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Abstract
As in oral phonology, prosody is an important carrier of linguistic information in sign languages. One of the most
prominent ways this reveals itself is in the time structure of signs: their rhythm and intensity of articulation. To be able
to empirically see these effects, the velocity of the hands can be computed throughout the execution of a sign. In
this article, we propose a method for extracting this information from unlabeled videos of sign language, exploiting
CoTracker, a recent advancement in computer vision which can track every point in a video without the need of any
calibration or fine-tuning. The dominant hand is identified via clustering of the computed point velocities, and its
dynamic profile plotted to make apparent the prosodic structure of signing. We apply our method to different datasets
and sign languages, and perform a preliminary visual exploration of results. This exploration supports the usefulness
of our methodology for linguistic analysis, though issues to be tackled remain, such as bi-manual signs and a formal
and numerical evaluation of accuracy. Nonetheless, the absence of any preprocessing requirements may make it
useful for other researchers and datasets.
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1. Introduction

The study of prosody and suprasegmental features
in sign languages holds pivotal importance for our
comprehensive understanding of their linguistic
characteristics. These features, such as repetition
and rhythm, serve as critical morpho-phonological
parameters that contribute to many functions in-
cluding, but not limited to, compound formation
(Hwangbo and Choi, 2022), clause-level syntactic
relationships (Malaia et al., 2013), and verbal inflec-
tion (Herrero Blanco, 2009). While the function of
prosody is analogous to that in oral languages, its
manifestation in sign languages is distinctly unique,
largely owing to the pivotal role played by the motion
of the articulators (Fenlon and Brentari, 2021).

The displacement and velocity profile of hand
movements during signing has been posited as
a potentially sufficient metric for analysing their
prosodic structure, both at the lexical and the post-
lexical levels (Wilbur and Martinez, 2002). The
changes in velocity and direction can demarcate
segment changes in phonological structure, but
to empirically validate these theoretical postulates
and to leverage them for rigorous linguistic analy-
sis, there is a need for relevant data. In the realm
of sign languages, these data often come in the
form of videos, which do not inherently encode the
linguistic parameters of interest.

1https://bslsignbank.ucl.ac.uk/
dictionary/words/look-1.html

Figure 1: Dynamic profile of the BSL (British Sign
Language) sign “LOOK”1.

Recent advancements in computer vision have
emerged as a solution to this challenge. CoTracker
is a state-of-the-art deep learning architecture that
allows for the tracking of arbitrary points in source
videos, without requiring additional annotations or
dataset-specific training (Karaev et al., 2023). This
technology provides a pathway for computing and
analyzing hand velocity using computational tools.

In our proposed method2, we leverage the capa-
bilities of CoTracker to compute the velocity of hand

2https://github.com/agarsev/
sign-prosody-extraction

https://bslsignbank.ucl.ac.uk/dictionary/words/look-1.html
https://bslsignbank.ucl.ac.uk/dictionary/words/look-1.html
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movements in various sign languages. The subse-
quent analysis yields temporal plots that show the
velocity and directional changes over time, enabling
the visual and empirical examination of the signs’
prosodic structure. Predominantly, the y-axis in the
plots in this article represents the articulation ve-
locity, measured in units of pixels per frame. Given
that the absolute numerical values of velocity are
neither pertinent nor informative for our analysis,
they have been intentionally omitted. On the x-axis,
time is delineated in seconds, corresponding to the
duration of the video clip under investigation.

To enhance interpretability, we have opted to
color-code the lines in accordance with the direc-
tion of articulator movement within the video frame.
It is crucial to clarify that this is a two-dimensional
representation of direction as perceived in the video,
and while it is related, it is not synonymous with
the three-dimensional direction in the actual sign-
space, especially when movements in the back and
forth axis are involved. To demarcate this distinc-
tion, we use the cardinal directions (N, E, S, W).

For example, in Figure 1, we see a BSL (British
Sign Language) sign consisting of a single move-
ment. The graph shows three corresponding veloc-
ity peaks: 1) an upward preparation; 2) the primary
forward motion; and 3) a downward relaxation. No-
tably, a brief hold is present after the primary motion,
but absent at the onset.

In Figure 2, we can see two signs from LSE
(Spanish Sign Language). The profile of these two
signs reveals they have the same class of prosodic
structure. They exhibit two primary strikes, along
with a preparatory movement for repetition between
them in the opposite direction. A brief hold is ob-
served at the termination of both signs, though this
may be potentially attributable to the specific into-
nation profile associated with signs intended for
dictionary inclusion.

These visual representations serve a dual pur-
pose: they elucidate both the segmental and
suprasegmental structures that are integral to the
articulation of signs. When interpreting these plots,
it is important to recognize that the most prominent
peaks—those indicating higher velocities—are of-
ten not indicative of lexical segments within signs.
Rather, they frequently correspond to transitional
or accommodative hand movements that occur as
the hand navigates between distinct spatial loca-
tions. For instance, the initial peak in each plot
typically signifies preparatory movements, transi-
tioning the hand from a resting position to the first
signing location.

While the primary emphasis of this article is on
the methodological framework, our preliminary find-
ings offer compelling observations and avenues for
discussion. These results have been generated
from multiple datasets encompassing a range of

Figure 2: Dynamic profile of LSE signs “COUSIN”3

and “NEVER”4.

sign languages, thereby suggesting the potential
for a more universal applicability of our methodol-
ogy. Such a universal scope could hold significant
implications, extending beyond the realm of linguis-
tic analyses to encompass broader computational
processing tasks.

The remainder of this article is organized as
follows: section 2 describes previous methodolo-
gies that have been employed for similar purposes,
while section 3 explicates our proposed method-
ology. Some preliminary findings that signify the
promise of our approach are explored in section 4,
and section 5 draws some conclusions from them.
Finally, section 6 offers a reflective analysis of the
limitations inherent in our proposal, along with po-
tential avenues for future research.

2. Background

As outlined in the introduction, the prosodic struc-
ture of sign language plays a crucial role in its in-
terpretation. Prosody encompasses the hierarchi-
cal organization of individual segments into more

3https://griffos.filol.ucm.es/
signario/signo/13227

4https://griffos.filol.ucm.es/
signario/signo/11169

https://griffos.filol.ucm.es/signario/signo/13227
https://griffos.filol.ucm.es/signario/signo/13227
https://griffos.filol.ucm.es/signario/signo/11169
https://griffos.filol.ucm.es/signario/signo/11169
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complex structures, focusing among others on el-
ements of timing and rhythm. Analogous to its
significance in oral languages, prosody serves as
an essential component for conveying meaning in
sign languages. Conducting empirical research in
this domain necessitates accurate measurements
and quantitative data. One plausible approach to
acquire these data is through the extraction of kine-
matic information, specifically focusing on articu-
lator displacement and its associated attributes—
duration and velocity. Wilbur and Martinez (2002)
posits that such information sufficiently encapsu-
lates the dynamic structure of sign language.

Various methodologies have been employed to
achieve this aim. For instance, Borneman et al.
(2018) utilized complexity analysis of optical flow
to estimate velocity parameters. However, this ap-
proach offers a global measurement and fails to
discriminate between the movements of different
hands or directions. To obtain hand trajectories,
Wilbur and Zelaznik (1997) employed a 3D motion
analyzer system, Koech (2007) used a combination
of electromagnetic sensors and wearable gloves,
and Abdullahi and Chamnongthai (2022) sourced
data from a Leap Motion Controller. While effec-
tive, these techniques entail complex experimental
setups and specialized datasets, rendering them
inaccessible to broad research applications.

Alternatively, 2D video datasets, such as those
cataloged in Chapter 5 of the Sign Language
Dataset Compendium (Kopf et al., 2022), offer a
more ubiquitous resource. While these datasets
sometimes feature linguistic annotations, they often
lack the specific timing or kinematic data required
for this research. Although manual annotation is
possible via tools like ELAN5, it is typically geared
towards marking independent signs in discourse,
like in Crasborn et al. (2016), rather than detailing
the internal structure of signs.

Automatic extraction presents a more efficient al-
ternative and makes utilization of existing 2D video
corpora feasible. One approach is to estimate 3D
hand or body pose from 2D videos. This can entail
the complexities of annotation and dataset speci-
ficity (Ohkawa et al., 2023), although recent de-
velopments using machine learning show great
promise in mitigating these issues (Börstell, 2023).
Another option involves 2D object tracking, usually
carried out in two steps: hand detection and sub-
sequent tracking across video frames (Yuan et al.,
2005). However, the variability in video settings and
anatomical differences present challenges to hand
detection (Thangali and Sclaroff, 2009). Recently
developed tracking technologies overcome these
limitations by tracking points within source videos
without requiring prior object information (Neoral
et al., 2023; Wang et al., 2023; Karaev et al., 2023).

5https://archive.mpi.nl/tla/elan

While promising, these point-tracking methods
do not directly provide information on hand move-
ments or velocities. They yield traces of points that
require further analysis. Mcdonald et al. (2016)
offer methodologies for analyzing such position
and velocity series in the context of prosody, albeit
within avatar generation. To alleviate the problem
of noise, and as precise computing of velocity min-
ima is crucial for identifying articulatory changes,
Savitzky-Golay filters (Savitzky and Golay, 1964)
can be employed to smooth the series and its
derivatives.

The final unresolved issue is the identification of
hands based on point velocities. Given that we are
working with videos focused on sign language, it is
reasonable to assume that the fastest-moving ob-
jects will be the hands. K-means clustering (Lloyd,
1982) can segregate the point traces into separate
classes based on velocity, effectively isolating the
articulators from the largely static background.

In the subsequent section, these individual com-
ponents will be synthesized into a cohesive pipeline
capable of automatically extracting velocity plots
from unannotated sign language videos.

3. Methodology

To develop our methodology, and for testing and
visualization in this article, we have used videos
from various sources, including the ASL (American
Sign Language Hochgesang et al., 2023) and BSL
(British Sign Language Fenlon et al., 2014) Sign
Banks, and dictionaries such as SpreadTheSign
(Hilzensauer and Krammer, 2015), and the Spanish
Sign Language Signary6. These videos are then
processed in a series of steps, schematically rep-
resented in Figure 3 and detailed in the following.
Our code is also freely available online at GitHub7.

3.1. Tracking of Grid Points
The initial step in our pipeline involves utilizing Co-
Tracker (Karaev et al., 2023) to track distinct points
within the video footage. To minimize computa-
tional cost, a uniform grid of 30x30 points across
the frame is selected for tracking, rather than every
individual pixel. Tracking commences at the mid-
point of each video, to ensure that the hands are
actually in the frame. Tracking is then conducted
both forwards and backwards, with the latter being
reversed and then prepended to the forward tracks,
ultimately yielding a set of 900 tracks that trace
different points throughout the entire video.

Opting for a uniform grid spanning the full frame
circumvents the need for detection or manual an-

6https://griffos.filol.ucm.es/signario
7https://github.com/agarsev/

sign-prosody-extraction

https://archive.mpi.nl/tla/elan
https://griffos.filol.ucm.es/signario
https://github.com/agarsev/sign-prosody-extraction
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Figure 3: Steps of the processing pipeline.

notation of hand location at any given time point.
Moreover, this approach seems to aid the method
not to get confused in the presence of overlapping
body parts that share similar skin tones.

The tracking process is the most computationally
intensive step, but can be executed on reduced-
quality videos without compromising the reliability
of the results. Utilizing high-end but consumer-
grade hardware, an NVIDIA GeForce RTX 3080
GPU (Ampere architecture) and Intel Core i9-9900K
CPU, each video takes approximately 10 seconds
to process, varying with video length.

3.2. Velocity Computation

The output from CoTracker is generated in PyTorch8

format, which can be easily imported into Python
scripts for further processing. Each predicted trace
from CoTracker consists of a sequence of x and
y coordinates, representing each tracked point, at
every frame. Spatial coordinates are differentiated
along the temporal axis to obtain velocities in x and
y. These velocities are then converted to polar coor-
dinates, to isolate absolute velocity and movement
direction. While our primary focus lies on absolute
velocity for the extraction of prosodic features, the
directional of the movement can aid in visualization
and segment discrimination. To compute the time
derivative, the Savitzky-Golay filter as implemented
in the SciPy library is employed (Luo et al., 2005;
Virtanen et al., 2020).

3.3. Clustering and Selection
The subsequent step involves separating the tracks
into two groups, based on their velocities. This way,
we can separate the tracks into those correspond-
ing to the articulator, and those corresponding to
the background and body. We use K-means cluster-
ing (Lloyd, 1982), in particular scikit-learn’s imple-

8https://pytorch.org/

mentation of the algorithm (Pedregosa et al., 2011).
The cluster with higher velocity is interpreted as the
main articulator, and its center, the average of all
the tracks that comprise it, is then used as the final
result for the articulator’s velocity and direction of
movement.

3.4. Prosodic Profile Extraction
Velocity plots are then generated using Matplotlib
(Hunter, 2007), where velocity is plotted on the y-
axis against each video frame on the x-axis. Peaks
and valleys in these plots reveal the underlying
prosodic structure. The lines in the plot are colored
according to the direction of movement, which helps
in segment identification and correlation with lexical
components of the sign. Examples of this have
been shown in Figures 1 and 2.

To quantify these observed segments, we com-
pute local minima and maxima of the velocity curve.
These extrema are calculated by differentiating the
velocity using the Savitzky-Golay filter and iden-
tifying zero-crossings. Local minima correspond
to moments of slowed hand movement, which we
propose separate the segments in the framework
for sign language description proposed by Liddell
and Johnson (1989). Local maxima are utilized to
fine-tune the detection of key points and to elimi-
nate extraneous points that lie outside the bounds
of the articulated sign.

3.5. Articulator Location Recovery
The focus of our methodology lies in extracting the
velocity series in order to plot the dynamic profile
of the sign. This profile contains information on
segment duration and intensity, which we believe
provide a very good characterization of its prosodic
structure. Nevertheless, spatial displacement infor-
mation can hold additional utility.

Upon isolating the principal articulator based on
velocity, we can extract the original x and y coordi-

https://pytorch.org/
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Figure 4: Path of movement along velocity profile
for the LSE sign “WEEK”9.

nate tracks for each point in the cluster. The arith-
metic mean of these positional vectors pinpoints
the articulator’s location throughout the video se-
quence, as illustrated in Figure 4. There, we can
see the trajectory of the hand superimposed in red
on a still frame from the video. The correspond-
ing velocity profile illustrates the distinct phases:
an initial upward preparation, a brief pause at the
onset, the principal movement directed westward
(ipsilateral, as the subject is right-handed), and the
subsequent relaxation phase. Although we primar-
ily use this visualization to validate our methodology,
this spatial information may also be useful for fur-
ther analyses which require precise location data.
However, pose estimation methodologies such as
the one presented in Börstell (2023) may be better
suited for this specific objective.

4. Exploratory Analysis

In previous figures we have explored the dynamic
profiles of multiple simple signs. These plots show
empirical visualizations of the different segments
constituting each sign, facilitating an understanding
of their sequential arrangement, relative duration,
and velocity characteristics, but our method is not
limited to such signs.

9https://griffos.filol.ucm.es/
signario/signo/11395

Figure 5: Dynamic profile of the LSE compound
sign “FIREFIGHTER”10.

4.1. Compound Signs

We can apply our pipeline of computations to further
investigate the prosodic profile of compound signs,
as exemplified in Figure 5. The first morpheme of
this compound sign emulates a firefighter’s helmet,
by holding an iconic handshape touching against
the forehead. Our method captures a minor peak
during this “hold” phase, suggesting an initial prepa-
ration of the handshape near its designated locus
prior to the execution of the touch. Next, the sign
transitions into a high-velocity movement directed
toward the locus of the second morpheme, the neu-
tral space. Here, a circular movement is enacted,
depicting the firehose. The initial arc of this circle—
progressing southward and then eastward—is exe-
cuted in tandem with the preparatory phase, while
the subsequent circular motion maintains a rela-
tively constant velocity, remains spatially confined,
and exhibits a narrower trajectory.

As with other signs we have examined before,
Figure 5 again reveals that the segments with the
highest velocity are not necessarily the most lin-
guistically relevant. One might assume that higher-
velocity segments would be more salient from a
kinematic perspective. However, the key factor is
perceivability. Movements that are too fast may
be more difficult to perceive, whereas the lexically
pertinent segments often exhibit lower velocity, en-
hancing their perceptual saliency. For instance,
even though the “hose” morpheme is categorized
as an M segment (dynamic) and has a relatively
higher velocity compared to the H segment (hold)
representing the helmet, its velocity remains con-
strained in relation to the perceptually irrelevant
accommodative segments.

10https://griffos.filol.ucm.es/
signario/signo/11197

https://griffos.filol.ucm.es/signario/signo/11395
https://griffos.filol.ucm.es/signario/signo/11395
https://griffos.filol.ucm.es/signario/signo/11197
https://griffos.filol.ucm.es/signario/signo/11197
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Figure 6: Phases in the articulation of some signs in
ASL (FROG), BSL (AUCTION) and LSE (NEVER).

4.2. Comparative Analysis
In a similar vein to the analysis of different mor-

phemes within a single sign, the juxtaposition of
multiple signs offers another insightful avenue of
exploration. To facilitate this comparison, one
can superimpose various plots on a single graph.
Given that velocity is not a consistent measure—
especially when quantified in pixels per frame, a
unit with limited interpretive value—we have elected
to normalize the plots. Specifically, velocities are
normalized to a range of 0-1, and time is re-scaled
so that the lexical segment lies between 0 and 1.

Adopting this standardized framework allows for
a more coherent comparison of the prosodic struc-
tures across different signs, as illustrated in Figure
6. In this figure, signs from three distinct sign lan-
guages are depicted. All of these signs belong to
the class characterized by “repeated simple move-
ments,” and the underlying segmental structure is
remarkably consistent across the languages. Fur-
thermore, the duration of these segments also ex-
hibits a notable degree of uniformity, underscoring
the potential universality of certain prosodic ele-
ments in sign languages.

4.3. Sentence Level Analysis
In addition to lexical prosody, which pertains to the
internal structure of individual signs, another salient
aspect of sign language prosody occurs at the sen-
tence level. This involves analyzing the rhythm and
duration of various signs to infer elements such
as phrasing. Our methodology is also amenable
to analyses of longer videos that encompass com-
plete sentences, provided certain conditions are
met: the focus remains on a single signer, and
the articulator is the fastest moving object in the
frame. An example of this is presented in Figure 7,
depicting a four-sign BSL sentence.

In this figure, both “DAUGHTER” and “WORKS”
are characterized as two-strike signs, similar to the
ones depicted in Figure 2. We can again see the
distinct phases each sign undergoes: preparation,
first strike, recovery, and second strike. The sign
“HER” also consists of two strikes, but exhibits a
different dynamic profile. We propose that this rep-
resents a distinct prosodic class of sign, specifically
one with a movement-hold (MH) structure. In this
case, the hold is not entirely static; rather, it incor-
porates minor motion to enhance its sonority. The
sign “HERE” belongs to the same MH prosodic
class, in this case characterized by an initial down-
ward strike followed by an elongated hold, which
probably is more pronounced due to the specific
intonation pattern employed in this sentence.

It is noteworthy that the durations of “DAUGH-
TER” and “WORKS” are quite similar, although a
more extensive corpus of examples is needed to
substantiate any conclusive claims. Moreover, we
can observe again how the locative constraints in-
herent in sign language execution significantly in-
fluence the preparation phases of the signs, often
resulting in the most conspicuous peaks in the ve-
locity curve.

5. Conclusions

Plots such as the one in Figure 7, along with the
underlying numerical data, hold promise as invalu-
able tools for the linguistic and prosodic analysis
of sign language. They provide insights into both
the internal structure of individual signs and the
rhythmic, velocity, and organizational attributes of
full sentences.

A significant advantage of our methodology is
its operational simplicity and accessibility. It cir-
cumvents the need for manual annotations and
remains sufficiently robust for lower-quality video
analysis. The algorithm is designed to run on
consumer-grade hardware, eliminating the need
for specialized computational resources, and en-
abling researchers to apply this methodology to
their respective datasets. We anticipate that the
synergistic combination of our approach and the
growing availability of sign language data will con-
tribute to an enhanced understanding of sign lan-
guage prosodic structure.

Furthermore, part of our methodolgy involves
the computation of a series of relevant points, lo-
cal minima in velocity which can be seen as small
pauses in articulation. We mainly use them to aid in
the segmentation of signs for comparative analysis,
but they can also be used to compute precise du-
rations of segments, which may shed further light
or provide empirical support to different theoretical
models of sign language structure.

Beyond their immediate utility for segmentation,
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Figure 7: Dynamic profile of the BSL sentence “HER DAUGHTER WORKS HERE”11.

the significance of these points may extend to
further computational processes. By extracting
the frames corresponding to these points, we can
obtain static key-frames encapsulating essential
phonological parameters. This feature can prove
beneficial for the development of sign language dic-
tionaries, as it allows for the automatic creation of
thumbnails or static summaries that can be readily
consulted in print form or other mediums where
video is either unavailable or impractical.

6. Limitations and future work

The main limitation of our proposed methodology
resides in its foundational assumption: it presup-
poses that the target video features a singular sign-
ing individual with no other dynamic entities present,
thereby making the signing articulator the fastest-
moving object in the frame.

Bimanual signs where both hands are active in-
troduce a level of complexity, as our algorithm iden-
tifies both hands together as the articulator. While
this often does not pose a problem—given that
in these signs the velocity of the hands is usually
synchronized—it remains a limitation.

Another inherent limitation stems from the use of
2D video, since movements in the antero-posterior
plane may be visually diminished due to camera
perspective. Our preliminary analysis suggests,
however, that this limitation might be of minor con-
cern, as movements are generally visible enough
through their vertical or lateral components. For our
research objectives, absolute measures of velocity
are less critical than understanding the timing and
sequencing of sign phases.

Nonetheless, these limitations underscore the
necessity for future work to transform our infor-
mal evaluations into formal numerical assessments.

11https://www.spreadthesign.com/en.gb/
sentence/9976/her-daughter-works-here/

We are in the process of systematically analyzing
a corpus using our approach, where we hope to be
able to extract meaningful statistics and linguistic
conclusions.

Initially, we anticipated that such efforts would
necessitate manual annotations, but thanks to a re-
cent publication highlighted by one of our reviewers,
we now see a promising alternative. Börstell (2023)
uses recent advances in machine learning to au-
tomatically estimate body pose before conducting
an analysis similar to ours. Future research could
involve a comparative evaluation between both our
approaches, and if findings from both methods
align, it would strongly suggest the reliability of our
measurements. Additionally, their technique could
potentially refine the initial steps of our methodol-
ogy, particularly in addressing challenges related to
bimanual signs and precise articulator localization.

From a more linguistic point of view, additional
research is also needed to examine continuous
discourse and diverse settings, extending beyond
our current focus on lexical items and prosodic el-
ements. The dynamic profiling of longer, syntacti-
cally complex sentences promises valuable insights
into the internal and sentence-level structure of sign
language.
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