% 93,9%
Verb – u & ma & CNJ 93,5% 70,4% 93,3%

Table 5: The average accuracy, macro average F1 and weighted average F1 over five folds for predicting
PoS-tags with Arabic pre-trained embeddings and transliterated text as input, for different sentence
splitting approaches. This table elaborates on the results relevant for Table 2.

Multilingual
Scores Transliteration Unicode Loss
Accuracy 91,3% 61,3% 30%pt.
Macro avg F1 66,5% 22,8% 43,7%pt.
Weighted avg F1 90,9% 59,0% 31,9%pt.

Arabic
Scores Transliteration Unicode Loss
Accuracy 94,1% 69,4% 24,7%pt.
Macro avg F1 75,9% 31,8% 44,1%pt.
Weighted avg F1 93,9% 67,8% 26,1%pt.

Spanish
Scores Transliteration Unicode Loss
Accuracy 93,7% 63,0% 30,7%pt.
Macro avg F1 71,7% 23,4% 48,3%pt.
Weighted avg F1 93,4% 60,6% 32,8%pt.

Japanese
Scores Transliteration Unicode Loss
Accuracy 93,4% 73,9% 19,5%pt.
Macro avg F1 70,9% 40,7% 30,2%pt.
Weighted avg F1 93,1% 72,8% 20,3%pt.

Table 6: The average accuracy, macro average F1 and weighted average F1 over five folds from the results
of predicting PoS-tags on verb-separated (excluding -u and -ma) sentences with different pre-trained
embeddings and input in either transliteration or Unicode cuneiform. This table elaborates on the results
relevant for Table 3.
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