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Abstract

Cross-domain text classification is a crucial task as it enables models to adapt to a target domain that lacks labeled
data. It leverages or reuses rich labeled data from the different but related source domain(s) and unlabeled data from
the target domain. To this end, previous work focuses on either extracting domain-invariant features or task-agnostic
features, ignoring domain-aware features that may be present in the target domain and could be useful for the
downstream task. In this paper, we propose a two-stage framework for cross-domain text classification. In the
first stage, we finetune the model with mask language modeling (MLM) to learn from the source domain. In the
second stage, we further fine-tune the model with self-supervised distillation (SSD) and unlabeled data to adapt
to the target domain. We evaluate its performance on a public cross-domain text classification benchmark and
the experiment results show that our method achieves new state-of-the-art results for both single-source domain
adaptations (94.17% ↑1.03%) and multi-source domain adaptations (95.09% ↑1.34%).

Keywords: Cross-domain text classification, Unsupervised domain adaptation

1. Introduction

In the era of large models, neural network models
have achieved remarkable results in a myriad of
tasks. However, a prevalent challenge arises when
these models, often trained on source domains,
are deployed in different, target domains, leading
to a domain shift (Gretton et al., 2006). Unsuper-
vised Domain Adaptation (UDA) emerges as a vital
solution by aiming to adapt the models trained on
source domains with labeled data to a target do-
main laden with unlabeled data. The significance
of UDA is pronounced in the age of large models,
which, despite their prowess, frequently require
abundant labeled data for fine-tuning to attain opti-
mal performance. By leveraging labeled data from
source domains, UDA substantially mitigates this
dependency, thereby eliminating the need for ex-
pensive and time-consuming annotation processes
in the target domain. In this light, our paper delves
into the subdomain of UDA, specifically focusing
on cross-domain text classification.

Cross-domain text classification is encumbered
by domain discrepancy emanating from variations
in expressions across different domains. Address-
ing this conundrum, a substantial body of work
(Clinchant et al., 2016; Ben-David et al., 2020;
Zhou et al., 2020; Du et al., 2020; Wu and Shi,
2022) has been dedicated to extracting domain-
invariant features between domains to bolster clas-
sification models’ performance across multiple do-
mains. Concurrently, another strand of work (Du
et al., 2020; Karouzos et al., 2021) explores the uti-
lization of language modeling to aid models in har-
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nessing task-agnostic features in the target domain,
thus enhancing their performance in cross-domain
text classification tasks.

In spite of these advancements, not all features
conducive to a given task exhibit domain-invariance,
as illustrated in Figure 1a. For instance, while ex-
pressions like “fantastic” and “amazing” are domain-
invariant and can convey positive sentiments uni-
versally, terms such as “upgradeable” pertain to
specific contexts like electronic products but not to
DVDs, representing what we term as domain-aware
features. The exploration of such features and their
relation to the task at hand is often overlooked by ex-
isting methods, leaving a gap in addressing domain-
aware features in the target domain.

To bridge this gap, Figure 1b outlines our pro-
posed approach which ingeniously constructs a
self-supervised signal, enabling models to attend
to the latent domain-aware features of the target
domain. This is pivotal for large models, which of-
ten grapple with new data from domains different
from their training corpus. By masking domain-
invariant features, our approach forces the model
to establish a correlation between the predictions
and the remaining domain-aware features. Sub-
sequently, the model reinforces this relationship
when domain-aware features are masked, allowing
it to focus on latent domain-aware features in the
target domain through a process that we denote as
self-supervised distillation.

In this paper, we propose a novel cross-domain
text classification model comprising a two-stage
learning procedure: (1) learning from the source
domain and (2) adapting to the target domain.
This two-stage learning procedure significantly aug-
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(a) The model’s predictions of DVDs (source domain) and
Electronics (target domain) without adaptation.

Electronics

Amazing ! The hardware of the laptop is upgradeable .

Electronics

[MASK] ! The hardware of the [MASK] is upgradeable .
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(b) An overview of the self-supervised signal we con-
structed to guide model.

Figure 1: The colors mean domain-invariant ( ), source domain aware ( ) and target domain aware ( ).
(a) The model can exploit the domain-invariant features but lacks the use of domain-aware features when
predicting the target domain. (b) The supervised signal we construct, is designed to force the model to
make a connection between predictions and latent domain-aware features of the target domain.

ments the model’s performance and stability, ren-
dering it a promising approach for cross-domain
text classification tasks. Our experiment results on
the Amazon reviews benchmark Blitzer et al. (2007)
substantiate that our proposed method sets new
state-of-the-art results for both single-source do-
main adaptations (94.17%↑1.03%) and multi-source
domain adaptations (95.09%↑1.34%). Furthermore,
a detailed analysis accentuates the generalization
and effectiveness of our method, heralding a signif-
icant stride in the realm of UDA and cross-domain
text classification.

To summarize, our contributions are as follows:
• We introduce self-supervised distillation, a sim-

ple yet effective method that helps models better
capture domain-aware features from unlabeled
data in the target domain.

• We propose a two-stage learning procedure that
enables existing classification models to adapt to
the target domain effectively.

• The experiments on the Amazon reviews bench-
mark for cross-domain classification show that
our proposed model achieves new state-of-the-
art results.

2. Background

2.1. Problem Formulation

To establish basic notations for our study, we de-
fine a domainD = {X , P (X )}, where X represents
the input feature space (e.g., the text representa-
tions), and P (X ) denotes the marginal probabil-
ity distribution over that feature space. Let T de-
fine a task (e.g., sentiment classification) as T =
{Y, P (Y |X)}, where Y is the label space. More-
over, a dataset is denoted by DT = {(xi, yi)}ni=1,
where xi ∈ D and yi ∈ Y.

In this paper, we focus on cross-domain text clas-
sification, which is a subdomain of UDA (Ramponi
and Plank, 2020). Specifically, we aim to learn a
function F trained with labeled dataset DT

S and un-

labeled dataset DT , which can effectively perform
the task T in the domain DT . Here we respec-
tively denote S and T as the source domain and
the target domain, and PS(X ) ̸= PT (X ).

2.2. Prompt Tuning
We use prompt tuning as the formula for the text
classification task, which reformulates the down-
stream task into cloze questions through a textual
prompt xp (Petroni et al., 2019; Brown et al., 2020).
Specifically, a textual prompt consists of an input
sentence, a template containing [MASK], and two
special tokens ([CLS] and [SEP]):

xp = “[CLS] x. It is [MASK]. [SEP]”, (1)

where x is the input sentence.
The Pretrained Language Model(PLM) takes the

textual prompt xp as input and utilizes contextual
information to fill in the [MASK] token with a word
from the vocabulary as the output. The output word
is subsequently mapped to a label Y . Following Wu
and Shi (2022), we use “{good,bad}” as the label
words. Finally, given an labeled dataset DT =
{(xi, yi)}ni=1, the PLM is finetuned by minimizing
the cross-entropy loss. The objective of prompt
tuning can be defined as the following formula:

Lpmt(DT ; θM) = −
∑

x,y∈D
y log pθM(ŷ|xp), (2)

where y denotes the gold label, and θM denotes
the overall trainable parameters of the PLM.

2.3. Mask Language Modeling
We use mask language modeling to avoid shortcut
learning1 (Geirhos et al., 2020) and adapt to the

1Shortcuts learning means that model learned de-
cision rules (or shortcut features) that perform well on
standard benchmarks but fail to transfer to more chal-
lenging testing conditions, such as real-world scenarios.
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L1 = αLpmt + βLmlm Lpmt
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(a) Stage 1: Learn from the source domain.

L2 = αLpmt + β(Lmlm + Lssd) Lpmt
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(b) Stage 2: Adapt to the target domain.

Figure 2: An overview of the proposed method. The → means the model’s output. The ⇒ means
the model’s output which has no gradient. The Lpmt,Lmlm,Lssd mean the losses of prompt tuning for
classification, mask language modeling, and self-supervised distillation. The training process of the
method consists of two stages. (a) In Stage 1, we apply mask language modeling and classification
task on the source domain, to prevent the model from over-focusing on overfitting features or shortcut
features. (b) In Stage 2, we continually train the classification task in the source domain, while we do
mask language modeling and self-supervised distillation in the target domain.

distribution of the target domain. Specifically, we
construct a masked textual prompt xpm which is
similar to the textual promptxp in Eq 1. The masked
textual prompt consists of a masked input sentence,
a template containing [MASK], and two special
tokens ([CLS] and [SEP]):

xpm = “[CLS] xm. It is [MASK]. [SEP]”, (3)

where xm is the masked version of x in Eq 1.
Here we fine-tune the PLM through the masked

language modeling task on xm. Given an labeled
dataset DT = {xi, yi}ni=1, the loss of each sen-
tence in DT is the mean masked LM likelihood of
all [MASK] in the sentence. Furthermore, the over-
all loss of DT is the summation of the individual
sentence loss in the dataset:

Lmlm(D; θM) = −
∑

x∈D
∑

x̂∈m(xm)
log pθM (x̂|xpm)

lenm(xm)
,

(4)

where m(ym) and lenm(xm) denote the masked
words and counts in xm, respectively, θM denotes
the overall trainable parameters of the PLM.

3. Method

In this section, we introduce the self-supervised
distillation method and the two-stage learning pro-
cedure for cross-domain text classification. Figure
2 illustrates the overall learning procedure.

3.1. Self-Supervised Distillation (SSD)
The method needs a trained model which can per-
form the task. In addition, the model has the ability
to generalize to the target domain through domain-
invariant features, but not all useful features for the
task are domain-invariant. We use the model itself

to construct a soft self-supervised signal. This sig-
nal enables the model to establish a connection
between predictions and latent domain-aware fea-
tures of the target domain. This process, which
we refer to as Self-Supervised Distillation (SSD),
constitutes one of our core contributions.

During prediction, the model can only utilize the
unmasked features of a masked sentence (xpm),
but it can use all features of the original version
of the sentence (xp). The model will be forced to
make the connection between predictions of xp in
Eq 1 and the unmasked words of xpm, which can
include domain-invariant, domain-aware features,
or both in the target domain. Recall that they con-
tain the original (xp) and masked versions (xpm) of
the same sentence (x), respectively. We perform
knowledge distillation between the model predic-
tions of pθ(y|xpm) and pθ(y|xp). The objective of
SSD can be defined as the following formula:

Lssd(D; θM) =
∑

x∈D KL(pθM(y|xpm)||pθM(y|xp)),

(5)

where xm and xpm is processed from the same
input sentence x.

3.2. Learning Procedure
Our learning procedure comprises two stages,
which are summarized in Algorithm 1 and Algo-
rithm 2. We use the vanilla prompt tuning method
without masking during inference.

3.2.1. Stage 1: Learn from the source domain

In Stage 1, our objective is to obtain a fine-tuned
model with the ability to perform the downstream
task effectively. We use a variant of the mask lan-
guage modeling as an auxiliary task for prompt
tuning to prevent the model from over-focusing over-
fitting features or shortcut features (Geirhos et al.,



1771

Algorithm 1 Stage 1: Learn from the source domain
Input: Training samples of source domain labeled

dataset DT
S

Output: Configurations of finetuned model θM
Initialize: PLM θM; learning rate η; trade-off pa-

rameter α, β
1: while Training epoch not end do
2: for x in DT

S do
3: ▷ Minimizing the classification loss in

source domain
4: L′

1 ← αLpmt(x; θM)
5: θM = θM − η∇θML′

6: ▷ Minimizing the MLM loss in source do-
main

7: L′′
1 ← βLmlm(x; θM)

8: θM = θM − η∇θML′′

9: end for
10: end while

2020). We refer to this approach as MLM Enhanced
Prompt Tuning (MEPT).

We initialize the parameters of the modelM us-
ing a Pretrained Language Model (PLM) such as
BERT or RoBERTa. During each iteration, we sam-
ple new examples from the source domain DT

S to
train the modelM. Firstly, we calculate the clas-
sification loss of those sentences and update the
parameters with the loss, as shown in line 5 of Al-
gorithm 1. Then we mask the same sentence and
calculate mask language modeling loss to update
the parameters, as depicted in line 8 of Algorithm
1. The parameters of the model will be updated
together by these two losses.

In summary, the objective of Stage 1, given a
labeled dataset DT , is obtained using the weighted
cross-entropy loss for prompt tuning classification
(Lpmt) and mask language modeling loss (Lmlm):

L′
1(DT ; θM) = αLpmt(DT ; θM),

L′′
1(DT ; θM) = βLmlm(D; θM),

(6)

where α, β is the loss weight. As the Algorithm 1
shows, we alternate between L′

1 and L′′
1 optimiza-

tions during training.

3.2.2. Stage 2: Adapt to the target domain

In Stage 2, we adapt the model trained in Stage
1 to the target domain. We refer to the resulting
model Two-stage Adapted MLM Enhanced Prompt
Tuning (TamePT), which is our proposed model.

We initialize the parameters of our TamePT
model using the model already tuned in Stage 1.
Firstly, we sample labeled data from the source do-
mainDT

S and calculate sentiment classification loss.
The model parameters are updated using this loss
in line 5 of Algorithm 2. Next, we sample unlabeled

Algorithm 2 Stage 2: Adapt to the target domain
Input: Training samples of source domain labeled

dataset DT
S and target domain dataset DT

Output: Configurations of Final Model θM
Initialize: Model θM already tuned in Stage 1;

learning rate η; trade-off parameter α, β
1: while Training epoch not end do
2: for xs, xt in DT

S ,DT do
3: ▷ Minimizing the classification loss in

source domain
4: L′

2 ← αLpmt(x
s; θM)

5: θM = θM − η∇θML′

6: ▷ Minimizing the SSD loss and MLM in
target domain

7: L′′
2 ← β(Lmlm(xt; θM) + Lssd(x

t; θM))

8: θM = θM − η∇θML′′

9: end for
10: end while

data from the target domain DT and mask the un-
labeled data to do a masking language model and
self-supervised distillation with the previous predic-
tion. It should be noted that the self-supervised dis-
tillation requires obtaining the prediction of the orig-
inal sentence before masking. Finally, the model
parameters are updated using the mask language
modeling loss and self-supervised distillation loss
of target domain examples, as shown in line 8 of
Algorithm 2. The model parameters are updated
together using the three aforementioned losses.

In conclusion, the training objective for Stage 2
is obtained using the weighted cross-entropy loss
for classification (Lpmt), mask language modeling
loss (Lmlm) and self-supervised distillation loss
(Lssd). Given an labeled datasetDT

S and unlabeled
datasets DT . the loss can be defined as:

L′
2(DT

S ,DT ; θM) = αLpmt(DT
S ; θM),

L′′
2(DT

S ,DT ; θM) = β(Lmlm(DT ; θM)

+ Lssd(DT ; θM)),

(7)

where α, β is the loss weight. As the Algorithm 2
shows, we alternate between L′

2 and L′′
2 optimiza-

tions during training.

3.3. Summary

The proposed method consists of two stages, as
shown in Figure 2. MLM Enhanced Prompt Tuning
(MEPT) means that we use mask language model-
ing as an auxiliary task for prompt tuning. Two-
stage Adapted MLM Enhanced Prompt Tuning
(TamePT) means that we use the model tuned in
the source domain to adapt to the target domain
with mask language modeling and self-supervised
distillation.
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Domain # Positive # Negative # Unlabeled
Books (B) 1,000 1,000 6,000
DVDs (D) 1,000 1,000 34,741

Electronics (E) 1,000 1,000 13,153
Kitchen (K) 1,000 1,000 16,785

Table 1: Statistics for the Amazon reviews multi-
domain classification dataset.

4. Experiments

In this section, we begin by introducing the standard
benchmark used for cross-domain text classifica-
tion on which we conduct experiments. We then
present a series of baseline models that we use
for comparison purposes. Subsequently, we pro-
vide a detailed description of our method’s training
procedure. Finally, we present the results of the
experiment and the analysis of our method.

4.1. Dataset
We evaluate the effectiveness of our proposed
method on the Amazon reviews dataset Blitzer et al.
(2007), which is a widely-used benchmark dataset
for cross-domain text classification. The dataset
contains reviews in four different domains: Books
(B), DVDs (D), Electronics (E), and Kitchen appli-
ances (K) with 2,000 manually labeled reviews in
each domain, equally balanced between positive
and negative sentiments. Additionally, the dataset
also provides a certain amount of unlabeled data
for each domain, as shown in Table 1.

(1) In the single-source domain adaptation ex-
periments, we adopt the setting used in (Karouzos
et al., 2021) and (Wu and Shi, 2022) to construct
12 cross-domain text classification tasks, each cor-
responding to a distinct ordered domain pair. In
each of these 12 adaptation scenarios, we apply
20% of both labeled source and unlabeled target
data for validation, while the labeled target data
are used exclusively for testing and are not seen
during training or validation. (2) In the multi-source
domain adaptation experiments, we follow (Wu and
Shi, 2022) to construct 4 cross-domain text classi-
fication tasks. Specifically, we choose one as the
target domain and the remaining three domains as
multiple source domains, resulting in tasks such as
“BDE→ K”, “BDK→ E”.

4.2. Baselines
We present several strong baselines in our exper-
iments and demonstrate the effectiveness of our
proposed methods.
1. R-PERL (Ben-David et al., 2020): Utilize BERT

for cross-domain text classification with pivot-
based fine-tuning.

2. DAAT (Du et al., 2020): Employ BERT post-
training for cross-domain text classification
through adversarial training.

3. p+CFd (Ye et al., 2020): Leverage XLM-R for
cross-domain text classification employing class-
aware feature self-distillation (CFd).

4. SENTIXFix (Zhou et al., 2020): Pre-train a
sentiment-aware language model via multiple
pre-training tasks.

5. UDALM (Karouzos et al., 2021): Conduct fine-
tuning with a mixed classification and MLM loss
on domain-adapted PLMs.

6. AdSPT (Wu and Shi, 2022): Execute soft
prompt tuning with an adversarial training object
on vanilla PLMs.

We present our proposed method, denoted as
TamePT, which is comprehensively introduced in
Section 3. To thoroughly evaluate the performance,
in alignment with (Karouzos et al., 2021) and (Wu
and Shi, 2022), we employ accuracy as the se-
lected evaluation metric.

4.3. Implementation Details

We adopt a 12-layer Transformer (Vaswani
et al., 2017; Devlin et al., 2019) initialized with
RoBERTabase (Liu et al., 2019) as the PLM.

(1) During Stage 1, we conduct training over 10
epochs with a batch size of 4, employing early stop-
ping (patience = 3) based on the accuracy metric.
The chosen optimizer for this phase is AdamW
(Loshchilov and Hutter, 2017), with a learning rate
of 1× 10−5. Additionally, we implement a strategy
to halve the learning rate every 3 epochs. For this
stage, we set α = 1.0, β = 0.6 for Eq. 6. (2) Dur-
ing Stage 2, we conduct training over 10 epochs
with a batch size of 4, with early stopping (patience
= 3) on the mixing loss encompassing both clas-
sification loss and mask language modeling loss.
The optimization utilizes AdamW with a learning
rate of 1 × 10−6 without learning rate decay. The
parameter settings for this stage are adjusted to
α = 0.5, β = 0.5 for Eq. 7.

Furthermore, for both the mask language model-
ing objective and the self-supervised distillation ob-
jective, we adopt a strategy wherein 30% of tokens
are randomly replaced with [MASK] or random to-
kens. To manage the input size, the maximum
sequence length is set to 512 through truncation
of inputs. In a notable measure, during Stage 2,
we randomly select an equal number of unlabeled
data from the target domain of every epoch.

All the models and the accompanying analysis
are meticulously implemented utilizing the PyTorch
framework (Paszke et al., 2019), along with Hy-
dra framework (Yadan, 2019), PyTorch Lightning
(Falcon and The PyTorch Lightning team, 2019),
HuggingFace transformers (Wolf et al., 2020) and
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S → T R-PERL DAAT p+CFd UDALM SENTIXFix AdSPT TamePT
B → D 87.80 89.70 87.65±0.10 90.97±0.22 91.30 92.00 93.27±0.49
B → E 87.20 89.57 91.30±0.20 91.69±0.31 93.25 93.75 94.82±0.23
B → K 90.20 90.75 92.45±0.60 93.21±0.22 96.20 93.10 95.75±0.40
D → B 85.60 90.86 91.50±0.40 91.00±0.42 91.15 92.15 94.83±0.31
D → E 89.30 89.30 91.55±0.30 92.30±0.47 93.55 94.00 94.57±0.18
D → K 90.40 87.53 92.45±0.20 93.66±0.37 96.00 93.25 95.84±0.24
E → B 90.20 88.91 88.65±0.40 90.61±0.30 90.40 92.70 93.20±0.63
E → D 84.80 90.13 88.20±0.40 88.83±0.61 91.20 93.15 92.63±0.34
E → K 91.20 93.18 93.60±0.50 94.43±0.24 96.20 94.75 96.16±0.07
K → B 83.00 87.98 89.75±0.80 90.29±0.51 89.55 92.35 92.18±0.84
K → D 85.60 88.81 87.80±0.40 89.54±0.59 89.85 92.55 91.77±0.68
K → E 91.20 91.72 92.60±0.50 94.34±0.26 93.55 93.95 95.06±0.43

AVG 87.50 90.12 90.63±0.40 91.74±0.38 92.68 93.14 94.17±0.40

Table 2: Results of single-source domain adaptation on Amazon reviews. There are four domains,
B: Books, D: DVDs, E: Electronics, K: Kitchen appliances. In the table header, S: Source domain; T:
Target domain. The TamePT is our proposed method, which is described in Section 3. We report mean
performances and standard errors over 5 seeds.

S → T AdSPT TamePT
BDE → K 93.75 96.13±0.12
BDK → E 94.25 95.68±0.11
BEK → D 93.50 93.98±0.16
DEK → B 93.50 94.57±0.37

AVG 93.75 95.09±0.19

Table 3: Results of multi-source domain adapta-
tion on Amazon reviews. The AdSPT is the only
one of the baselines that do experiments in the
multi-source domain adaptation settings. We re-
port mean performances and standard errors over
5 seeds.

datasets (Lhoest et al., 2021) for a streamlined
workflow.

4.4. Experiment Results
In this section, we concentrate on the results of
single-source domain adaptation (Table 2) and
multi-source domain adaptation (Table 3). Our pro-
posed method, TamePT, achieves new state-of-the-
art performance for both tasks, with an accuracy of
94.17% (+1.03%) for single-source domain adap-
tation and 95.09% (+1.34%) for multi-source do-
main adaptation. These results demonstrate the
effectiveness of our approach for adapting PLMs
to cross-domain text classification tasks.

4.4.1. Single-Source Domain Adaptation

The main experiment results in Table 2 demon-
strate that our proposed method, TamePT, outper-

forms other state-of-the-art methods in most single-
source domain adaptation settings. Specifically,
compared to previous state-of-the-art methods,
TamePT achieves significantly higher average ac-
curacy (1.03% absolute improvement over AdSPT,
1.49% absolute improvement over SENTIXFix,
2.43% absolute improvement over UDALM, and
4.05% absolute improvement over DAAT). How-
ever, the AdSPT achieves better performance
in experiments “E → D” and “K → D”. Further-
more, SENTIXFix achieves the best performance
when the target domain is “K”, but our method still
achieves comparable performance. It is mainly
because the extra training data of SENTIXFix is
closer to the domain “K”.

4.4.2. Multi-Source Domain Adaptation

The results presented in Table 3 demonstrate the
superior performance of our proposed TamePT
method in all multi-source domain adaptations.
Compared to the previous state-of-the-art model
AdSPT, TamePT achieves significantly higher aver-
age accuracy (1.34% absolute improvement). No-
tably, our method also achieves better performance
than the single-domain adaptation method in most
cases, with a lower standard error, indicating its
ability to maintain stability as the amount of data
and domain increases. However, when the target
domain is “K”, the result of “E → K” (in Table 2) is
superior to that of “BDE → K” (96.16% v.s. 96.13%).
A similar situation occurs in AdSPT (94.75% v.s.
93.75%). It is mainly because the feature distribu-
tion of “E” and “K” is closer.
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Stage 1 Stage 2
S → T TamePT w/o Stage 2 w/o mlm w/o mlm w/o ssd
B → D 93.27±0.49 92.88±0.37 92.77±0.19 93.21±0.36 93.14±0.11
B → E 94.82±0.23 94.30±0.18 94.22±0.44 94.60±0.19 94.29±0.17
B → K 95.75±0.40 95.19±0.48 94.86±0.51 95.70±0.38 95.39±0.24
D → B 94.83±0.31 94.37±0.29 93.76±0.42 94.38±0.36 94.25±0.31
D → E 94.57±0.18 94.11±0.34 93.82±0.38 94.47±0.51 94.33±0.24
D → K 95.84±0.24 94.99±0.25 94.87±0.15 95.77±0.17 95.10±0.31
E → B 93.20±0.63 92.19±0.66 92.54±0.37 93.24±0.23 92.70±0.45
E → D 92.63±0.34 90.71±0.69 91.29±0.46 92.20±0.43 91.19±0.25
E → K 96.16±0.07 95.70±0.58 95.40±0.46 95.84±0.19 95.77±0.23
K → B 92.18±0.84 92.09±0.53 91.89±0.37 91.94±1.99 92.55±0.26
K → D 91.77±0.68 90.49±0.70 89.85±0.44 89.91±4.18 91.38±0.36
K → E 95.06±0.43 94.55±0.26 94.58±0.32 95.15±0.15 95.02±0.04

AVG 94.17±0.40 93.46±0.44 93.32±0.38 93.87±0.76 93.76±0.25

Table 4: The ablation experiments of our method. There are four domains, B: Books, D: DVDs, E:
Electronics, K: Kitchen appliances. In the table header, S: Source domain; T: Target domain. The “mlm”
and “ssd” mean self-supervised distillation and mask language modeling. The “w/o Stage 2” is also called
MEPT, which is described in Section 3.2.1. We report mean performances and standard errors over 5
seeds.

4.5. Analysis
Table 4 indicates the results of our ablation exper-
iments, which are conducted to evaluate the con-
tributions of different components in our proposed
method. Figure 3 shows the case study of our
method. Additionally, Table 5 presents the results
of experiments that validate the generality of our
two-stage adaptation approach on different meth-
ods and pre-trained models. These experiments
demonstrate the effectiveness and flexibility of our
proposed method.

4.5.1. Ablation Study

Our proposed method comprises two stages,
namely Stage 1 and Stage 2. To evaluate the effec-
tiveness of each stage, we conduct ablation experi-
ments by removing the corresponding components
and comparing the performance of the resulting
model with the original model. The results of the
ablation experiments are presented in Table 4.

In Stage 1, we observe that the use of mask
language modeling is crucial for achieving high
accuracy. Specifically, when we remove the mask
language modeling, the performance of the Stage
1 model dropped by an average of 0.14% (from
93.46% to 93.32%), as shown in Table 4. With the
exception of the “E → D" experiment, the model
including mask language modeling consistently out-
performs the one without mask language modeling.

In Stage 2, we find that using both self-
supervised distillation and mask language mod-
eling is critical for achieving high accuracy and
stability. When we remove the self-supervised dis-

tillation, the performance of the Stage 2 model de-
creases by an average of 0.41% (from 94.17% to
93.76%). Similarly, when we remove the mask lan-
guage modeling, the performance of the Stage 2
model decreases by an average of 0.30% (from
94.17% to 93.87%), while the standard error in-
creases by 0.36 (from 0.40 to 0.76). Notably, the
standard error for experiments “K → B" and “K → D"
increases significantly by 1.15 (from 0.84 to 1.99)
and 3.50 (from 0.68 to 4.18), respectively. These
results indicate that mask language modeling is a
crucial factor for achieving high accuracy and, in
particular, stability in the proposed method.

In summary, our experiments confirm the effec-
tiveness of both self-supervised distillation and
mask language modeling in achieving high accu-
racy and stability.

4.5.2. Case Study

As shown in Figure 3, we conduct a case study
to demonstrate the effectiveness of our method in
capturing domain-aware features from unlabeled
data in the target domain. Specifically, we used the
sentence “Plain Vanilla Wireless adapter for you.
Slow but steady and inexpensive.” as an example to
analyze the gradients from MEPT2 and TamePT in
the “D → E” setting. The gradients from MEPT and
TamePT are depicted in Figures 3(a-b), respectively.
Notably, compared to the gradient of MEPT, the
gradient from TamePT places more emphasis on
the words “slow" and “steady", which are domain-
aware features. This result demonstrates that our

2MEPT: The proposed model TAMEPT without Stage 2.
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(a) The gradient from the MEPT. (b) The gradient from the TAMEPT.

Figure 3: Visualization for the sentence “Plain Vanilla Wireless adapter for you. Slow but steady and
inexpensive.” in the “D → E” setting. The different colors mean the gradient of different heads. Compared
with the gradient from MEPT, the gradient from TamePT pays more attention to the domain-aware features
(“slow” and “steady”).

BERT RoBERTa
Method Stage 1 +Stage 2 Stage 1 +Stage 2

FT 90.00±0.51 91.10±1.77 93.31±0.47 94.09±0.38
PT 90.78±0.78 91.62±1.59 93.63±0.36 94.38±0.36

MEPT 91.27±0.58 92.54±0.26 93.74±0.43 94.40±0.35

AVG 91.02±0.62 91.75±1.21 93.56±0.42 94.29±0.36

Table 5: The experiments for validating the gener-
ality of our method. We report mean performances
and standard error of 12 single-source domain
adaptations and 4 multi-domain adaptations. The
MEPT initialized with RoBERTa and adapted by
Stage 2 is denoted as “TamePT”, which is our pro-
posed model.

method is capable of assisting models in capturing
domain-aware features from unlabeled data in the
target domain.

4.5.3. Generality Study

To validate the generality of our method, we con-
duct experiments on different pre-trained models
and methods, as summarized in Table 5. Specifi-
cally, we apply Algorithm 2 to the fine-tuning (FT),
prompt tuning (PT), and MEPT methods. The re-
sults demonstrate the effectiveness of our method
on different pre-trained models and methods, with
an average improvement of 0.73% (from 91.02%
to 91.75% with BERT and from 93.56% to 94.29%
with RoBERTa). These findings support the gener-
ality of our proposed method.

4.5.4. Sensitive Analysis

To evaluate the sensitivity of the hyperparameters,
we conduct a sensitive analysis of the mask ratio,
which is the ratio of the number of masked tokens to

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Mask Ratio
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Accuracy on B -> D with different mask ratios

Figure 4: The sensitive analysis of the hyperparam-
eters mask ratio in the B → D setting.

the total number of tokens. The results are shown
in Figure 4. The results in the B → D setting
demonstrate that the performance of our method is
relatively stable across a wide range of mask ratios,
with the maximum difference in average accuracy
being less than 0.5%. This finding indicates that
our method is robust to changes in the mask ratio.

5. Related Work

Unsupervised Domain Adaptation is a technique
that addresses domain shift issues by learning la-
beled data of the source domain(s) and unlabeled
data of the target domain, which is typically avail-
able for both source and the target domains (Ram-
poni and Plank, 2020).

As mentioned in Section 1, current works can be
roughly categorized into two groups. One group
aims to capture domain-invariant features, includ-
ing pivot-based methods (Ben-David et al., 2020),
domain adversarial training (Wu and Shi, 2022),
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class-aware feature self-distillation (Ye et al., 2020),
and sentiment-aware language model (Zhou et al.,
2020). Another group employs pre-trained models
to exploit the task-agnostic features of the target do-
main during domain adaptation by language model-
ing (Du et al., 2020; Karouzos et al., 2021). Some
works use both domain-invariant and task-agnostic
features (Du et al., 2020). However, previous work
only focuses on extracting domain-invariant fea-
tures or task-agnostic features. In contrast, we are
the first to consider the domain-aware features of
the target domain.

6. Conclusion

In this paper, we propose a two-stage learning
procedure for cross-domain text classification that
leverages self-supervised distillation to capture
domain-aware features in the target domain. We
demonstrate that this procedure outperforms previ-
ous state-of-the-art models in most cases, achiev-
ing a significant improvement in average accuracy.
Our experiments also highlight the significance
of self-supervised distillation and mask language
modeling in achieving high performance and sta-
bility. Moreover, the two-stage learning procedure
can be easily applied to existing trained models for
cross-domain text classification.
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