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Abstract
As the quality of AI-generated text increases with the development of new Large Language Models, people use
them to write in a variety of contexts. Human-AI collaborative writing poses a potential challenge for existing AI
analysis techniques, which have been primarily tested either on human-written text only, or on samples independently
generated by humans and AI. In this work, we investigate the extent to which existing AI detection and authorship
analysis models can perform classification on data generated in human-AI collaborative writing sessions. Results
show that, for AI text detection in the co-writing setting, classifiers based on authorship embeddings (Rivera-Soto
et al., 2021) outperform classifiers used in prior work distinguishing AI vs. human text generated independently.
However, these embeddings are not optimal for finer-grained authorship identification tasks: for authorship verification,
n-gram based models are more robust to human-AI co-written text, and authorship attribution performance
degrades compared to baselines that use human-written text only. Taken together, this suggests that the rise
of human-AI co-written text will require adapting AI detection tools and authorship analysis techniques in the
near future. We release our code at https://github.com/AARichburg/Human-AI_Authorship_Analysis.
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1. Introduction

With recent advances in NLP, people increasingly
rely on Large Language Models (LLMs) when
they write, whether for school assignments, daily
emails, social media content, or professional writ-
ing endeavors such as news reporting and cre-
ative projects. In many of these settings, people
do not only use LLM outputs verbatim. They might
also edit them, or entirely ignore them, depend-
ing on how the resulting text is meant to be used,
and also on their personal preferences. The intro-
duction of LLM tools in the writing process thus
blurs the boundary between human-written and
AI-generated content. In the collaborative writing
setting, people can edit AI-generated text and their
writing can be influenced by LLM outputs. Further-
more, LLM prompts that lead to AI text generation
might also become more personalized and contex-
tualized than when AI text is independently gener-
ated, which might in turn impact output style.

Yet, existing research primarily focuses on distin-
guishing between human and AI-generated content
generated independently (Gehrmann et al., 2019;
Sadasivan et al., 2023; Mitchell et al., 2023; Krishna
et al., 2023; Chakraborty et al., 2023), neglecting
the nuances of different human writing styles, and
ignoring co-authored text.

To address this gap, this work studies how the dis-
tinct properties of text co-authored by humans with
AI support change systems’ ability to distinguish (1)
human-written vs. AI-generated text, and (2) individ-

ual human authors. We investigate whether we can
automatically discriminate between human-written,
AI-generated and human-edited AI-generated text
and how well we can identify individual authors
given human-written text only or a combination of
human-written and AI-generated text.

We leverage the CoAuthor dataset (Lee et al.,
2022), which records writing sessions where hu-
man participants respond to creative writing and ar-
gumentative writing prompts with the assistance of
the GPT-3 LLM (Brown et al., 2020). We construct
different views of the CoAuthor writing sessions
based on how individual segments were generated,
which allows us evaluate the injection of different
types of co-written text in controlled settings.

We propose to use classification models inspired
by the authorship analysis literature to capture more
nuanced style differences than typical in classifiers
designed for binary human vs. AI classification. Our
findings show that this approach effectively differen-
tiates between AI and human-written content within
co-written documents. It also helps identify individ-
ual author styles in co-authored text more robustly.

This work makes the following contributions: (1)
we construct datasets seeded from CoAuthor for
evaluation of AI text detection and authorship anal-
ysis in the collaborative writing setting and (2) we
demonstrate that existing models from the AI de-
tection and authorship analysis literature can rea-
sonably detect co-written text though there is a
distributional shift from independently human- or
AI-generated text.

https://github.com/AARichburg/Human-AI_Authorship_Analysis
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Prompt: All of the “#1 Dad” mugs in the world change to show the actual ranking of Dads
suddenly.

Almost all dad’s had one since over the past 6 months 2.1 billion of these mugs had been shipped
out freely to almost every dad on earth. The mugs were made by a company called "Mugs R Us"
and were made to be a fun little gift to give to dads. ... These traits were mostly gathered freely
from social media sites but a significant portion was gathered through hacking and other illegal
ways. ... The mugs were shipped out to every dad in the world and when they were turned on, they
showed the ranking of the dad. ... Some dads were so upset that they committed suicide, others
vowed revenge on their neighbors. ...

Table 1: An excerpt of a session in the CoAuthor data. Participants continue the story from the prompt.
Each sentence is either generated by the human author (plain text), generated by GPT-3 (underlined) or
generated by GPT-3 with edits from the human author (italics). GPT-3 text is generated conditioned on
the previous text. Ellipses indicate content removed for space.

2. Background

This work draws from three distinct areas of the
literature. By focusing on human-AI collaborative
writing, it aligns with rapidly growing interest in de-
signing LLM-based tools to support people’s writ-
ing processes (Lee et al., 2022; Yuan et al., 2022;
Jakesch et al., 2023; Laban et al., 2023), motivating
such workshops as In2Writing (Huang et al., 2022)
to coalesce interest across interdisciplinary fields
towards the goal of building effective writing assis-
tants. The potential for the prevalence of co-written
text on the internet inspires this paper’s analyses
which examine how properties of the co-written text
can be distinguished from either human-written or
machine-written text. We create evaluation settings
that complement past work on automatically detect-
ing AI-generated text (Section 2.1) with authorship
analysis models (Section 2.2).

2.1. AI Generated Text Detection

Methods for detecting AI-generated text have
evolved in tandem with the capabilities of text gener-
ation models. Badaskar et al. (2008) exploit n-gram
language model generation by utilizing n-gram fea-
tures to distinguish real (original text) from fake
(n-gram LM-generated) articles. Gehrmann et al.
(2019) point to generation strategies that sample
from the head of the distribution like max sampling
(Gu et al., 2017) or beam search (Chorowski and
Jaitly, 2016; Shao et al., 2017) that bias models
to generating less diverse text; and visualize AI-
generated text through token-level scoring such as
the probability and entropy of tokens within a text
segment. In response to the shift towards increas-
ingly large LLMs, various neural detection systems
have been introduced (Fabien et al., 2020; Abbasi
et al., 2022; Mitchell et al., 2023), and a benchmark
dataset (TuringBench (Uchendu et al., 2021)) has
also been developed for controlled comparisons
among systems. Dugan et al. (2022) tasked hu-

man participants with detecting the transition point
between human- and AI-text within a document.
Annotators overwhelmingly point to common sense
or irrelevancy issues as rationales for deciding a
segment is AI-generated. With continued improve-
ments in the quality of generated text, some have
argued that the AI- and human-generated text will
become too similar to be distinguishable (Sada-
sivan et al., 2023), while others suggest that, in
practice, the amount of text available is key to pro-
vide enough signal for detection (Chakraborty et al.,
2023).

Overall, two family of techniques emerge from
this literature: the first based on n-gram statistics,
such as OpenAI’s strong baseline built from a lo-
gistic regression classifier using Tf-idf-weighted n-
gram vectors (Solaiman et al., 2019) and the sec-
ond which simply consists in fine-tuning an LLM
such as RoBERTa (Liu et al., 2019) for the detec-
tion task, as was done by Sadasivan et al. (2023);
Chakraborty et al. (2023) and in the OpenAI GPT-2
detector (Solaiman et al., 2019). We will thus use
these two classifiers as representative of AI-text
detection in our study.

2.2. Authorship Analysis
Computational authorship analysis is a field of
research that aims to automatically analyze au-
thorship styles within written text. Computational
authorship analysis systems motivate many real-
world applications, including for plagiarism detec-
tion (Stamatatos and Koppel, 2011), detection of
hacked accounts (Junior et al., 2017), and forensics
(Yang and Chow, 2014; Ainsworth and Juola, 2019).
These real-world needs, as well as the need to tech-
nically standardize and improve algorithms, mod-
els, and datasets, have motivated an annual shared
task, PAN 1. PAN covers ground spanning multiple
tasks including profiling, style change detection, di-
arization, verification, attribution, and obfuscation.

1https://pan.webis.de/shared-tasks.html
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We focus our analysis in this paper using meth-
ods from the verification (determining whether two
texts were written by the same author) and attribu-
tion (identifying the correct author from a closed-set
of authors, represented by their writing samples)
tasks.

Verification Verification refers to the binary clas-
sification task where given two writing samples de-
cide whether the texts are written by different or
the same authors. The PAN2022 shared task on
Authorship Verification showed that verification is
difficult in settings with varied domains and text
lengths. The overview (Stamatatos et al., 2022)
showed that a naïve baseline based on charac-
ter n-gram representations of document pairs was
demonstratively as effective as more sophisticated,
neural-based methods at distinguishing authors in
the verification setting. We use this n-gram base-
line model in our own experiments.

Attribution Attribution consists of identification
models, and often is evaluated using a closed-world
set of candidate authors with writing samples from
which an identification model can draw meaning-
ful features in order to classify unlabelled writing.
Models have frequently been trained on these fea-
tures, which can operate at the lexical-, syntactic-,
semantic-, character-, and application-specific lev-
els (Stamatatos, 2009). More recently, neural em-
beddings have proven to be effective at capturing
authorship distinction, thanks to the availability of
larger-scale labelled datasets that can be used to
learn authorship representations. We use one such
embedding model (Rivera-Soto et al., 2021) as a
basis for validating our research questions.

3. Approach

This section describes our approach to studying
authorship in human-AI co-written text, including
the data (Section 3.1) and models (Section 3.2)
shared across experiments.

3.1. CoAuthor Dataset
Our experiments rely on the CoAuthor Human-AI
Collaborative Writing Dataset (Lee et al., 2022).
This dataset consists of writing sessions conducted
by human participants in response to prompts, with
the assistance of a state-of-the-art LLM (GPT-3).
Participants spend about 15 minutes writing in a
session where they have the option of accepting,
editing or ignoring text generated by GPT-3. Table
1 presents an excerpt of an author response to a
prompt delineating the different text categories.

Prompts are divided into two categories of ten
prompts each: argumentative essays and creative

writing. An example of a creative and argumenta-
tive prompt is shown in Table 2. Authors were not
required to write in all prompts and sessions were
not required to have all text types. Within a CoAu-
thor writing session, the participant has the option
to prompt GPT-3 for suggestions conditioned on
the previous context of the session. If the partici-
pant does not prompt GPT-3, then we consider the
text written next to be human-generated (human).
If the participant elects to prompt GPT-3 and ac-
cepts its output without any modification, then we
put the text in the GPT-generated category (GPT).
If the participant elects to prompt GPT-3 but edits
the GPT-3 output in any way, then the text falls in
the edit category (edit). As a result, a CoAuthor
session written by a participant in response to a
prompt, can be viewed as a sequence of segments
that belongs to one of the above three types.

In total, there are 1447 sessions, written by 62 au-
thors. Each session has an average length of 24.4
segments. Overall, 66% of segments fall within the
human category, 20% within GPT, and 14% within
edit.

Selecting different subsets of segments lets us
construct different views of this data to address two
main research questions:

• Can we automatically discriminate between
human-written, GPT-generated, and edit
text? This is a binary or ternary classification
class depending on the types included.

• How well can we automatically identify individ-
ual authors of a session when using human-
written text only vs. a mixture of human and
GPT text?

3.2. Classification Models

We consider four classification models including n-
gram models and neural/embedding based models.

Logistic Regression We use standard logistic
regression classifiers, based on one of two fea-
ture types: LUAR embeddings (Rivera-Soto et al.,
2021) and Tf-idf-weighted character n-gram vector-
ization. The LUAR (Learning Universal Authorship
Representations) embeddings are sentence em-
beddings trained for authorship identification on
texts extracted from Reddit posts. n-gram based
features have provided strong baselines for detect-
ing AI-generated text in past work (Solaiman et al.,
2019). Across experiments, we will use a maxi-
mum length of 200 tokens per input. We imple-
ment n-gram vectorization using the scikit-learn
(Pedregosa et al., 2011) toolkit. We use character
n-grams of size 4 with a vocabulary size of 3000.
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Prompt code Prompt text (source url)

dad All of the “#1 Dad” mugs in the world change to show the actual ranking of Dads
suddenly. (https://www.reddit.com/r/WritingPrompts/comments/6gl289/wp_
all_of_the_1_dad_mugs_in_the_world_change_to/)

stereotype What Stereotypical Characters Make You Cringe? What stereotypical char-
acters in books, movies or television shows make you cringe and why?
Would you ever not watch or read something because of its offensive
portrayal of someone? (https://www.nytimes.com/2017/11/16/learning/
what-stereotypical-characters-make-you-cringe.html)

Table 2: An example of a creative (dad) and argumentative (stereotype) writing prompt from the CoAuthor
data. Participants continue writing a story from the initial creative prompt or respond to the question
provided in an argumentative prompt. Prompts were sourced from the attached url and modified by Lee
et al. (2022).

RoBERTa We also fine-tune a pre-trained
RoBERTa (Liu et al., 2019) model for sequence
classification. RoBERTa is commonly used as a
foundation in fine-tuning models for AI-generated
text detection (Solaiman et al., 2019; Chakraborty
et al., 2023; Sadasivan et al., 2023). We initial-
ize our model with roberta-base, consisting
of Transformer blocks of 24 layers with 16 self-
attention heads and size 1024 hidden dimension.
We utilize the baseline parameters as we are in-
terested in measuring RoBERTa’s out-of-the-box
capabilities in the collaborative writing scenario.

Character n-gram Distance For authorship ver-
ification, we additionally include a standard char-
acter n-gram model (CNG) class, released as part
of the PAN2022 (Stamatatos et al., 2022) author-
ship verification task. As character n-grams are
highly indicative of authorship style, the model first
creates Tf-idf-weighted character n-gram vectors
for each input text. After computing cosine simi-
larities for each text pair, a grid search identifies
an optimal verification threshold. Similarities are
then re-scaled to compute pseudo-probabilities in-
dicating the likelihood that the two texts come from
the same author. We use the default settings of
n-grams of length 4 and a vocabulary size of 3000.
We run one iteration of grid search, and do not use
bootstrapping.

4. AI Detection

We evaluate whether human-generated text in
the CoAuthor data can be distinguished from AI-
generated text in two settings: the binary human
vs. GPT classification task which aligns the typical
framing of AI detection in prior work, and the ternary
human vs. GPT vs. edit classification task which
reflects the different generation modes specific to
the co-writing setting.

4.1. Experiment Setup
We construct data to train and evaluate four ver-
sions of the AI detection classification task. We
consider the combination of the binary or ternary
prediction tasks at segment-level or session-level
granularities.

Each session is divided into its three text cat-
egories (possibly empty) and pooled into SH, SG
and SE for human, GPT and edit text, respectively.
Segment-level examples are created by further di-
viding each session into its segment components.

For each of the prediction + granularity com-
binations, we make an 80/20 train-test split. In
order to evaluate across multiple trials, we ran-
domly downsample 90% of the total training data,
maintaining balanced class sizes (min (|SH|, |SG|)
for binary and min (|SH|, |SG|, |SE|) for ternary),
and train each model. There are an average of
1,700 session-level and 9,600 segment-level train-
ing samples for binary tasks, and 2,500 session-
level, 10,800 segment-level samples for ternary
tasks, respectively. The evaluation sets are 593
for human vs. GPT and 909 for human vs. GPT vs.
edit.

4.2. Results
We present the F1-scores for models trained for
the AI identification task in Figure 1. We report
macro F1 using the unweighted means of precision
and recall across classes, as implemented in the
scikit-learn library.

In the binary task, classifiers discriminate human-
written from AI-generated text with F1-scores at or
above 0.8 at the session level. Classification on sin-
gle segments is harder for all classifiers, consistent
with prior work (Chakraborty et al., 2023) where
accuracy of neural AI detection models increases
as the amount of text to be classified increases.
Interestingly, the best performing classifier is the
logistic regression model based on LUAR features.

(https://www.reddit.com/r/WritingPrompts/comments/6gl289/wp_all_of_the_1_dad_mugs_in_the_world_change_to/)
(https://www.reddit.com/r/WritingPrompts/comments/6gl289/wp_all_of_the_1_dad_mugs_in_the_world_change_to/)
(https://www.nytimes.com/2017/11/16/learning/what-stereotypical-characters-make-you-cringe.html)
(https://www.nytimes.com/2017/11/16/learning/what-stereotypical-characters-make-you-cringe.html)
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Figure 1: F1-scores for LUAR trained on human or
human+GPT+edit data and evaluated on all four
text combination types, averaged over 20 trials.

It outperforms the n-gram-based logistic regres-
sion model, possibly because the rich LUAR rep-
resentations trained on large amounts of Reddit
data encode much richer information about text
style than the n-gram statistics derived from the
training set alone. More surprisingly, the LUAR-
based classifier outperforms the RoBERTa-based
model which is a standard approach for AI-text de-
tection outside of the co-writing setting (Solaiman
et al., 2019).The large standard deviation for the
RoBERTa model suggests that fine-tuning such a
large model in the low-resource co-writing setting is
not as effective as when using large amounts of text
independently written by humans and generated by
AI. Here, the rich authorship representations from
the LUAR models prove more effective and gen-
eralize to the task of discriminating human-written
from AI-generated text, even though there was pre-
sumably no AI-generated text in the LUAR training
data.

Moving to the harder ternary task, we find that
all classifiers perform worse compared to the bi-
nary task, as expected. The LUAR-based model is
the most robust of the three, and remains the top
performing model.

Overall, these results show that even in the co-
writing setting the distributions of GPT and edit
text differ enough from human to be discriminated.
Interestingly, text representations based on author-
ship embeddings of human authors prove most
effective at this task, even though they were not
trained on AI-generated text.

5. Authorship Verification

We turn to the task of authorship verification, a bi-
nary classification task which consists of determin-
ing whether two sessions are written by the same

Figure 2: Sketch of method for generating synthetic
data for authorship detection.

human author or not. We compare authorship veri-
fication classifiers based on sessions comprised of
four text combinations (1) human, (2) human and
GPT, (3) human and edit and (4) human, GPT and
edit.

5.1. Experiment Setup
Figure 2 diagrams the methodology for creating
our synthetic data. Since we want to maintain a
consistent collection of sessions across all experi-
ments, we select CoAuthor sessions that contain
all three categories of text, and authors that have
participated in at least 10 sessions. We start with
the collection of sessions S, each containing TH,
TG and TE text segments of human, GPT and edit
types, respectively. In an attempt to avoid bias from
session length and imbalanced subsets of text seg-
ments, we use 6 segments as an upper bound on
session length. Let Sk be a session and consider
THk

, TGk
, TEk

∈ Sk, the collection of correspond-
ing text segments. We generate human session
text by sampling min(6, |TH|) segments from TH
and concatenating them in the corresponding order
in the session. We similarly concatenate sampled
text segments by sampling min(3, |T∗|), min(3, |T∗|)
and min(2, |T∗|), from the corresponding segment
collections when generating human+edit, hu-
man+GPT and human+edit+GPT session texts, re-
spectively.

We partition the resulting data into train and test
sets according to prompt, so that there is no over-
lap in training and test prompts. This results in 646
samples for train and 203 for test containing 26 dis-
tinct authors. Table 3 summarizes data statistics.

Within this train-test split, we pair sessions writ-
ten by the same and different authors to create
samples for the verification task. This results in
a training size and test size of 31,323 and 1,276
instances, respectively, for each text combination
category.

By selecting segments of the appropriate author-
ship type within a session, we train classifiers for
authorship verification in each of the three settings:
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Train Test
No. session 646 203
Avg. no. sess/auth 24.9 7.8
Avg. no. seg/sess 5.7 5.2
Avg. tok len (H) 95.7 98.7
Avg. tok len (HG) 86.8 88.4
Avg. tok len (HE) 102.3 102.2
Avg. tok len (HGE) 101.6 102.0

Table 3: Statistics of co-writing sessions used to
train and test authorship analysis classifiers.

• (human, human) input text pairs

• (human + GPT, human + GPT) input text pairs

• (human + GPT + edit, human + GPT + edit)
input text pairs

Models are then evaluated on text pairs across the
same three settings.

5.2. Results
We compare the four classifier types (Section 3.2)
each trained on the three views of the data (human,
human+GPT, and human+GPT+edit) on the cor-
responding versions of the test sets, resulting in 12
models.

Figure 3 (top figure) shows the impact of intro-
ducing both types of AI-generated text by com-
paring the authorship verification performance of
these 12 models on human test samples vs. hu-
man+GPT+edit test samples. As expected, clas-
sifiers based on the LUAR embeddings outperform
all other classifiers when evaluating on human writ-
ten text only (Figure 3 top left), even when they
are trained on noisier samples that also contain
AI-generated text, with the best model achieving
an F1-score of 0.73. The character n-gram model
from the PAN shared task is a close second. When
evaluating on test samples where each session con-
tains a mix of human+GPT+edit segments (Fig-
ure 3 top right), the n-gram based models are more
robust to this shift than the LUAR and RoBERTa
models. Interestingly, the character n-gram model
(cng_dist) is the best performing model in these set-
tings, and its performance remains stable no matter
the version of the data it is trained on (human, hu-
man+GPT, or human+GPT+edit).

Figure 3 (bottom figure) shows the impact of in-
troducing the edited samples in the data by com-
paring the same 12 models on human+GPT vs. hu-
man+GPT+edit test samples. The character n-
gram model (cng_dist) remains the best perform-
ing and continues to exhibit stable performance in
these new settings. The LUAR-based models are

Figure 3: F1-scores for authorship verification mod-
els trained and evaluated on (top) human or hu-
man+GPT+edit or (bottom) human+GPT or hu-
man+GPT+edit data. The error bars are gener-
ated from the standard deviation over 5 trials.

impacted by the nature of the AI-generated text in
test samples: they perform slightly better when test
samples include edit segments (Figure 3 bottom
right) in addition to GPT segments (Figure 3 bottom
left), indicating that the LUAR embeddings help
capture some useful authorship style signal even
in text that is edited from LLM output.

Overall, these results show that authorship veri-
fication can be achieved with F1-scores reaching
0.67 by the character n-gram classifier, which is
more robust to the introduction of AI-generated
text and outperforms more complex models based
on authorship embeddings and RoBERTa. Per-
haps surprisingly, training these models on a mix
of human-written and AI-generated text has only
limited benefits compared to training on human text
only, even when evaluating under the correspond-
ing condition.

5.3. Analysis
In this section, we explore potential reasons be-
hind verification model behavior through feature
and error analysis.
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Figure 4: Intersection size of common top N fea-
tures of the CNG vectorizers trained on human,
human+GPT and human+GPT+edit data.

Salient character n-grams Given the stable be-
havior of the character n-gram model across set-
tings, we investigate whether it relies on the same or
different salient features when trained on each ver-
sion of the data. We plot in Figure 4 the intersection
size of the top N character n-gram features across
pairwise comparisons of human, human+GPT and
human+GPT+edit scenarios. For lower values of
N , human vs. human+GPT+edit and human+GPT
vs. human+GPT+edit have a similar amount of
common features. However, as N increases hu-
man+GPT vs. human+GPT+edit and human+GPT
vs. human+GPT+edit tend to be more similar. Al-
though CNG’s performance remains close across
variants, even at N = 300 at most 1

4 of top features
are pairwise common.

We show the common and disjoint sets of fea-
tures for human vs. human+GPT+edit in Table 4.
The model trained on AI text (second row) relies
more on n-grams that contain punctuation and
spaces (e.g., “1 da”) and expected to be used in
conversational registers (e.g., “ok i”, “mmmm”) than
the model trained on human text only (first row)
which contains n-grams we would expect to find in
longer and rarer words (e.g., “otyp”).

Impact of Prompts To understand some of the
factors that impact verification performance, we
compare the number of errors made by the LUAR
verification model based on whether the two texts
compared were written in response to the same or
different prompts (Figure 5 top). When the prompts
are different, introducing AI-generated text in the
test samples ((H,HGE) and (HGE,HGE) settings)
leads to a bigger increase in errors than when
prompts are the same, illustrating that authorship
verification is harder when the authorship style and
the topic shift simultaneously.

Error types When categorizing samples based
on their correct label (Figure 5 bottom), we find that

Figure 5: Average percentage of errors of LUAR for
the verification task categorized by prompt (top) and
author (bottom) ID. The error bars are generated
from the standard deviation over 5 trials.

the LUAR model makes more errors by predicting
that texts written by different authors are written
by the same person (false positive) than failing to
detect that two texts are written by the same author
(false negative). Using a model trained on human
text only to verify authorship on mixed human-AI
text leads to a bigger increase in false positives
than false negatives, confirming that the injection
of AI-generated text makes sessions written by dif-
ferent authors more similar overall. Conversely,
when training on mixed human-AI data, evaluating
on human-only leaves the number of false posi-
tives roughly constant, but decreases the false neg-
atives, indicating that potential inconsistencies in
human and AI style within a session hurt prediction
accuracy.

6. Authorship Attribution

Finally, we evaluate the impact of AI-generated text
in the authorship attribution task, which addresses
authorship analysis in a narrower setting than the
verification task. In authorship attribution, we as-
sume that training samples for a specific set of
authors are available, and that we are only inter-
ested in detecting authorship within this closed set.
We frame this task as a K -ary classification task
on a closed set of K = 3, 4, 5, 7, 11 authors.
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human {reot, mpon, rtal, pads, pad, mort, zens, ampo, otyp, mag, tte , ucts, tamp, luc,
a bo, eoty, pesh, tam, apes, mmor, immo, sola, hell, olat}

human+GPT+edit {team, olf., cult, we c, bla, pps , ook., he ”,do n, eure, wome, 1 da, d ra, soe,
ourc, itic, nged, mmmm, sour, le b, isk , urce, izen, ok i}

Common {uret, isol, ypes, soeu, oeur, iso}

Table 4: The set of disjoint and common top n-gram CNG features trained on human or human+GPT+edit
for N = 30. n-grams are not in order of importance.

6.1. Experiment Set-Up
We train models on each category of text combi-
nation types (human, human+GPT, human+edit
and human+GPT+edit). In order to prevent bias
in testing on a specific set of authors, we run multi-
ple trials (t=20) by selecting random subsets of K
authors within the dataset used for authorship veri-
fication. We only use authors that have at least 9
sessions in the test set. All four training variants are
evaluated against the four text combination types
in the test set.

6.2. Results
We plot the authorship attribution F1-score of
the LUAR-based classifier as a function of the
number of authors in Figure 6, comparing the
combination of two training conditions (human
or human+GPT+edit) and four evaluation con-
ditions (human, human+edit, human+GPT and
human+GPT+edit). We do not plot the n-gram
and RoBERTa classifiers as they underperform the
LUAR based classifier by a large margin with F1-
scores below 0.5. Note that the character n-gram
model is a verification model and is therefore not
applicable in the K-ary attribution setting.

Figure 6: Average F1-scores for LUAR trained on
human or human+GPT+edit data and evaluated
on all four text combination types.

The human only upper bound – black line (H,H) –
shows that the attribution task is increasingly harder

when the number of authors increase, with an ini-
tial F1-score above 0.9 for only 3 authors down to
slightly below 0.8 with 11 authors. All other com-
binations of train and test configurations degrade
attribution performance by 10 F1 points or more.
The benefits of training on the same conditions as
the test condition are limited, except when testing
on human only data.

Overall, these results show that attribution is a
hard task with the injection of AI text within a closed
set of authors given the data available within CoAu-
thor. However, when working with a relatively small
and closed set of authors, it might be possible
to collect additional samples of writing. While it
remains to be seen how attribution performance
would evolve with the availability of more data, our
current results suggest that additional samples of
text independently written by human authors might
be sufficient to improve accuracy, which might make
data collection easier.

7. Conclusion

Using writing sessions from the CoAuthor dataset
of human-AI collaborative writing, we conducted
a series of experiments to evaluate the impact of
injecting AI-generated text on authorship analysis
tasks. We found that even when human-written and
AI-generated texts are drawn from co-writing ses-
sions, it is possible to distinguish human-written vs.
AI-generated text reasonably well (0.8+ F1-score).
Classifiers based on the LUAR authorship style em-
beddings outperform classifiers that are typically
used for AI text detection in settings where human
and AI text are generated independently. The au-
thorship embeddings proved useful across tasks,
including authorship verification – the task of deter-
mining whether two texts are written by the same
authors, which is more in line with their pre-training
objective – and authorship attribution – the classi-
fication task for picking an author among a small
closed set of candidates, where the LUAR-based
classifier outperforms all other approaches. This
is notable because the LUAR embeddings are not
trained on AI-generated text, and suggests that the
underlying representation encodes a rich diversity
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of styles which is sufficient to capture the style of
AI-generated text.

However, for the authorship verification task, the
simpler character n-gram models were more robust
to the injection of AI-generated text, outperforming
all other classifiers when testing on mixed human-
written and AI-generated sessions. Furthermore, in
both verification and attribution settings, the bene-
fits of training authorship analysis models on mixed
human-written and AI-generated data were limited,
indicating that writing samples of existing indepen-
dently written text might be useful and sufficient
when building models to analyse co-authored text.

As any empirical study, our work comes with the
limitations associated with the assumptions made
in our dataset. Our view of human-AI collaborative
writing is thus limited to the affordances provided
by the CoAuthor interface, and it remains to be
seen how other types of AI writing assistance, such
as editing suggestions or iterative revisions, would
impact authorship analysis. More data collection
would also be needed to study how interactions
with GPT-3 might impact the style of authors even
when they write from scratch (e.g., entrainment)
and whether GPT-generated text differs substan-
tially in style within the context of writing sessions
conducted by different participants.

Nevertheless, working with the CoAuthor dataset
made it possible to construct controlled experi-
ments comparing different views of sessions, and
shows that authorship analysis in those settings re-
mains possible with rich models of authorship style
even if they are not trained on AI-generated text.
We hope these findings will encourage future work
on collecting data and analyzing authorship in a
broader range of settings, as the boundary between
human-written and AI-generated text continues to
blur in years to come.
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