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Abstract
An adversarial attack to a text classifier consists of an input that induces the classifier into an incorrect class
prediction, while retaining all the linguistic properties of correctly-classified examples. A popular class of adversarial
attacks exploits the gradients of the victim classifier to train a dedicated generative model to produce effective
adversarial examples. However, this training signal alone is not sufficient to ensure other desirable properties of the
adversarial attacks, such as similarity to non-adversarial examples, linguistic fluency, grammaticality, and so forth.
For this reason, in this paper we propose a novel training objective which leverages a set of pretrained language
models to promote such properties in the adversarial generation. A core component of our approach is a set of
vocabulary-mapping matrices which allow cascading the generative model to any victim or component model of
choice, while retaining differentiability end-to-end. The proposed approach has been tested in an ample set of
experiments covering six text classification datasets, two victim models, and four baselines. The results show that it
has been able to produce effective adversarial attacks, outperforming the compared generative approaches in a
majority of cases and proving highly competitive against established token-replacement approaches.
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1. Introduction

Text adversarial attacks are subtly manipulated in-
puts to a machine learning model that have the
intent of causing erroneous predictions. These
manipulations can drastically alter a model’s be-
haviour and represent a significant challenge for
the entire field of machine learning. In the context
of text classification, adversaries employ a wide
range of techniques, from simple token alterations
to full training of generative models, each aiming to
exploit the model’s weaknesses while also preserv-
ing the semantic coherence and grammaticality of
the text.

The most prevalent adversarial attack strategy
is the token-based approach, where adversarial
examples are crafted through a sequence of to-
ken modifications — replacements, additions, or
deletions — guided by search methods like beam
search, all while maintaining a series of constraints
(Morris et al., 2020). These attacks are simple and
effective, but the search method must be run for
each example, and the process can prove very
time consuming (Yoo et al., 2020). Conversely,
generative approaches train a text-to-text model
to directly produce transformations from original
to adversarial examples. These attacks, though
less studied, can explore a more expansive range
of transformations than token-based attacks, and
at inference time can rapidly generate a diverse
and intriguing array of adversarial examples. The
approach is also flexible, with a range of text-to-

text models able to be used for this purpose; ex-
amples include Generative Adversarial Networks
(GANs) (Zhao et al., 2018), paraphrasers (Iyyer
et al., 2018), autoencoders (Xu et al., 2021), or
style transfer models (Qi et al., 2021). The main
drawback of the generative approach is that the
model must be trained to generate effective attacks,
which can be challenging due to the difficulty of
manual supervision and the lack of straightforward
training approaches (Wong, 2017).

Adversarial attacks also differ in the amount of
assumed access to the classification model (often
called the victim model). One common assump-
tion is the black-box scenario, where attacks only
require access to the victim model’s outputs, or
sometimes the logits (Biggio and Roli, 2018). The
opposite is the white-box scenario, where the ad-
versary assumes full information access, including
gradients, data, loss functions, and model parame-
ters — effectively, the worst-case scenario for an
attacked system (Biggio and Roli, 2018). These as-
sumptions may seem hard to meet in practice, but
increasingly they reflect realistic scenarios given
the widespread adoption of publicly available ma-
chine learning models (such as those found on the
Hugging Face Model Hub1). On the other hand, de-
velopers can use white-box attacks to identify and
fix vulnerabilities in their model. In short, studying
white-box attacks remains critical.

An intuitive approach for training a white-box

1https://huggingface.co/models
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generative attack is to link the generative model to
the victim model, so as to use the feedback from
the victim model as a training signal. However, this
signal is not sufficient to ensure all the other prop-
erties required of a satisfactory adversarial attack,
such as fluency, grammaticality, closeness to non-
adversarial examples, and so forth. For this reason,
in this paper we propose leveraging a suitable suite
of pretrained language models to encourage such
properties at training time. To this aim, during the
forward pass our generative model receives an
original example in input and generates a “soft to-
ken” prediction of adversarial example in output,
which is then passed to the victim and downstream
models for their processing. Softening the predic-
tion ensures that the entire pipeline remains end-
to-end differentiable, and able to leverage the train-
ing objectives of the downstream modules as an
effective adversarial attack loss function.2 The pa-
rameters of the generative model are then updated
in the backward pass, while the parameters of the
other models are all kept frozen. After training, the
generative model is able to generate not only one,
but multiple adversarial candidates per original ex-
ample, simply by using conventional beam search
or any other decoding method.

An immediate challenge to this approach is that
the use of soft predictions to permit overall differ-
entiability requires the alignment of the models’
vocabularies, which is not trivial to ensure. The
simplest workaround is to constrain all the models
to share the same vocabulary and tokenisation al-
gorithm. However, this severely limits the choice of
pretrained models. Another possible approach is
to restrict the vocabularies of all models to their to-
kens in common (Song et al., 2021). However, this
may majorly limit the expressiveness and articula-
tion of the learned adversarial strategies. Overall,
the vocabulary alignment between language mod-
els still seems to be a partially unresolved issue in
the literature.

For this reason, in this paper, we propose an
original approach for training a cross-vocabulary,
differentiable white-box generative attack that is
able to circumvent this restriction. The core com-
ponents of the proposed approach — nicknamed
XVD, from ‘cross-vocabulary differentiable’ — in-
clude: 1) the use of a suitable set of pretrained
language models to provide training signals to the
adversarial attack generator; 2) the adoption of
soft predictions to ensure end-to-end differentia-
bility, and 3) a set of sparse vocabulary-mapping
matrices that map tokens between the vocabulary

2The generative model cannot directly pass text to
the other models while keeping the training signal dif-
ferentiable, as it needs either sampling from the token
distribution or taking an argmax — both of which are
non-differentiable operators.

of the generative model and those of the victim and
downstream models, allowing complete freedom
in the choice of models. The generative model is
then trained using a highly configurable, overall
loss function that balances text quality with attack
strength. In the experiments, the proposed ap-
proach has been compared against four baseline
methods on six text classification datasets and two
victim models. The results show the effectiveness
of the proposed approach at consistently generat-
ing high-quality adversarial examples across the
range of datasets and victim models. In addition,
a comprehensive ablation analysis highlights the
contributions of the various components and sug-
gests ways for future improvements.

In summary, our paper makes the following con-
tributions:

1. a novel approach for training generative white-
box attacks, based on training signals from a
set of pretrained language models and a fully
differentiable loss function;

2. a vocabulary-mapping module which grants
interoperability to any chosen combination of
generative, victim or loss component models;

3. extensive experiments over six text classifica-
tion datasets and two victim models that give
evidence to the effectiveness of the proposed
approach;

4. a comprehensive ablation and sensitivity anal-
ysis that delves into its benefits and limitations.

2. Related Work

White-box token-based attacks date back to at
least the work of Papernot et al. (2016). Typi-
cally, these attacks leverage the gradient signal
of the victim model in two main ways. The first
is to rank token importance in the original sen-
tence, thus identifying promising attack targets, as
demonstrated in Wallace et al. (2019). The sec-
ond is to aid in selecting token transformations that
best meet adversarial criteria, as shown in various
character-level and word-level attacks (Ebrahimi
et al., 2018; Zhang et al., 2019; Liang et al., 2018).

The differentiable model-cascading approach de-
scribed in Section 1 has been explored by several
other studies. For instance, Xu et al. (2021) have
used an autoencoder as the generative model and
examined several modifications to its training pro-
cess, such as label smoothing and copy mecha-
nisms, to enhance the effectiveness of the gener-
ated examples. Wang et al. (2020) have proposed
incorporating a downstream model which allows
the generative model to control the topic of its gen-
erated adversarial candidates at inference time. In
contrast, Song et al. (2021)’s approach is based on
training the generator to output trigger phrases that,
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when concatenated to an input sentence, induce
misclassification in the victim model. In turn, Guo
et al. (2021) have proposed learning an example-
dependent matrix of token probabilities, which at
inference time is sampled to generate adversarial
examples. However, none of these approaches
has proposed a systematic and configurable solu-
tion for training the generative model to satisfy all
the desirable properties of an adversarial attack.

In terms of the vocabulary-alignment issue, the
works of Xu et al. (2021), Wang et al. (2020) and
Guo et al. (2021) have all acknowledged the prob-
lem, but only implemented the shared-vocabulary
scenario. Conversely, Song et al. (2021) have con-
strained the generative model to only output the
common tokens of all vocabularies. As observed
in the Introduction, neither of these solutions can
be regarded as satisfactory.

3. Proposed Approach

3.1. Overview

We aim to fine-tune a generative model g, with pa-
rameters θ and vocabulary Vg, to generate adver-
sarial examples for victim model v, with vocabulary
Vv. The approach includes two additional compo-
nent models for the training objective: a semantic
similarity model, s, of vocabulary Vs, and a natural
language inference (NLI) model, n, of vocabulary
Vn. The parameters of models v, s and n are all
fixed, while those of g are the target of the pro-
posed training approach. The complete setup is
shown in Figure 13.

3.2. Training

We initialise the generative model, g, with a pre-
trained paraphrase model as it is already capable
of a range of diverse, semantic-preserving transfor-
mations. Given an original example x, we employ
g to generate an example x′ of length T and its
corresponding sequence of token probability dis-
tributions, which form a matrix P with dimensions
T ×|Vg|. We then use the token probability distribu-
tion matrix, a vocabulary-mapping matrix, and the
token embedding matrix of the downstream model
to create a weighted average of token embeddings,
allowing us to retain the desirable differentiabil-
ity. Formally, for any component model Vi, with
i ∈ {v, s, n}, the respective weighted embeddings
Wi are computed as:

Wi = PMiEi

where Ei is the token embedding matrix of model i,
and Mi is a vocabulary-mapping matrix (described

3All our code will be released in GitHub after the
submission period.
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Figure 1: The training approach. The loss function
is composed of scores from a number of cascaded
models (depicted by squares), a KL divergence
score using a reference model, and a diversity
score. The parameters of the generative model are
updated using standard backpropagation.

in Section 3.3) that maps Vg, the vocabulary of P ,
to Vi, the vocabulary of model i.

Additionally, to control the diversity of the gen-
erated embeddings, we use the Gumbel-softmax
reparametrisation trick (Jang et al., 2017), replac-
ing P with a sampled matrix Pb that incorporates
Gumbel(τ) noise, where τ is a chosen tempera-
ture parameter. Values of τ > 1 make the samples
more evenly distributed, while values < 1 concen-
trate them towards a one-hot distribution. Prior
research has also used this technique to increase
exploration during training (Xu et al., 2021; Wang
et al., 2020).

After computation, the weighted embeddings
Wi, i ∈ {v, s, n} are fed into the component models,
and their output scores are used in the loss function
(Section 3.4). The generative model’s parameters
are updated via standard backpropagation.

3.3. Vocabulary-mapping matrices

In the proposed approach, a vocabulary-mapping
matrix, Mi, is constructed to map tokens from the
generative model’s vocabulary, Vg, to the vocabu-
lary of each component model, noted as Vi here-
after. The matrix has shape |Vg| × |Vi|, and each
row is a probability distribution that represents the
one-to-many token mapping, with values adding
up to 1. This is a large matrix, and to save space
we have implemented it as a sparse matrix.

Mapping tokens between vocabularies, each
possibly built with a different tokenisation algorithm,
is not straightforward. In our implementation, the
vocabulary of the generative paraphrase model (of
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size 32,100) is constructed using the Sentence-
Piece (Kudo and Richardson, 2018) tokenisation
algorithm, while the component models’ vocabu-
lary (of size 30,522) uses WordPiece (Wu et al.,
2016). We have designed our vocabulary mapping
for these two tokenisation algorithms since they
are among the most ubiquitous in the community.
SentencePiece is used in popular models such as
T5, XLNet (Yang et al., 2019) and LLaMa (Tou-
vron et al., 2023), while WordPiece is widely used
across BERT variants. The two algorithms have
considerable differences, but we have been able
to construct a workable mapping with the following
rules:

1. Map special tokens (e.g., PAD, EOS, UNK)
directly across both vocabularies. Map the
extra id tokens in the generator’s vocabulary
to the UNK WordPiece token (104 matches).

2. Map one-to-one direct matches between Sen-
tencePiece start-of-word tokens and Word-
Piece non-continuation tokens (approximately
9k matches).

3. Map one-to-one direct matches between Sen-
tencePiece non start-of-word tokens and
WordPiece continuation tokens (approximately
2k matches).

4. Map the remaining SentencePiece tokens one-
to-many with WordPiece tokens by passing
them as individual strings to the WordPiece
tokeniser, stripping any generated special to-
kens, and assigning equal probabilities to all
matches (approximately 22k matches). The
few tokens without matches (in practice, spe-
cial cases like \xad) are mapped to the UNK
token.

3.4. Loss function

In accordance with the definition provided by
Michel et al. (2019), our aim is to create adversar-
ial examples that successfully tweak the predicted
labels, yet ensure retention of the text’s original
meaning alongside linguistic acceptability. To this
end, our training objective, l(x, x′):

l(x, x′) = αvt(v(x, x
′), βv)+

αst(s(x, x
′), βs)+

αet(e(x, x
′), βe)−

αKLt
∗(DKL(x, x

′), βKL)

(1)

integrates multiple components as follows:

• v(x, x′) represents the ‘victim model score’, a
measure of how much the classifier’s confi-
dence in the correct class drops when replac-
ing x to x′ in input.

• s(x, x′) is the ‘similarity score’ between x and
x′, which is based on the cosine similarity of
their sentence embeddings as computed by
a pretrained Sentence-BERT model (Reimers
and Gurevych, 2019).

• e(x, x′) is the ‘entailment score’, which mea-
sures the probability that x’s ground-truth label
is retained by x′, and is approximated with the
probability of x entailing x′ using a pretrained
natural language inference (NLI) model.

• DKL is the Kullback-Leibler (KL) divergence
between the token probabilities output by the
fine-tuned generative model, noted as g, and
those of a reference model, noted as g∗, and
taken as the initial pretrained model. DKL is
defined as:

DKL =
1

T
Ex∼D,x′∼g(x;θ)[log pg(x

′|x)−

log pg∗(x′|x)]
(2)

where the generated sequence length, T , is
used to normalise the divergence to prevent
longer sequences being unfairly penalised.
This term encourages the fine-tuned distribu-
tion to not deviate excessively from the initial,
helping retain the desirable properties of g∗.

• t and t∗ are threshold clipping operators, with
t(a, β) = a if a < β, and 0 otherwise, and
t∗(a, β) = a if a > β, and 0 otherwise. As such,
α and β are hyperparameters that control each
term’s contribution.

The training objective l(x, x′) is incorporated into
the final batch-level loss, L, defined as:

L = −

 1

|B|
∑

(x,x′)∈B

l(x, x′)

+ αd d(B) (3)

where d(B) is a batch-level diversity score, and αd

its corresponding coefficient. To compute d(B), we
first compute the mean of the token embeddings for
each generated sentence within batch B. We then
calculate the cosine similarity between each pair
of mean embeddings using the same model as the
similarity score, and compute d(B) as the average,
with lower values indicating more diversity. We
found that the inclusion of this term can effectively
prevent mode collapse and encourage variety in
the generated examples.

All the terms in the loss function are differentiable
by construction, and their convex combination in
Equation 1 ensures overall differentiability, allowing
for efficient minimisation via backpropagation. The
coefficients can be adjusted to prioritise different
objectives, such as attack strength or fluency.
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3.5. Validation and early stopping

During fine-tuning, it is important to enforce early
stopping to prevent text quality degradation from
over-training. To this end, during validation we gen-
erate eight candidates per original, using diverse
beam search (Vijayakumar et al., 2016). For each
candidate, we check if its scores from Equation 1
surpass the corresponding β thresholds (or, in the
case of the KL divergence, fall below). The valida-
tion metric we adopt is the proportion of attacks
that have at least one candidate that successfully
passes all checks. We calculate the validation met-
ric multiple times per epoch, and halt the training
process once it fails to improve over a patience
interval, as standard for early stopping.

4. Experimental Setup

4.1. Datasets

We have conducted experiments over six diverse
English text classification datasets (Table 1). The
Hate Speech dataset (HS) classifies offensive lan-
guage in tweets as hate speech, offensive lan-
guage, or neither (Davidson et al., 2017); the
Text REtrieval Conference (TREC) question-type
classification dataset (Li and Roth, 2002) and the
SUBJ dataset (Pang and Lee, 2004) discriminate
between objective and subjective sentences; the
Rotten Tomatoes (RT) (Pang and Lee, 2005) and
Financial PhraseBank (FP) (Malo et al., 2014)
datasets are sentiment analysis datasets of movie
reviews and financial news, respectively; and the
Emotion dataset classifies text fragments as one
of six basic emotions (Saravia et al., 2018). These
datasets have been chosen for their diversity and
attackable short snippets, with concise statistics
and examples presented in Table 1.

For each dataset we have used pre-defined
train/val/test splits where available (RT and Emo-
tion), and otherwise constructed them by randomly
selecting 10% of the data as the validation set and
another 10% as the test set (HS, TREC, SUBJ,
and FP). For the FP dataset, we have used the
dataset version with at least 50% annotator label
agreement. For all datasets, we have excluded the
training examples that the victim model classified
incorrectly, as they could be said to be already “ad-
versarial”. We have also only included examples
with up to 32 tokens, since the pretrained para-
phrase model was trained for sequences in that
range.

4.2. Models

We have used T5-Base (Raffel et al., 2020), which
uses SentencePiece for tokenisation, as our gen-
erative model, g. We have evaluated attacks on

two victim models: a DistilBERT model (Sanh et al.,
2019) and an ELECTRA-trained model (Clark et al.,
2020). These are both common BERT variants,
each using WordPiece for tokenisation and both
small enough in size to fit comfortably on a GPU
with a limited memory capacity. Each has been
fine-tuned on the given dataset prior to being sub-
jected to attacks.

4.3. Baselines

To comparatively evaluate the performance of our
model we have used four established baseline at-
tacks, all included in the comprehensive OpenAt-
tack adversarial attack library of Zeng et al. (2021).
TextFooler (Jin et al., 2019) and BERTAttack (Li
et al., 2020) form the first set of baselines; both are
token-replacement attacks that replace individual
tokens sequentially in a constrained optimisation
process. We have also included two generative at-
tacks that, like our approach, generate adversarial
candidates at inference time. The first is a GAN
approach (Zhao et al., 2018), and the second is
an adversarial paraphraser, named SCPN (Iyyer
et al., 2018), that generates syntactically controlled
paraphrases.

4.4. Candidate selection

At inference time, our fine-tuned model is capable
of generating, in principle, an unlimited number of
candidates per input example. Nevertheless, for
the purpose of fair comparison with the baselines
outlined in 4.3 that return a single adversarial ex-
ample per input, we have opted to select only one
candidate also from our model.

We begin with the use of diverse beam search
(Vijayakumar et al., 2018) to create n candidates
for each original example. (A sensitivity analy-
sis of n is presented in Section 6.2.) We then
compute a ‘quality score’ for each candidate as
s(x, x′)+ e(x, x′)−DKL(x, x

′), which represents a
rough balance of our text-quality objectives. From
these scored candidates, we select those that have
managed to flip the ground-truth label. Within
this subset, we select the candidate with the high-
est score amongst those that satisfy all validation
checks (Section 3.5). If none meets these require-
ments, the highest-scoring candidate is chosen
instead.

4.5. Evaluation metrics

As an obvious preamble, no ground-truth reference
exists for adversarial candidates, and therefore the
evaluation has to be orchestrated with adequate
and accepted unsupervised metrics. To this aim,
we have used five evaluation metrics over the test
set of each dataset, and reported the mean values
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Dataset N (trn/val/tst) Classification task #cls Examples
HS 8k/1k/1k hate speech detection 3 Don’t be a [...]" (offensive language)
TREC 4k/1k/0.5k type of question 6 "When did beethoven die?"(num)
SUBJ 2k/0.5k/0.5k (subject/object)ivity 2 "[...] harmless diversion and little else" (subj)
RT 3.5k/0.5k/0.5k sentiment (movies) 2 [...] a not infrequently breathtaking film" (pos)
FP 1.5k/0.2k/0.2k sentiment (financial) 3 "Operating profit was EUR 11.4 mn [...]" (pos)
Emotion 10k/1k/1k emotion detection 6 "i be made to feel rotten" (sad)

Table 1: Statistics and examples from the datasets used. Column N shows the approximate number of
examples in each train/validation/test split, and #cls is the number of classes of the dataset.

Victim Model Attack
Datasets

HS TREC SUBJ

VSR Flip Sim Flu Ent VSR Flip Sim Flu Ent VSR Flip Sim Flu Ent

ELECTRA

BERTAttack 0.37 0.50 0.96 -1.84 0.95 0.33 0.62 0.95 -2.35 0.67 0.46 0.71 0.95 -1.96 0.90
TextFooler 0.29 0.53 0.92 -2.94 0.80 0.18 0.44 0.93 -2.74 0.49 0.24 0.55 0.94 -2.91 0.69
GAN 0.00 0.78 0.79 -6.38 0.33 0.00 0.70 0.84 -6.38 0.09 0.00 0.35 0.81 -6.08 0.24
SCPN 0.12 0.71 0.84 -4.49 0.49 0.25 0.87 0.90 -3.87 0.48 0.28 0.63 0.89 -3.28 0.68

XVD (ours) 0.46 0.80 0.89 -3.30 0.88 0.58 0.99 0.92 -3.22 0.80 0.63 0.92 0.89 -3.25 0.90
stdev 0.02 0.04 0.00 0.28 0.02 0.02 0.04 0.00 0.28 0.02 0.03 0.02 0.00 0.12 0.01

DistilBERT

BERTAttack 0.38 0.53 0.96 -1.87 0.94 0.32 0.64 0.94 -2.56 0.69 0.40 0.65 0.95 -1.89 0.83
TextFooler 0.30 0.54 0.93 -2.91 0.79 0.19 0.44 0.93 -2.76 0.52 0.24 0.51 0.94 -2.58 0.64
GAN 0.00 0.81 0.79 -6.41 0.33 0.00 0.73 0.84 -6.38 0.10 0.00 0.43 0.81 -6.11 0.20
SCPN 0.13 0.72 0.84 -4.46 0.51 0.27 0.92 0.90 -3.84 0.55 0.23 0.50 0.89 -3.32 0.70

XVD (ours) 0.59 0.82 0.89 -3.14 0.89 0.37 1.00 0.89 -3.70 0.65 0.14 0.98 0.82 -4.04 0.79
stdev 0.08 0.01 0.01 0.16 0.03 0.08 0.00 0.01 0.16 0.02 0.12 0.01 0.01 0.26 0.06

Victim Model Attack
Datasets

RT FP Emotion

VSR Flip Sim Flu Ent VSR Flip Sim Flu Ent VSR Flip Sim Flu Ent

ELECTRA

BERTAttack 0.47 0.85 0.96 -1.42 0.79 0.32 0.68 0.96 -1.81 0.56 0.66 0.90 0.98 -0.99 0.97
TextFooler 0.34 0.69 0.96 -2.12 0.69 0.33 0.63 0.94 -2.61 0.71 0.53 0.76 0.97 -1.27 0.95
GAN 0.00 0.39 0.82 -6.00 0.33 0.00 0.39 0.79 -6.24 0.16 0.00 0.68 0.82 -6.43 0.11
SCPN 0.28 0.66 0.89 -3.44 0.70 0.14 0.40 0.89 -3.52 0.58 0.37 0.72 0.90 -3.26 0.83

XVD (ours) 0.30 0.81 0.85 -3.32 0.84 0.72 1.00 0.89 -3.12 0.94 0.64 0.97 0.90 -3.24 0.88
stdev 0.05 0.05 0.01 0.15 0.02 0.15 0.00 0.01 0.37 0.03 0.14 0.02 0.02 0.44 0.05

DistilBERT

BERTAttack 0.46 0.89 0.96 -1.40 0.71 0.43 0.79 0.96 -1.77 0.82 0.67 0.88 0.98 -0.97 0.98
TextFooler 0.36 0.70 0.96 -2.10 0.75 0.41 0.76 0.94 -2.60 0.77 0.54 0.76 0.98 -1.28 0.95
GAN 0.00 0.41 0.82 -5.95 0.32 0.00 0.41 0.80 -6.24 0.18 0.00 0.84 0.82 -6.42 0.11
SCPN 0.27 0.69 0.89 -3.48 0.63 0.19 0.49 0.90 -3.30 0.63 0.41 0.80 0.90 -3.23 0.80

XVD (ours) 0.28 0.89 0.85 -3.52 0.77 0.25 0.97 0.86 -3.95 0.72 0.87 0.97 0.92 -2.64 0.95
stdev 0.10 0.02 0.02 0.23 0.03 0.15 0.04 0.01 0.21 0.21 0.00 0.00 0.00 0.02 0.01

Table 2: Evaluation of baselines and our approach, XVD, across six datasets and two victim models. For
XVD, we report the mean and stdev of each metric across three random seeds (the other approaches
are deterministic). We use the following abbreviations: VSR is Validated Success Rate, Flip is the
proportion of label flips, Sim is the similarity as measured by BERTScore F1, Flu is fluency as measured
by BARTScore, and Ent is the entailment probability measured by an NLI model. Higher is better for all
metrics. For dataset abbreviations, see Section 4.1.

in Table 2. The first metric, referred to as Flip, is
the proportion of instances where the ground-truth
label of the original example, predicted correctly by
the victim model, has flipped in the prediction for
the candidate. This metric has been used almost
universally by works in this area (e.g., (Li et al.,
2020; Jin et al., 2019; Garg and Ramakrishnan,
2020; Li et al., 2021; Formento et al., 2023)). The
next three—Sim, Flu, and Ent— are text quality
metrics, and are only computed for examples that
have flipped. To assess the semantic similarity

between the original and the candidate (Sim), we
have used BERTScore F1 (Zhang et al., 2020);
to assess the fluency of the candidate (Flu), we
have used BARTScore (Yuan et al., 2021), a flu-
ency proxy that uses the text generation probability
of a seq2seq model; and for the entailment (Ent),
we have used the probability that the candidate
does not contradict the original in the entailment
model. The last metric — the Validated Success
Rate (VSR) — is the proportion of examples that
have successfully flipped the label and also met
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minimum thresholds across the three text quality
metrics.4 While all automated metrics have inher-
ent limitations, our choice of metrics is both con-
sistent with prior literature and able to provide a
thorough assessment of the quality of the adver-
sarial candidate.

Postprocessing. Before metric calculation,
each successful attack has been post-processed
to begin with a capital letter, end with a period, and
have no whitespace around the last punctuation
character.

5. Main results

The results from our experiments are reported in
Table 2, showing that the proposed approach, XVD,
has been able to generate high-quality adversarial
examples with notable success rates (VSR). Com-
pared to the generative baseline methods, GAN
and SCPN, XVD’s performance has proved better
for all experimental combinations bar one. XVD
has also performed competitively against the best
token-replacement baseline, BERTAttack, scoring
best for three out of six datasets with the Distil-
BERT victim model, and for four out of six with the
ELECTRA victim model. XVD has also achieved
the highest VSR overall (0.87; Emotion dataset).
In particular, it has performed the best with both
victim models over the TREC dataset, where its flip-
ping rate has proved much higher than that of the
other approaches, and over the HS dataset, proba-
bly because the token-replacement baselines have
struggled to replace its many slang words in the ab-
sence of well-defined synonyms. Qualitative exam-
ples of the attacks generated by XVD and selected
baselines are presented in Table 3, showing that
the proposed approach has been able to gener-
ate more expressive transformations of the original
samples, while effectively retaining semantics.

Overall, the proposed approach has proved very
strong at label-flipping (Flip) and at retaining the
original label (Ent), while intermediate in the flu-
ency (Flu) and similarity (Sim) metrics. This is
mainly due to its much broader generative space
compared, in particular, to the token-replacement
attacks. The proposed approach is also, by design,
able to pursue different trade-offs between these
properties, thanks to its configurable training objec-
tive and generative behaviour. We explore some

4We have used the (fairly relaxed) thresholds of: ≥
0.85 Sim, ≥ −4 Flu, ≥ 0.6 Ent. These were chosen
based on a manual inspection of the text samples. For
Sim we chose a threshold that would penalise text with
large changes in meaning; for Flu we chose a threshold
based on our own subjective standards; and for Ent we
observed that all generated texts below this threshold
seemed to reliably contradict the original example, or be
about a different subject.

of these trade-offs in the following section.
As expected, we observed a near-constant run-

time for the generative approaches, with XVD’s
runtime in the order of < 1 s per sample across
all datasets.5 By contrast, we observed a highly
variable runtime for the token-modification attacks
across datasets, with the runtime increasing if the
search space was large and the search instance
struggled to find an acceptable attack. For ex-
ample, BERTAttack’s runtime varied from approx-
imately 0.36 s per sample for TREC to approxi-
mately 25.2 s per sample for HS.

6. Ablation Analysis

We have measured the performance impact of var-
ious parameters within our model through a series
of ablation studies, using the Financial PhraseBank
dataset as reference and testing each configura-
tion using three random seeds. The results are
presented in the following subsections.
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Figure 2: Performance as a function of the KL
divergence and diversity coefficients.

6.1. KL divergence and diversity
coefficients

The KL divergence and diversity coefficients (re-
spectively, αKL in Equation 1 and αd in Equation 3)
define the intensity of their respective regularisers
and substantially impact the quality and diversity
of the generated text, as shown in Figure 2. In-
creasing the KL coefficient ties the trained model
more strongly to the reference model, which in
our implementation increases the attack quality at

5It is worth noting that our code implementation was
far from optimised, with many debugging and logging
statements, a small batch size, use of secondary storage
etc.
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Figure 3: Performance as a function of the number
of sequences generated per sample (on the FP
dataset). The fluency and similarity metrics have
been normalised to the [0,1] interval. Higher is
better for all metrics.

the expense of the label-flipping rate. Conversely,
lower values of the diversity coefficient push the
model towards samples that are less diverse, while
higher values promote diversity per se. Empirically,
we have found that that the label-flipping rate has
tended to remain constant for a range of diversity
values, but the overall text quality metrics have
peaked for a value of 10.

6.2. Number of generated evaluation
sequences

The number of sequences generated during in-
ference, n, directly controls the attack’s search
space. As n increases, we expect a rise in the
label-flipping rate and, after a point, a decline in
text quality metrics. To measure these effects, we
have varied n, employing diverse beam search for
n ≥ 2 (with n/2 beam groups) and regular beam
search for n = 1. Our findings, depicted as a plot
in Figure 3, have confirmed the expected increase
in label-flipping rate with larger n. The fluency and
similarity metrics have peaked around n = 4 before
declining, while entailment has remained relatively
constant from n = 8 onwards. The validated suc-
cess rate, which compounds the label-flipping rate
and the text quality metrics, has improved as n
increased, up to a plateau at n = 32.

6.3. Impact of the vocabulary mapping

To probe the impact of the vocabulary mapping
on the performance, we have also carried out an
experiment attacking a T5 victim model, which has
the same vocabulary as the generative model and
dispenses with the need for a vocabulary-mapping
matrix. The attacks on the T5 model (on the FP

dataset, averaged across three seeds) have re-
sulted in a higher VSR value (0.44) compared to
ELECTRA (0.39) and DistilBERT (0.28), implying
that the vocabulary-mapping matrix may introduce
some performance penalisation. However, this dif-
ference could also be due to other reasons, such
as the homogeneity between the attacker and the
victim model. Since it is not obvious how to pre-
cisely excise the impact of the vocabulary mapping
from that of the other components, we leave a
more exact quantification and possible mitigations
to future work.

7. Ethical Considerations

The proposed approach potentially raises two main
ethical considerations. The first is the potential to
generate offensive or inappropriate content. How-
ever, this risk, influenced by the training data and
the pretraining of the generative model used, is a
common challenge across text generation mod-
els and not specifically our work. The second
is that the proposed approach might be used by
a malicious actor to deceive or manipulate real-
world systems. This risk, however, directly follows
from the inherent dual-use nature of adversarial
research, where developing methods to defend
systems against attacks first requires exploring the
attacks themselves. As such, our paper is also
helping develop more comprehensive and effective
defence strategies.

8. Conclusion

This paper has presented an approach for creating
flexible white-box adversarial attacks against text
classifiers. The key contributions of the proposed
approach are its ability to leverage an expressive
generative model to generate the attacks, and the
integration of dedicated component models in the
training objective to encourage their fluency and
semantic consistency. In addition, the proposed
approach introduces suitable vocabulary-mapping
matrices to remap the vocabularies across all
the components, allowing the building of a fully-
differentiable and highly configurable training ob-
jective. Experimental results across six datasets
and two victim models have confirmed the viabil-
ity and effectiveness of the proposed approach,
while an ablation analysis has shown the impact
of the key parameters on the label-flipping/text
quality trade-off. Future research might aim to
integrate other components, including possibly hu-
man preferences, in the training objective, assess
and enhance the performance contribution of the
vocabulary-mapping matrices, and adapt the ap-
proach to tackle other NLP tasks.
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Dataset Label

TREC

Orig What is the atomic weight of silver? Numeric

BERTAttack What is the atomic composition of silver? Description

SCPN I’m sorry but that’s the atomic weight of silver. Description

XVD Tell me the atomic weight of silver? Description

SUBJ

Orig “funny valentine” is about learning what it takes to find true love. Objective

BERTAttack “funny valentine” is about inside what it takes to find true love. Subjective

SCPN I’m learning what it takes to find true love. Subjective

XVD funny valentine’s about finding true love. Subjective

RT

Orig suffers from unlikable characters and a self-conscious sense of its own quirky hipness. Negative

BERTAttack . from unlikable characters and a self-conscious sense of its own quirky hipness. Positive

SCPN signs of unlikable characters and a self-consciousness sense of its own quirky hipness. Positive

XVD it is characterized by characters who are unlikable and it has a sense of hipness that is self-conscious. Positive

Table 3: Successful adversarial attack examples generated by selected methods. XVD has been able to
perform more expressive transformations than the baselines while still retaining sentence semantics.
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