
LREC-COLING 2024, pages 1899–1914
20-25 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

1899

Automatic Decomposition of Text Editing Examples into Primitive
Edit Operations: Toward Analytic Evaluation of Editing Systems

Daichi Yamaguchi1, Rei Miyata2,
Atsushi Fujita3, Tomoyuki Kajiwara4, Satoshi Sato1

1Nagoya University, 2The University of Tokyo,
3National Institute of Information and Communications Technology, 4Ehime University

1Nagoya, Japan, 2Tokyo, Japan, 3Kyoto, Japan, 4Ehime, Japan
yamaguchi.daichi.nlp@gmail.com, miyata@p.u-tokyo.ac.jp,

atsushi.fujita@nict.go.jp, kajiwara@cs.ehime-u.ac.jp, sato.satoshi.g9@f.mail.nagoya-u.ac.jp

Abstract
This paper presents our work on a task of automatic decomposition of text editing examples into primitive edit
operations. Toward a detailed analysis of the behavior of text editing systems, identification of fine-grained edit
operations performed by the systems is essential. Given a pair of source and edited sentences, the goal of our task
is to generate a non-redundant sequence of primitive edit operations, i.e., the semantically minimal edit operations
preserving grammaticality, that iteratively converts the source sentence to the edited sentence. First, we formalize
this task, explaining its significant features and specifying the constraints that primitive edit operations should satisfy.
Then, we propose a method to automate this task, which consists of two steps: generation of an edit operation lattice
and selection of an optimal path. To obtain a wide range of edit operation candidates in the first step, we combine a
phrase aligner and a large language model. Experimental results show that our method perfectly decomposes 44%
and 64% of editing examples in the text simplification and machine translation post-editing datasets, respectively.
Detailed analyses also provide insights into the difficulties of this task, suggesting directions for improvement.

Keywords: Text Editing, Analytic Evaluation, Text Generation

1. Introduction

Text editing plays an important role in human writ-
ing activities, which widely covers various tasks,
such as text simplification, grammatical error cor-
rection, post-editing and pre-editing for machine
translation, and sentence compression. Many
studies have attempted to automate these tasks
and made significant progress by using deep learn-
ing methods (e.g., Filippova et al., 2015; Nisioi
et al., 2017; Junczys-Dowmunt et al., 2018; Cor-
reia and Martins, 2019; Feng et al., 2023; Raunak
et al., 2023).

One of the challenges in developing and eval-
uating text editing systems is to concretely under-
stand the behavior of the systems, i.e., how the
system rewrites a source text to generate an edited
text. Deep learning methods are by nature black-
boxed; they are usually trained to predict an edited
sentence from a source sentence in an end-to-end
fashion. Moreover, evaluation practices in text edit-
ing tasks have tended to focus on numerically sum-
mative evaluation metrics. Widely-used automatic
metrics, such as BLEU (Papineni et al., 2002),
ROUGE (Lin, 2004), and BLEURT (Sellam et al.,
2020), can gauge the overlap or similarity between
system outputs and human references, but they
are not designed to capture the detailed edit oper-
ations performed by the systems. The problem of
low interpretability of such metrics has long been

acknowledged (Sai et al., 2022).
To understand and explain the system’s behav-

ior in detail, it is essential to develop tools to ana-
lytically evaluate system outputs in terms of edit
operations that are understandable by humans.
Analytic evaluation generally consists of two sub-
tasks: identification of edit operations from a pair
of source and edited sentences and classification
of each operation. For the former, identification of
edit operations can be addressed by decompos-
ing a given pair of source and edited sentences
into multiple minimal edit operations (Miyata and
Fujita, 2021). However, the procedure to identify
the unit of editing has been neither formalized nor
automated. For the latter, taxonomies of edit op-
erations have been proposed for various editing
tasks (e.g., Vila et al., 2014; Kovatchev et al., 2018;
Yamamoto and Yamada, 2022), some of which in-
clude an annotation scheme for helping consistent
classification (Yamaguchi et al., 2023).

Against this backdrop, we propose to formal-
ize the task of decomposing text editing exam-
ples and attempt to automate this process. For
instance, a pair of source and edited sentences
in Figure 1 can be decomposed into three primi-
tive edit operations, i.e., semantically minimal edit
operations that preserve grammaticality. Such a
decomposition can scaffold fine-grained analyses
of edit operations in the next step. We imple-
mented an automatic decomposition method with

1900

Scientists who study the brain have found it is tough.

Researchers who study the brain have found it is tough.

Researchers who study the brain have found that it is tough.

Brain researchers have found that it is tough.

Source Sentence

Edited Sentence

Edit 1 Scientists → Researchers

Edit 2 φ → that

Edit 3 Researchers who study the brain
→ Brain researchers

Figure 1: Decomposition of a text editing example
into primitive edit operations.

an alignment tool and a pre-trained large language
model (LLM). Then, we experimentally verified it
using text simplification and machine translation
post-editing datasets. The results showed that our
proposed method perfectly decomposed 44% and
64% of editing examples in the datasets, respec-
tively. Our in-depth analyses of both erroneous
and successful cases revealed the difficult types
of problems and suggested future research direc-
tions.

2. Related Work

Understanding the system’s behavior has been ad-
dressed in the field of explainable AI, which aims to
help the system users understand how the model
makes the prediction (Burkart and Huber, 2021).
The way of explanation can be classified into self-
explaining or post-hoc (Danilevsky et al., 2020).
The self-explaining methods use information ob-
tained when the model predicts. For instance,
editing systems that generate outputs based on
an intermediate prediction of edit operation se-
quence (Stahlberg and Kumar, 2020; Dong et al.,
2019) are classified into the former. In contrast,
the post-hoc methods use information obtained
from an additional process after the prediction has
been done. The task tackled in our study, i.e., the
decomposition of any given text editing examples,
falls into the latter.

To evaluate editing systems, several studies
have analyzed the statistics of surface edit oper-
ations (e.g., insertion, deletion, substitution, and
shift) performed by the systems (Zhang and Lap-
ata, 2017; Sun et al., 2020; Bhattacharyya et al.,
2022). The distribution of edit operations is usu-
ally obtained by using automatic methods, such
as TER (Snover et al., 2006) and SARI (Xu et al.,
2016), in a post-hoc manner. Although the general
characteristics of adopted edit operations can be
observed, the identified textual unit of edit opera-
tions does not guarantee grammatical and seman-
tic cohesiveness and thus may not necessarily be
understandable for humans.

As more human-interpretable methods, many at-
tempts have been made to develop taxonomies
of editing types or strategies for various tasks,
including paraphrasing (Bhagat and Hovy, 2013;
Vila et al., 2014; Kovatchev et al., 2018), text
simplification (Shardlow, 2014; Yamaguchi et al.,
2023), grammatical error correction (Bryant et al.,
2017), pre-editing (Miyata and Fujita, 2021), post-
editing (Tatsumi, 2010), and target text editing in
translation (Yamamoto and Yamada, 2022). As
for text simplification, Yamaguchi et al. (2023) also
provided a decision tree to classify an edit opera-
tion based on the simplification strategy taxonomy.

Nevertheless, these past studies possess the
following two limitations: (1) procedures to iden-
tify the unit of edit operation have yet to be for-
malized, and (2) analysis of edit operations has
been conducted manually. Identification of edit
operations in the given pair of source and edited
texts chiefly depends on the annotators’ expertise,
which may hinder the consistent analysis between
annotators.1 In the context of pre-editing, Miyata
and Fujita (2021) have defined a primitive edit op-
eration as an edit operation that cannot be de-
composed while maintaining its original meaning.2
However, their definition is not detailed enough
for consistently identifying primitive edit operations
and may not be applicable to other editing tasks
in which original information may change, such as
text simplification. Furthermore, among other eval-
uation methods, analytic evaluation is particularly
labor-intensive. To implement such evaluation in
the rapid cycle of research, automation of the eval-
uation process is highly demanded.

Text morphing is a related task, which auto-
matically generates fluent intermediate sentences
that smoothly change sentence A into sentence
B (Huang et al., 2018). While this task is similar
to our task of decomposing text editing examples,
the input of text morphing is an arbitrary pair of
sentences rather than a pair of source and edited
sentences. The constraint on the intermediate sen-
tence is more relaxed than ours, which may permit
the generation of deviated intermediate sentences
that are unacceptable as an edit operation. In addi-
tion, Huang et al. (2018) do not explicitly consider
the primitiveness.

1For the task of translation error classification, the dif-
ficulty in identifying erroneous spans in text has been
suggested (Lommel et al., 2014; Fujita et al., 2017).

2Miyata and Fujita (2021) use the term “minimum
edit” rather than “primitive edit operation.”

1901

3. Problem Statement

3.1. Problem to be Solved
Given a pair of source and edited sentences
(Xsrc, Xedt), we generate a sequence of edit oper-
ations that connects the pair of sentences. In gen-
eral, there exist multiple orders of edit operations.
Consider the following pair of sentences.

Xsrc: Tom said he loved The Smiths.
Xedt: He said he loved the band.

This pair of sentences can be explained in two
ways: “Tom” is replaced with “He” before/after “The
Smiths” is replaced with “the band.” Therefore, the
result of this decomposition forms a lattice of edit
operations in general. Formally,

E = {(E1, ..., En) | Xedt = En(...E1(Xsrc))}

where Ei is an edit operation, a function that edits
one part of the input sentenceXi−1 into another ex-
pression and returns Xi (= Ei(Xi−1)). The index
i indicates the order of the application of an edit
operation. Given (Xs, Xt), such that s < t, we call
Xs a source-side sentence and Xt an edited-side
sentence. We denote an edit operation Ei as “A
⇒ B,” which means the edit operation changes A
of Xi−1 into another expression B to form Xi. We
refer to A as a source side of an edit operation and
B as an edited side of it.

Our goal is to obtain one sequence of edit oper-
ations within such a lattice, i.e., E ∈ E, due to the
following two reasons. First, to understand the sys-
tem’s behavior, the entire lattice is unnecessary.
Second, there could be a true order of the edit op-
erations but it cannot be identified from only the
given sentence pair.

3.2. Features of the Problem
Dependency of Edit Operations: An edit oper-
ation can depend on another edit operation; in
other words, there exist strict orders of edit oper-
ations. For instance, the following pair of source
and edited sentences can be explained by two edit
operations: “me ⇒ ϕ ” and “tell ⇒ state.” The lat-
ter can only be applied after the former has been
applied.

Xsrc: Please tell me the truth.
Xedt: Please state the truth.

Hidden Edit Operation: An edit operation can
be composed of words that appear in neither
source nor edited sentences. For instance, the
pair

Xsrc: I start using that.
Xedt: I do that.

can be explained by two edit operations in two
ways:

1. (“using ⇒ doing”, “start doing ⇒ do”)
2. (“start using ⇒ use”, “use ⇒ do”)

where neither “doing” nor “use” appear in the
source and edited sentences.

Uncontinuous Edit Operation: Each side of
edit operation can be composed of an uncontin-
uous span of words. For instance, the following
pair of sentences can be explained by an edit op-
eration “like ... very much ⇒ love,” where “like” in
the source side is apart from “very much.”

Xsrc: I like David Bowie very much.
Xedt: I love David Bowie.

3.3. Constraints

Considering the features of the problem (Sec-
tion 3.2), we impose the following three constraints
on the edit operations to be generated in this task.

Grammaticality: We consider that an edit oper-
ation must generate a sentence with the newly
rendered part having no grammatical error. The
term “edit operation” is used in the context of edit
distance, and individual edit operations identified
by the existing algorithms for edit distance (e.g.,
Levenshtein Distance) do not necessarily ensure
grammatical correctness of the textual part when
individual edit operation is applied. By contrast,
in our study, we consider only edit operations that
guarantee Grammaticality because we focus on
the edit operations that are understandable by hu-
mans.

Unswervingness: Given a pair of sentences,
the edit operation sequence for it must not con-
tain redundant edit operations. We define such
a status as Unswervingness and refer to an edit
operation which satisfies Unswervingness as an
unswerving edit operation. We regard any sen-
tences generated with unswerving edit operations
as intermediate sentences. Consider the following
triplet of sentences (i < j < k).

Xi: I like David Bowie very much.
Xj: I like Ziggy Stardust very much.
Xk: I love David Bowie.

Xj does not qualify as an intermediate sentence
because “David Bowie ⇒ Ziggy Stardust” is redun-
dant. Unswervingness of an edit operation is eval-
uated referring to an edited-side sentence.

1902

GenerateInter(src,edt)

src

inter1 inter2

edt

inter1

inter2

inter3

Filter inter1

inter2

src

edt

GenerateInter(src,inter1)

inter4

inter5

Filter

…

src

inter1 inter2

edt

inter6

src

inter1 inter2

edt

GenerateInter(inter1, edt)

inter6
Filter

inter6

𝐸!

𝐸" 𝐸#

𝐸$ 𝐸%
𝐸&

𝐸"

𝐸'

𝐸#

𝐸%

𝐸" 𝐸#

𝐸$ 𝐸%

Figure 2: Incremental process for generating a lattice of edit operations.

Primitiveness: We regard an edit operation as
primitive iff a source side and an edited side of an
edit operation form a group of minimal words re-
lated to each other. We impose the constraint of
Primitiveness on edit operations because this can
lead to consistent identification of a fine-grained
unit of edit operation. Primitiveness of an edit op-
eration depends on the pair of source- and edited-
side sentences. Consider the following triplet of
sentences (i < j).

Xi−1: I like David Bowie very much, too.
Xi−1: I love David Bowie very much, too.
Xj−1: I love David Bowie very much.

For this triplet of sentences, “like ⇒ love” is prim-
itive. In contrast, the same edit operation is not
primitive for the following triplet of sentences be-
cause “like ... very much” and “love” form a group
of minimal words related to each other.

Xi−1: I like David Bowie very much, too.
Xi−1: I love David Bowie very much, too.
Xj−1: I love David Bowie.

Although both examples above consist of the same
Xi−1 and Xi, the judgment of Primitiveness differs
depending on Xj . Therefore, to evaluate Primitive-
ness of an edit operation that generates an inter-
mediate sentence, an edited-side sentence must
be considered.

4. Our Proposed Method

4.1. Overview
To generate a sequence of edit operations for a
given pair of source and edited sentences, we first
generate a lattice whose nodes are intermediate
sentences and edges are edit operations, and then
choose one of its paths. We conduct an exhaus-
tive search assuming that the sequence length is
limited and the number of paths does not increase

exponentially. The lattice makes it possible to iden-
tify an optimal path if a proper objective function is
available, unlike beam search or greedy search.

4.2. Lattice Generation
We generate a lattice by iteratively generating in-
termediate sentences of any pair of sentences
(Xs, Xt), such that s < t, with an Intermediate
Sentence Generator and filtering them by judging
their Grammaticality and Unswervingness with an
Edit Operation Filter. Figure 2 illustrates this pro-
cess. We denote an intermediate sentence as
Xinter (s < inter < t).3

4.2.1. Intermediate Sentence Generators

As a way of generating intermediate sentences, we
examine a phrase aligner and a pre-trained large
language model (LLM).

Alignment-based Method: This method consid-
ers an alignment as an action of altering aligned
words/phrases and thus a candidate of edit op-
eration. To ensure that the edit operations sat-
isfy Grammaticality, we employ a phrase aligner
instead of a word aligner.4 Given a pair of sen-
tences, we first identify their phrase alignments.
Then, we generate their intermediate sentences,
separately applying each alignment as an edit op-
eration to the source-side sentence. This method
can generate edit operations composed of contin-
uous words appearing in the given sentences, but
not hidden edit operations and uncontinuous edit
operations (See Section 3.2).

LLM-based Method: This method generates an
intermediate sentence for a given pair of sen-
tences with few-shot prompting to LLM. While it

3An algorithm we used is given in Appendix D.
4With the term “phrase,” we refer to those in the con-

text of constituency parsing.

1903

is difficult to force LLM to generate only unswerv-
ing intermediate sentences, unlike the alignment-
based method, this may generate any intermedi-
ate sentences, including the ones generated with
hidden edit operations and uncontinuous edit oper-
ations. We collect reliable (Xs, Xinter, Xt) triplets
and use them for the few-shot prompt, following
the framework of Retrieval Augmented Generation
(RAG) (Lewis et al., 2021), regarding the given pair
of sentences as a query to search for the triplets
that are similar to the query. The format of the
prompt we use is shown in Section 5.1.

4.2.2. Edit Operation Filter

This discards swerving edit operations by judging
their Grammaticality and Unswervingness, using
two components: an Edit Operation Scorer and a
text similarity metric. Given a triplet of (Xs, Xinter,
Xt), the Edit Operation Scorer computes pgu, the
likelihood of an edit operation E, such that Xinter =
E(Xs), being grammatical and unswerving. We
retain an edit operation iff Xinter generated with it
satisfies all of the following conditions.

• pgu is greater than a threshold

• sim(Xs, Xinter) > sim(Xs, Xt) and
sim(Xinter, Xt) > sim(Xs, Xt)

where sim(·, ·) is a text similarity metric. The
former concerns Grammaticality and Unswerving-
ness, whereas the latter concerns only Unswerv-
ingness. To compute pgu, we implement a model
through finetuning a pre-trained language model
as detailed in Section 5.1.2.

4.3. Path Search

Having obtained a lattice of intermediate sen-
tences, we score Primitiveness of each edit oper-
ation, i.e., edge, in the lattice with a Primitiveness
Scorer, and select the most likely path. Then, we
extract a sequence of edit operations (E1, ..., En)
from a sequence of sentences (Xsrc, ..., Xedt).

Primitiveness Scorer: Given a triplet of (Xs,
Xinter, Xt), this scorer computes ppri, the likelihood
of edit operation E, such that Xinter = E(Xs), be-
ing primitive. To compute ppri, we implement a
model through finetuning a pre-trained language
model as we do for the Edit Operation Scorer. The
detailed implementation is shown in Section 5.1.3.

Search of the Path: We choose one lattice
path with the minimum negative log-likelihood
(−

∑
logppri) by the Viterbi algorithm.

Edit Operation Extractor: The sequence of
sentences (Xsrc, ..., Xedt) in the selected path is fi-
nally converted to a sequence of edit operations
(E1, ..., En). Assuming that Ei is primitive, we de-
termine the difference between Xi−1 and Xi (Xi =
Ei(Xi−1)) with a word matching method and re-
gard the mismatched pair of spans “A ⇒ B” as an
edit operation Ei.

5. Experiment

We evaluated how well our proposed method de-
composes pairs of source and edited sentences.

5.1. Implementation Details
5.1.1. Intermediate Sentence Generators

Alignment-based Method: We used the Arase
and Tsujii (2020)’s aligner,5 which outputs a set of
alignments based on Enju.6

We set the threshold for the phrase aligner to 0.5
and 0.8 and obtained alignments separately. We
used the union of the two sets. This enabled us to
get alignments at high coverage.

LLM-based Method: We used Llama-2.cpp
70B,7 which is a four-bit quantized model of Llama
2 70B (Touvron et al., 2023b).8

To create a database containing (Xs, Xinter,
Xt) triplets for the few-shot prompting, we utilized
Newsela-Auto (Jiang et al., 2020) created by au-
tomatically aligning manually simplified data. In
Newsela-Auto, each original document (L0) has
four simplified versions (L1–L4). The higher the
level is, the simpler the document is. We extracted
triplets of adjacent three versions iff all the three
were different from each other and each one was
composed of a single sentence.9 We discarded
triplets that violated one of the following three cri-
teria considering that such Xinter is swerving.

• sim(Xs, Xinter) > sim(Xs, Xt)

• TER(Xs, Xinter) ≤ TER(Xs, Xt) ≤ 0.5010

5https://github.com/yukiar/phrase_
alignment_cted with a pre-trained model available
at https://zenodo.org/record/4686663

6https://github.com/mynlp/enju
7https://huggingface.co/TheBloke/

Llama-2-70B-GGUF
8We evaluated several models and model sizes, in-

cluding Llama 1 (Touvron et al., 2023a), regarding the
performance of generating intermediate sentences with
the validation data. The Llama 2 70B was the best
model. Refer to Appendix A.

9This is because we targeted the sentence-level edit
operation.

10https://github.com/mjpost/sacrebleu/
blob/master/sacrebleu/metrics/ter.py

https://github.com/yukiar/phrase_alignment_cted
https://github.com/yukiar/phrase_alignment_cted
https://zenodo.org/record/4686663
https://github.com/mynlp/enju
https://huggingface.co/TheBloke/Llama-2-70B-GGUF
https://huggingface.co/TheBloke/Llama-2-70B-GGUF
https://github.com/mjpost/sacrebleu/blob/master/sacrebleu/metrics/ter.py
https://github.com/mjpost/sacrebleu/blob/master/sacrebleu/metrics/ter.py

1904

SRC: Do you love Large Language Model?
TGT: Do you like LLM?
Rewrite SRC step by step until the rewritten sentence matches TGT.
Do you love Large Language Model?
Do you love LLM?
Do you like LLM?
…
SRC: Long live Large Language Model!
TGT: Hail to LLM
Rewrite SRC step by step until the rewritten sentence matches TGT.
Long live Large Language Model!

Figure 3: Prompt for LLM-based intermediate sen-
tence generator. The first k sentence pairs (shown
in red) are the examples, and the last one (shown
in black) is the sentence pair to be decomposed.

• diff(Xs, Xinter) ⊆ diff(Xs, Xt) and
diff(Xt, Xinter) ⊆ diff(Xt, Xs)

where sim(·, ·) is BERTScore (Zhang et al., 2020)
and diff(·, ·) is a function that returns a set of tokens
in the first argument sentence differing from those
in the second argument sentence. Specifically, the
third criterion prunes edit operations like “A ⇒ B”
and then “B ⇒ A.” After this data selection, we built
the database from the remaining 8,978 triplets.

To search for the k-nearest neighbors for the k-
shot prompting, we used FAISS (Johnson et al.,
2021),11 relying on the Euclidean distance. To vec-
torize each pair of source- and edited-side sen-
tences, we concatenated the two sentences with
a separator token </s> and encoded it with Llama-
2.cpp 70B. Then, we used the embedding for the
last token as the vector for the sentence pair.

Figure 3 shows an example of the prompt. The
LLM-based method generated only one intermedi-
ate sentence, which was the output from the end of
the prompt to the newline code, per input sentence
pair. We set k to 5 and initialized the Llama model
with a seed of 42 every time before inputting a pair
of source and edited sentences.12

5.1.2. Edit Operation Filter

Text Similarity Metric: We utilized (1− TER).

Edit Operation Scorer: This was implemented
through finetuning RoBERTa (Liu et al., 2019)13

with one additional fully connected layer. Given
a triplet of (Xs,Xinter,Xt), concatenated with a sep-
arator token </s>, it quantifies how likely the edit
operation E, such that Xinter = E(Xs), is gram-
matical and unswerving. The model was trained

11https://github.com/facebookresearch/
faiss

12We determined the number of shots and the seed
through a preliminary study. For the preliminary experi-
ment, refer to Appendix A.

13https://huggingface.co/roberta-large

Recall Precision F1

Positive 0.69 0.89 0.78
Negative 0.97 0.91 0.94

Table 1: Performance of the Edit Operation Scorer.

on two datasets: an automatically created dataset
and a manually created dataset. The former con-
sists of positive examples of the 8,978 triplets used
in the LLM-based method, and the same number
of negative examples sampled from the pruned
triplets. For the latter, we automatically generated
intermediate sentences with pairs of sentences in
Newsela-Auto with the alignment-based method,
and manually checked whether each sentence
was grammatical and unswerving. This resulted
in 4,460 examples: 1,077 positive and 3,383 neg-
ative examples. The model was first trained on
the automatically created dataset. Then, we initial-
ized the last fully connected layer and finetuned
the model on the manually created data.14

We set the threshold for the Edit Operation
Scorer to 0.5.

To evaluate the Edit Operation Scorer, we
used an evaluation dataset, which was created in
the same way as the manually created training
dataset. The evaluation dataset consists of 662
examples: 156 positive and 506 negative exam-
ples. Table 1 shows the evaluation result, suggest-
ing that the Edit Operation Scorer is adequately
capable of judging whether a given edit operation
satisfies Grammaticality and Unswervingness.

5.1.3. Primitiveness Scorer

We implemented the Primitiveness Scorer by fine-
tuning RoBERTa in the same way as we did for the
Edit Operation Scorer. To finetune the pre-trained
model, we used another manually created dataset.
To create the dataset, we judged Primitiveness of
each of the positive examples in the manually cre-
ated dataset for the Edit Operation Scorer and la-
beled it as positive if it was judged as primitive.
This dataset had 1,077 examples: 589 positive
and 488 negative examples.

If the output sequence of edit operations con-
tains an edit operation with ppri less than a thresh-
old, we excluded the edit operation from the eval-
uation. We set the threshold for the Primitiveness
Scorer to 0.5.

To evaluate the Primitiveness Scorer, we used
an evaluation dataset which was created in the
same way as the training dataset. The evaluation

14We tested three models: the one trained only on the
manually created dataset and the ones trained on the
automatically created and manually created datasets
with/without initializing the last fully connected layer.
Then, we chose the best model.

https://github.com/facebookresearch/faiss
https://github.com/facebookresearch/faiss
https://huggingface.co/roberta-large

1905

Recall Precision F1

Positive 0.89 0.82 0.85
Negative 0.75 0.83 0.79

Table 2: Performance of the Primitiveness Scorer.

dataset consists of 156 examples: 89 positive and
67 negative examples. Table 2 shows the evalu-
ation result. Precision values are above 0.8 for
both positive and negative cases. This indicates
the high capability of the Primitiveness Scorer to
judge whether a given edit operation satisfies Prim-
itiveness.

5.1.4. Edit Operation Extractor

We extracted an edit operation from each pair of
Xi−1 and Xi with word matching obtained by TER.
We determined the shortest span of Xi−1 where
the application of the edit operation is uniquely de-
termined as the span of the edit operation. Con-
sider the following sentences.

Xi−1: She said that it was not that good.
Xi−1: She said that it was not good.

In the example, “that good ⇒ good” is considered
as the edit operation rather than “that ⇒ ϕ.”

5.2. Evaluation Data
We evaluated our system using text simplification
(TS) and post-editing (PE) datasets, both of which
are English. We used the sentence pairs with TER
scores equal to or less than 0.50 since our prelim-
inary analysis revealed that there exist sentence
pairs that are difficult to decompose even manu-
ally and they tend to have TER scores greater than
0.50.

For the TS dataset, we randomly sampled a total
of 50 sentence pairs from the Newsela-Auto cor-
pus test set, ten sentence pairs in each bin with
a 0.1 point width of TER. When sampling the sen-
tence pairs, we automatically excluded trivial ones
having an edit distance of one. As the gold refer-
ence data, we manually created a lattice, contain-
ing all possible intermediate sentences, for each
pair of source and edited sentences. To this end,
we manually extracted the primitive edit operations
for each sentence pair.

For the PE dataset, we used machine-translated
and then post-edited data from documents of
a local government.15 The original documents
had been written in Japanese, and we machine-
translated them into English with TexTra.16 Then,

15https://github.com/tntc-project/
MTPEdocs

16https://mt-auto-minhon-mlt.ucri.
jgn-x.jp/

the professional translator, who is a native English
speaker, post-edited the machine-translated sen-
tences. We created the PE dataset in much the
same way as the TS dataset, except that the two
annotators were involved. The in-house worker
and the first author manually extracted the primi-
tive edit operations. If there was a disagreement
between their results, they resolved it through dis-
cussion.

After extracting the primitive edit operations, for
both datasets, we automatically generated all per-
mutations of the order of them and corresponding
intermediate sentences. Therefore, all intermedi-
ate sentence sequences for a pair of source and
edited sentences have the same length. Then,
to accord with the span of an edit operation, we
extracted edit operations from created intermedi-
ate sentences using the Edit Operation Extractor.
As a result, we obtained the TS and PE datasets
containing 146 and 86 primitive edit operation in-
stances, respectively.17 The TS dataset has about
1.7 times more primitive edit operations. This may
lead the TS dataset to be more difficult to decom-
pose. The distributions of edit operation types are
shown in Section 5.5.

5.3. Evaluation Method
We evaluated our system in three metrics: exact
match rate of the entire sequence of edit oper-
ations, and recall and precision of each edit op-
eration. For the exact match rate, we evaluated
whether the output sequence of edit operations ex-
actly matches the one in the references. For recall
and precision, we evaluated whether each edit op-
eration in the output is included in the references.
While multiple references generally exist, we used
the one with the largest edit operation overlap.

5.4. Results
We compared three variants of our proposed
method: alignment-based method + LLM-based
method (A+L), alignment-based method (A), and
LLM-based method (L).

Table 3 lists the results of each system for the TS
and PE datasets. For both datasets, the A+L sys-
tem was the best, achieving an exact match rate of
0.44 and 0.64 for the TS and PE datasets, respec-
tively, followed by the A system. The L system was
much worse in recall because this method gener-
ated one intermediate sentence per input sentence
pair. Although we have used the dataset for TS to
train the scorers, the result for the PE dataset was
better than the one for TS.

17IDs of pairs of sentences used for the TS dataset
are listed in Appendix C. The PE dataset is avail-
able via https://github.com/tntc-project/
DecomposedMTPE.

https://github.com/tntc-project/MTPEdocs
https://github.com/tntc-project/MTPEdocs
https://mt-auto-minhon-mlt.ucri.jgn-x.jp/
https://mt-auto-minhon-mlt.ucri.jgn-x.jp/
https://github.com/tntc-project/DecomposedMTPE
https://github.com/tntc-project/DecomposedMTPE

1906

System Exact Match Recall Precision

A+L 0.44 (22/50) 0.61 (90/146) 0.66 (90/137)
A 0.42 (21/50) 0.56 (82/146) 0.65 (82/126)
L 0.28 (14/50) 0.28 (41/146) 0.62 (41/66)

(a) TS

System Exact Match Recall Precision

A+L 0.64 (32/50) 0.59 (51/86) 0.71 (51/72)
A 0.64 (32/50) 0.57 (49/86) 0.72 (49/68)
L 0.48 (24/50) 0.31 (27/86) 0.60 (27/45)

(b) PE
Table 3: Results of each system (A: alignment-based method, L: LLM-based method) for text simplifica-
tion dataset (TS) and machine translation post-editing dataset (PE).

TER Exact Match Recall Precision

(0, 0.1] 0.4 0.52 (11/21) 0.73 (11/15)
(0.1, 0.2] 0.8 0.84 (16/19) 0.80 (16/20)
(0.2, 0.3] 0.6 0.70 (19/27) 0.76 (19/25)
(0.3, 0.4] 0.4 0.74 (25/34) 0.64 (25/39)
(0.4, 0.5] 0.0 0.42 (19/45) 0.50 (19/38)

(a) TS

TER Exact Match Recall Precision

(0, 0.1] 0.6 0.53 (8/15) 0.62 (8/12)
(0.1, 0.2] 0.6 0.71 (12/17) 0.63 (12/19)
(0.2, 0.3] 0.7 0.53 (10/19) 0.83 (10/12)
(0.3, 0.4] 0.6 0.56 (9/16) 0.64 (9/14)
(0.4, 0.5] 0.7 0.63 (12/19) 0.80 (12/15)

(b) PE
Table 4: Breakdown results of alignment- and LLM-based method (A+L).

Table 4 lists the breakdown results of the A+L
system for both datasets. For the TS dataset, the
higher the TER was, the lower the precision and
exact match rate were. In contrast, for the PE
dataset, the precision and exact match rate did not
decrease along with the increase of TER.

Table 5 shows the relationship between the num-
ber of edit operations, edit distance, and exact
match rate when using the A+L system. For both
datasets, the more the number of primitive edit op-
erations or edit distance was, the lower the exact
match rate was. Nearly half of the sentence pairs
with three or fewer primitive edit operations were
successfully decomposed.

5.5. Types of Identified Edit Operations
To investigate the characteristics of the A+L sys-
tem, we classified the obtained edit operations.
First, as reference data, we classified 146 and 86
edit operations included in the TS and PE datasets
into one of the following edit operation types: sub-
stitution, insertion, deletion, and shift. Then, we
classified the obtained edit operations that were
included in the references: 90 and 51 edit opera-
tions corresponding to the TS and PE datasets, re-
spectively. Finally, we calculated the recall of the
edit operations.18

Table 6 shows the result. The distribution of the
reference edit operation types for the TS dataset is
different from that for the PE dataset. Specifically,
in the TS dataset, insertion (25 cases) and dele-
tion (31 cases) account for a larger portion than
in the PE dataset. This may reflect the difference

18The obtained edit operations that were not included
in the references were all error cases and it is by nature
difficult to classify them into edit operations. Therefore,
we do not report precision.

between the task in which original information may
greatly change, such as text simplification, and the
task in which original information does not change
much, such as machine translation post-editing.

In the TS dataset, the highest recall was
achieved for substitution, followed in order by dele-
tion and insertion. In contrast, in the PE dataset,
the highest recall was achieved for insertion, fol-
lowed in order by deletion and substitution. This
inconsistent trend across datasets suggests that
the types of edit operations that the A+L system
can correctly obtain depend on the editing task.

5.6. Analyses of System’s Behavior
First, to understand whether Lattice Generation or
Path Search was the cause of the failure of the de-
composition, we conducted an error analysis. We
classified the outputs of the best system (A+L) that
were not exactly matched with the gold reference.
We labeled the lattices that included at least one
path in the gold references as “Path Search.” Oth-
erwise, we labeled the lattices as “Lattice Genera-
tion.” We further classified the latter into one of the
following three error types.

Over Decomposition: All of the paths had more
nodes than a reference path

Under Decomposition: All of the paths had less
nodes than a reference path

Both: Otherwise

Table 7 shows the result of the error analysis.
For both datasets, most errors (23 out of 28 in the
TS dataset, and 18 out of 18 in the PE dataset) hap-
pened when generating a lattice. These results
show that our system did both over- and under-
decomposition, implying that only changing the
threshold for the Edit Operation Scorer does not
help improve decomposition ability.

1907

Edit Distance
2 3 4 ≥5 Total

#
of

Ed
its

1 5/9 - 2/2 - 7/11
2 3/4 4/4 - 0/2 7/10
3 1/3 2/4 1/1 1/5 5/13
4 - - 0/1 2/11 2/12
≥5 - - - 1/4 1/4

Total 9/16 6/8 3/4 4/22 22/50

(a) TS

Edit Distance
2 3 4 ≥5 Total

#
of

Ed
its

1 12/13 5/6 2/3 2/3 21/25
2 6/8 2/6 1/1 0/3 9/18
3 0/1 1/1 - 1/3 2/5
4 - - - 0/1 0/1
≥5 - - - 0/1 0/1

Total 18/22 8/13 3/4 3/11 32/50

(b) PE

Table 5: Relationship between the number of edit operations, edit distance, and exact match rate when
using alignment- and LLM-based method (A+L).

TS PE

Substitution 0.67 (60/90) 0.56 (35/63)
Insertion 0.40 (10/25) 0.78 (7/9)
Deletion 0.65 (20/31) 0.69 (9/13)
Shift - (0/0) 0 (0/1)

Table 6: Recall of edit operation.

Process Error Type TS PE

Path Search Incorrect Search 5 0

Lattice Generation 23 18
Over Decomposition (9) (7)
Under Decomposition (10) (10)
Both (4) (1)

Table 7: Results of the error analysis for alingment-
and LLM-based method.

We also analyzed successful cases, 22 and 32
lattices for TS and PE, respectively, to understand
how well our proposed method generated lattices.
We classified the lattices of the best systems into
one of the following three categories.

Exact Match: Identical to the reference lattice
Included: Included in the reference lattice
Partial Match: Otherwise

For the first two categories, even if the system ran-
domly chooses a path, it should always be correct.

Table 8 shows the result. Over half of the lat-
tices had identical sets of paths in both datasets.
Among Exact Match, more than half of the lattices
had only one primitive edit operation: 7 out of 14
and 21 out of 26 for TS and PE datasets, respec-
tively. Partial Match tended to happen when the
number of primitive edit operations was more than
two. The TS dataset had eight such pairs, and our
system generated only one Exact Match lattice for
the pairs, and the rest were Partial Match. Path
Search succeeded 58% (7/12) of lattices that need
to be searched.19 This result suggests our system

19The number of Partial Match (Table 8) is divided by

Category TS PE

Exact Match 14 26
Included 1 5
Partial Match 7 1

Table 8: Analysis of correct outputs in terms of
overlap between generated and reference lattices.

can correctly select a path to some extent if the
lattice includes a correct path. However, there is
potential for improvement.

6. Conclusions and Outlook

Aiming at helping analyses of text editing systems,
we attempted to automate the decomposition of
text editing examples into primitive edit operations.
Our system consists of lattice generation with a
phrase aligner and LLM, and path search. We
tested three variants of our system on text simplifi-
cation and machine translation post-editing exam-
ples. As a result, our best system perfectly decom-
posed 44% of examples in the text simplification
dataset and 64% of examples in the post-editing
dataset. Our system decomposed the sentence
pairs with a small number of primitive edit opera-
tions well. While the performance of our system
is not adequate for fully automated use, it can be
used for supporting manual analysis.

As for the direction of improvement, our detailed
analyses of the results show that the performance
of lattice generation should be improved, including
the expansion of training data for the Edit Opera-
tion Scorer, because most failures were caused by
this. Also, improving the Primitiveness Scorer may
lead to better results.

the sum of the number of Partial Match and Incorrect
Search (Table 7).

1908

7. Limitations

Language Dependency: We have only experi-
mented in English. Although our proposed method
described in Section 4 is language-independent,
its implementation depends on the phrase aligner
for English and the LLM largely trained on En-
glish text data. Therefore, the results presented
in this paper do not guarantee the accuracy of our
method in other languages.

Coverage of Editing Task and Dataset: The
coverage of editing tasks and used datasets is also
limited. Our experiments have been conducted
with datasets of two different tasks: text simplifi-
cation and machine translation post-editing. The
applicability of our methods to other tasks and
datasets remains to be examined. It should also
be noted that, in our experiment, we have used
editing examples created by human writers or
translators. Our long-term objective is to evalu-
ate editing examples produced by systems, which
often differ from the human-edited ones because
they may contain various errors. How well our pro-
posed method can be applied to such machine out-
puts is still unclear.

Size of Test Dataset: For our evaluation exper-
iment, as described in Section 5.2, we have used
a total of 232 primitive edit operations obtained
from 100 pairs of source and edited sentences. Al-
though the size of the datasets is not large and
further investigation will be needed, it is compa-
rable to other analytic evaluation experiments (Xu
et al., 2015; van Miltenburg et al., 2021; Yam-
aguchi et al., 2023), in which from about 50 to a
few hundred cases have been manually analyzed.

Data Availability: While we released the post-
editing dataset with manually decomposed gold
references, the text simplification dataset created
from Newsela-Auto cannot be made publicly avail-
able due to copyright restrictions. To help replicate
our experiments, we disclosed the list of sentence
pair IDs of Newsela-Auto in Appendix C.

8. Acknowledgements

We are grateful to Newsela for sharing the data.
This work was supported by JSPS KAKENHI
Grant Numbers JP19H05660 and JP23H03689.

9. Bibliographical References

Yuki Arase and Jun’ichi Tsujii. 2020. Composi-
tional phrase alignment and beyond. In Proceed-

ings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP),
pages 1611–1623.

Rahul Bhagat and Eduard Hovy. 2013. Squibs:
What is a paraphrase? Computational Linguis-
tics, 39(3):463–472.

Pushpak Bhattacharyya, Rajen Chatterjee,
Markus Freitag, Diptesh Kanojia, Matteo Negri,
and Marco Turchi. 2022. Findings of the WMT
2022 Shared Task on Automatic Post-Editing. In
Proceedings of the 7th Conference on Machine
Translation (WMT), pages 109–117.

Christopher Bryant, Mariano Felice, and Ted
Briscoe. 2017. Automatic annotation and evalu-
ation of error types for grammatical error correc-
tion. In Proceedings of the 55th Annual Meeting
of the Association for Computational Linguistics
(ACL), pages 793–805.

Nadia Burkart and Marco F. Huber. 2021. A sur-
vey on the explainability of supervised machine
learning. Journal of Artificial Intelligence Re-
search (JAIR), 70:245–317.

Gonçalo M. Correia and André F. T. Martins. 2019.
A simple and effective approach to automatic
post-editing with transfer learning. In Proceed-
ings of the 57th Annual Meeting of the Associa-
tion for Computational Linguistics (ACL), pages
3050–3056.

Marina Danilevsky, Kun Qian, Ranit Aharonov,
Yannis Katsis, Ban Kawas, and Prithviraj Sen.
2020. A survey of the state of explainable AI for
natural language processing. In Proceedings of
the 1st Conference of the Asia-Pacific Chapter
of the Association for Computational Linguistics
and the 10th International Joint Conference on
Natural Language Processing (AACL-IJCNLP),
pages 447–459.

Yue Dong, Zichao Li, Mehdi Rezagholizadeh, and
Jackie Chi Kit Cheung. 2019. EditNTS: An neu-
ral programmer-interpreter model for sentence
simplification through explicit editing. In Pro-
ceedings of the 57th Annual Meeting of the As-
sociation for Computational Linguistics (ACL),
pages 3393–3402.

Yutao Feng, Jipeng Qiang, Yun Li, Yunhao
Yuan, and Yi Zhu. 2023. Sentence simpli-
fication via large language models. CoRR,
abs/2302.11957.

Katja Filippova, Enrique Alfonseca, Carlos A. Col-
menares, Lukasz Kaiser, and Oriol Vinyals.
2015. Sentence compression by deletion with
LSTMs. In Proceedings of the 2015 Conference

https://doi.org/10.18653/v1/2020.emnlp-main.125
https://doi.org/10.18653/v1/2020.emnlp-main.125
https://aclanthology.org/J13-3001
https://aclanthology.org/J13-3001
https://aclanthology.org/2022.wmt-1.5
https://aclanthology.org/2022.wmt-1.5
https://aclanthology.org/P17-1074
https://aclanthology.org/P17-1074
https://aclanthology.org/P17-1074
https://doi.org/10.1613/jair.1.12228
https://doi.org/10.1613/jair.1.12228
https://doi.org/10.1613/jair.1.12228
https://doi.org/10.18653/v1/P19-1292
https://doi.org/10.18653/v1/P19-1292
https://aclanthology.org/2020.aacl-main.46
https://aclanthology.org/2020.aacl-main.46
https://doi.org/10.18653/v1/P19-1331
https://doi.org/10.18653/v1/P19-1331
https://doi.org/10.18653/v1/P19-1331
http://arxiv.org/abs/2302.11957
http://arxiv.org/abs/2302.11957
https://doi.org/10.18653/v1/D15-1042
https://doi.org/10.18653/v1/D15-1042

1909

on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 360–368.

Atsushi Fujita, Kikuko Tanabe, Chiho Toyoshima,
Mayuka Yamamoto, Kyo Kageura, and Anthony
Hartley. 2017. Consistent classification of
translation revisions: A case study of English-
Japanese student translations. In Proceed-
ings of the 11th Linguistic Annotation Workshop
(LAW), pages 57–66.

Shaohan Huang, Yu Wu, Furu Wei, and Ming
Zhou. 2018. Text morphing. CoRR,
abs/1810.00341.

Chao Jiang, Mounica Maddela, Wuwei Lan, Yang
Zhong, and Wei Xu. 2020. Neural CRF model
for sentence alignment in text simplification. In
Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics (ACL),
pages 7943–7960.

Jeff Johnson, Matthijs Douze, and Hervé Jégou.
2021. Billion-scale similarity search with GPUs.
IEEE Transactions on Big Data, 7(3):535–547.

Marcin Junczys-Dowmunt, Roman Grundkiewicz,
Shubha Guha, and Kenneth Heafield. 2018.
Approaching neural grammatical error correc-
tion as a low-resource machine translation task.
In Proceedings of the 2018 Conference of the
North American Chapter of the Association for
Computational Linguistics: Human Language
Technologies (NAACL-HLT), pages 595–606.

Venelin Kovatchev, M. Antònia Martí, and Maria
Salamó. 2018. ETPC - A paraphrase identi-
fication corpus annotated with extended para-
phrase typology and negation. In Proceed-
ings of the Eleventh International Conference on
Language Resources and Evaluation (LREC),
pages 1384–1392.

Patrick Lewis, Ethan Perez, Aleksandra Pik-
tus, Fabio Petroni, Vladimir Karpukhin, Naman
Goyal, Heinrich Küttler, Mike Lewis, Wen tau
Yih, Tim Rocktäschel, Sebastian Riedel, and
Douwe Kiela. 2021. Retrieval-augmented gener-
ation for knowledge-intensive nlp tasks. CoRR,
abs/2005.11401.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summa-
rization Branches Out, pages 74–81.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du,
Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov.
2019. RoBERTa: A robustly optimized BERT
pretraining approach. CoRR, abs/1907.11692.

Arle Lommel, Maja Popović, and Aljoscha Bur-
chardt. 2014. Assessing inter-annotator agree-
ment for translation error annotation. In Proceed-
ings of the LREC MTE Workshop on Automatic
and Manual Metrics for Operational Translation
Evaluation, pages 31–37.

Rei Miyata and Atsushi Fujita. 2021. Under-
standing pre-editing for black-box neural ma-
chine translation. In Proceedings of the 16th
Conference of the European Chapter of the As-
sociation for Computational Linguistics (EACL),
pages 1539–1550.

Sergiu Nisioi, Sanja Štajner, Simone Paolo
Ponzetto, and Liviu P. Dinu. 2017. Exploring
neural text simplification models. In Proceed-
ings of the 55th Annual Meeting of the Associ-
ation for Computational Linguistics (ACL) Short
Papers, pages 85–91.

OpenAI. 2023. GPT-4 technical report. CoRR,
abs/2303.08774.

Kishore Papineni, Salim Roukos, Todd Ward, and
Wei-Jing Zhu. 2002. BLEU: A method for auto-
matic evaluation of machine translation. In Pro-
ceedings of the 40th Annual Meeting of the As-
sociation for Computational Linguistics (ACL),
pages 311–318.

Vikas Raunak, Amr Sharaf, Yiren Wang, Hany
Awadalla, and Arul Menezes. 2023. Leverag-
ing GPT-4 for automatic translation post-editing.
In Findings of the Association for Computa-
tional Linguistics: EMNLP 2023, pages 12009–
12024.

Ananya B. Sai, Akash Kumar Mohankumar, and
Mitesh M. Khapra. 2022. A survey of evaluation
metrics used for NLG systems. ACM Computing
Surveys, 55(2).

Thibault Sellam, Dipanjan Das, and Ankur Parikh.
2020. BLEURT: Learning robust metrics for text
generation. In Proceedings of the 58th Annual
Meeting of the Association for Computational
Linguistics (ACL), pages 7881–7892.

Matthew Shardlow. 2014. A survey of auto-
mated text simplification. International Journal of
Advanced Computer Science and Applications
(IJACSA), Special Issue on Natural Language
Processing 2014, 4(1):58–70.

Matthew Snover, Bonnie Dorr, Rich Schwartz, Lin-
nea Micciulla, and John Makhoul. 2006. A study
of translation edit rate with targeted human an-
notation. In Proceedings of the 7th Conference
of the Association for Machine Translation in
the Americas: Technical Papers (AMTA), pages
223–231.

https://aclanthology.org/W17-0807/
https://aclanthology.org/W17-0807/
https://aclanthology.org/W17-0807/
http://arxiv.org/abs/1810.00341
https://doi.org/10.18653/v1/2020.acl-main.709
https://doi.org/10.18653/v1/2020.acl-main.709
https://doi.org/10.1109/TBDATA.2019.2921572
https://doi.org/10.18653/v1/N18-1055
https://doi.org/10.18653/v1/N18-1055
https://aclanthology.org/L18-1221
https://aclanthology.org/L18-1221
https://aclanthology.org/L18-1221
http://arxiv.org/abs/2005.11401
http://arxiv.org/abs/2005.11401
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/2021.eacl-main.132
https://doi.org/10.18653/v1/2021.eacl-main.132
https://doi.org/10.18653/v1/2021.eacl-main.132
https://doi.org/10.18653/v1/P17-2014
https://doi.org/10.18653/v1/P17-2014
https://doi.org/10.48550/ARXIV.2303.08774
https://aclanthology.org/P02-1040
https://aclanthology.org/P02-1040
https://doi.org/10.18653/v1/2023.findings-emnlp.804
https://doi.org/10.18653/v1/2023.findings-emnlp.804
https://doi.org/10.1145/3485766
https://doi.org/10.1145/3485766
https://doi.org/10.18653/v1/2020.acl-main.704
https://doi.org/10.18653/v1/2020.acl-main.704
https://doi.org/10.14569/SpecialIssue.2014.040109
https://doi.org/10.14569/SpecialIssue.2014.040109
https://aclanthology.org/2006.amta-papers.25
https://aclanthology.org/2006.amta-papers.25
https://aclanthology.org/2006.amta-papers.25

1910

Felix Stahlberg and Shankar Kumar. 2020.
Seq2Edits: Sequence transduction using
span-level edit operations. In Proceedings of
the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages
5147–5159.

Renliang Sun, Zhe Lin, and Xiaojun Wan. 2020.
On the helpfulness of document context to sen-
tence simplification. In Proceedings of the 28th
International Conference on Computational Lin-
guistics (COLING), pages 1411–1423.

Midori Tatsumi. 2010. Post-Editing Machine Trans-
lated Text in A Commercial Setting: Observation
and Statistical Analysis. Ph.D. thesis, Dublin
City University.

Hugo Touvron, Thibaut Lavril, Gautier Izacard,
Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric
Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume
Lample. 2023a. LLaMA: Open and effi-
cient foundation language models. CoRR,
abs/2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava,
Shruti Bhosale, Dan Bikel, Lukas Blecher, Cris-
tian Canton Ferrer, Moya Chen, Guillem Cucu-
rull, David Esiobu, Jude Fernandes, Jeremy Fu,
Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj
Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin
Kardas, Viktor Kerkez, Madian Khabsa, Is-
abel Kloumann, Artem Korenev, Punit Singh
Koura, Marie-Anne Lachaux, Thibaut Lavril,
Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning
Mao, Xavier Martinet, Todor Mihaylov, Pushkar
Mishra, Igor Molybog, Yixin Nie, Andrew Poul-
ton, Jeremy Reizenstein, Rashi Rungta, Kalyan
Saladi, Alan Schelten, Ruan Silva, Eric Michael
Smith, Ranjan Subramanian, Xiaoqing Ellen
Tan, Binh Tang, Ross Taylor, Adina Williams,
Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan
Zarov, Yuchen Zhang, Angela Fan, Melanie
Kambadur, Sharan Narang, Aurelien Rodriguez,
Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023b. Llama 2: Open founda-
tion and fine-tuned chat models. CoRR,
abs/2307.09288.

Emiel van Miltenburg, Miruna Clinciu, Ondřej
Dušek, Dimitra Gkatzia, Stephanie Inglis, Leo
Leppänen, Saad Mahamood, Emma Manning,
Stephanie Schoch, Craig Thomson, and Luou
Wen. 2021. Underreporting of errors in NLG out-
put, and what to do about it. In Proceedings

of the 14th International Conference on Natural
Language Generation (INLG), pages 140–153.

Marta Vila, Maria Antònia Martí, and Horacio
Rodríguez. 2014. Is this a paraphrase? What
kind? Paraphrase boundaries and typology.
Open Journal of Modern Linguistics (OJML),
4:205–218.

Wei Xu, Chris Callison-Burch, and Courtney
Napoles. 2015. Problems in current text simpli-
fication research: New data can help. Transac-
tions of the Association for Computational Lin-
guistics (TACL), 3:283–297.

Wei Xu, Courtney Napoles, Ellie Pavlick, Quanze
Chen, and Chris Callison-Burch. 2016. Optimiz-
ing statistical machine translation for text simplifi-
cation. Transactions of the Association for Com-
putational Linguistics (TACL), 4:401–415.

Daichi Yamaguchi, Rei Miyata, Sayuka Shimada,
and Satoshi Sato. 2023. Gauging the gap be-
tween human and machine text simplification
through analytical evaluation of simplification
strategies and errors. In Findings of the Associa-
tion for Computational Linguistics: EACL 2023,
pages 359–375.

Mayuka Yamamoto and Masaru Yamada. 2022.
Translation strategies for English-to-Japanese
translation. In Rei Miyata, Masaru Yamada,
and Kyo Kageura, editors, Metalanguages for
Dissecting Translation Processes: Theoretical
Development and Practical Applications, pages
80–91. Routledge, London.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020. BERTScore:
Evaluating text generation with BERT. In Interna-
tional Conference on Learning Representations
(ICLR).

Xingxing Zhang and Mirella Lapata. 2017. Sen-
tence simplification with deep reinforcement
learning. In Proceedings of the 2017 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP), pages 584–594.

A. Experiment to Determine LLM
Method

To determine the LLM method used in the experi-
ment in Section 5, we conducted a preliminary ex-
periment. The following items were determined.

1. LLM model
2. Number of few-shot examples
3. Seed for LLM

https://doi.org/10.18653/v1/2020.emnlp-main.418
https://doi.org/10.18653/v1/2020.emnlp-main.418
https://doi.org/10.18653/v1/2020.coling-main.121
https://doi.org/10.18653/v1/2020.coling-main.121
https://doras.dcu.ie/16062/
https://doras.dcu.ie/16062/
https://doras.dcu.ie/16062/
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
https://aclanthology.org/2021.inlg-1.14/
https://aclanthology.org/2021.inlg-1.14/
https://api.semanticscholar.org/CorpusID:30783911
https://api.semanticscholar.org/CorpusID:30783911
https://doi.org/10.1162/tacl_a_00139
https://doi.org/10.1162/tacl_a_00139
https://doi.org/10.1162/tacl_a_00107
https://doi.org/10.1162/tacl_a_00107
https://doi.org/10.1162/tacl_a_00107
https://aclanthology.org/2023.findings-eacl.27
https://aclanthology.org/2023.findings-eacl.27
https://aclanthology.org/2023.findings-eacl.27
https://aclanthology.org/2023.findings-eacl.27
https://doi.org/https://doi.org/10.4324/9781003250852-9
https://doi.org/https://doi.org/10.4324/9781003250852-9
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr
https://doi.org/10.18653/v1/D17-1062
https://doi.org/10.18653/v1/D17-1062
https://doi.org/10.18653/v1/D17-1062

1911

As to 1, we decided to choose models that ensure
the reproducibility of outputs and excluded private
models such as GPT-4 (OpenAI, 2023). To accel-
erate execution time, a lightweight model is desir-
able if the capability to generate an intermediate
sentence is comparable to larger models. As to 2,
in terms of execution time, the smaller number is
desirable. As to 3, it is well known that the output
of LLM can change drastically depending on the
seed. Therefore, we investigated a suitable seed
to generate an intermediate sentence.

A.1. Implementation Details

For reproducibility, we selected Llama.cpp and
Llama-2.cpp, which are four-bit quantized models
of Llama 1 and Llama 2, respectively. Llama 2 was
trained with more data than Llama 1 and is gen-
erally better than Llama 1 in NLP tasks (Touvron
et al., 2023b). For Llama 1, we used 7B,20 13B,21

30B,22 and 65B23 models. For Llama 2, we used
7B,24 13B,25 and 70B26 models. For each model,
we evaluated it with the number of few-shot exam-
ples k from zero to five and a seed from 42 to 46.
The other settings were the same as explained in
Section 5.1.

A.2. Evaluation Data and Method

With the Newsela-Auto corpus test set, we created
another dataset in the same way as explained in
Section 5.2. This dataset contains all intermedi-
ate sentences for a pair of source and edited sen-
tences. Although this dataset consists of 50 pairs
of sentences, we used 35 pairs with more than one
edit operation.27

Given a pair of source and edited sentences,
LLM generated one sentence. Then, we automat-
ically judged whether the output is correct, i.e., in-
cluded in the references.

20https://huggingface.co/TheBloke/
LLaMA-7b-GGUF

21https://huggingface.co/TheBloke/
LLaMA-13b-GGUF

22https://huggingface.co/TheBloke/
LLaMA-30b-GGUF

23https://huggingface.co/TheBloke/
LLaMA-65b-GGUF

24https://huggingface.co/TheBloke/
Llama-2-7B-GGUF

25https://huggingface.co/TheBloke/
Llama-2-13B-GGUF

26https://huggingface.co/TheBloke/
Llama-2-70B-GGUF

27This is because an intermediate sentence does not
exist for the pair with only one edit operation.

A.3. Results

Table 9 presents the average number of correct in-
termediate sentences that each model generated
over five seeds. The setting in which the average
was highest was when using Llama-2 70B given
five few-shot examples. Under this setting, LLM
generated at the maximum 19 correct intermediate
sentences, where the seed was 42. Therefore, we
adopted the following settings.

1. LLM model: Llama-2.cpp 70B
2. Number of few-shot examples: 5
3. Seed for LLM: 42

The capability of Llama.cpp and Llama-2.cpp
to generate an intermediate sentence increased
along with the model size. In some settings, giv-
ing more few-shot examples did not contribute to
increasing the capability of intermediate sentence
generation. In the zero-shot setting, the aver-
age numbers of correct intermediate sentences did
not vary among model sizes and were all below
three. In the one-shot setting, however, the larger
the model size was, the more improvement in the
generation capability was observed. Compared
to the same size of Llama.cpp and Llama-2.cpp
in the best setting, Llama.cpp was better than
Llama-2.cpp for 7B, while Llama.cpp was worse
than Llama-2.cpp for 13B. Thus, although the best
performance was achieved by using Llama 2, all
model sizes of Llama 2 are not always better than
Llama 1 for different settings.

The best seed to generate an intermediate sen-
tence was inconsistent across the number of few-
shot examples and LLM models. This result sug-
gests that there is no generally good seed to gen-
erate an intermediate sentence with Llama.cpp or
Llama-2.cpp.

B. Ablation Study

To verify the effectiveness of the data selection
method to create the database used in the LLM-
based method in Section 5.1, we conducted an ab-
lation study.

B.1. Settings

The following criteria were used to select triplets of
(Xs, Xinter, Xt).

1. sim(Xs, Xinter) > sim(Xs, Xt)

2. TER(Xs, Xinter) ≤ TER(Xs, Xt) ≤ 0.50

3. diff(Xs, Xinter) ⊆ diff(Xs, Xt) and
diff(Xt, Xinter) ⊆ diff(Xt, Xs)

https://huggingface.co/TheBloke/LLaMA-7b-GGUF
https://huggingface.co/TheBloke/LLaMA-7b-GGUF
https://huggingface.co/TheBloke/LLaMA-13b-GGUF
https://huggingface.co/TheBloke/LLaMA-13b-GGUF
https://huggingface.co/TheBloke/LLaMA-30b-GGUF
https://huggingface.co/TheBloke/LLaMA-30b-GGUF
https://huggingface.co/TheBloke/LLaMA-65b-GGUF
https://huggingface.co/TheBloke/LLaMA-65b-GGUF
https://huggingface.co/TheBloke/Llama-2-7B-GGUF
https://huggingface.co/TheBloke/Llama-2-7B-GGUF
https://huggingface.co/TheBloke/Llama-2-13B-GGUF
https://huggingface.co/TheBloke/Llama-2-13B-GGUF
https://huggingface.co/TheBloke/Llama-2-70B-GGUF
https://huggingface.co/TheBloke/Llama-2-70B-GGUF

1912

of Few-shot Examples

LLM # of Parameters 0 1 2 3 4 5

Llama 1 (Llama.cpp)

7B 1.0 5.0 2.6 3.0 3.6 3.6
13B 2.0 4.8 4.2 4.4 3.6 5.4
30B 3.0 5.8 7.4 10.2 9.8 9.0
65B 2.8 9.8 10.6 11.8 10.8 11.0

Llama 2 (Llama-2.cpp)
7B 1.2 3.4 2.4 1.4 2.8 2.4
13B 2.0 4.4 5.8 6.6 6.4 6.6
70B 2.6 9.8 12.0 11.8 12.0 13.0

Table 9: The average number of correct intermediate sentences that each model generated over five
seeds.

Seed

Data Selection Criteria # of Entries 42 43 44 45 46 Avg.

1+2+3 8,978 19 13 15 10 8 13.0
1+2 10,304 18 13 14 7 6 11.6
1+3 52,948 15 14 18 9 8 12.8
2+3 9,323 16 15 14 11 8 12.8
1 70,745 13 11 13 7 7 10.2
2 10,876 15 12 12 8 8 11.0
3 56,894 12 13 15 5 7 10.4
No data selection 84,784 9 10 8 4 7 7.6

Table 10: The number of correct intermediate sentences for each condition and seed.

where sim(·, ·) is BERTScore and diff(·, ·) is a func-
tion that returns a set of tokens in the first argu-
ment sentence differing from those in the second
argument sentence. Specifically, the third criterion
prunes redundant edit operations like “A ⇒ B” and
then “B ⇒ A.”

We verified the effectiveness of the way to create
the database by excluding one or more criteria and
generating an intermediate sentence using it. For
the LLM model, we used Llama-2.cpp 70B with the
seed of 42 to 46 and gave five few-shot examples.
The evaluation data and method were the same as
explained in Section A.2.

B.2. Results
Table 10 presents the number of correct intermedi-
ate sentences for each condition, i.e., combination
of data selection criteria, and seed. When exclud-
ing one of the three criteria, the average numbers
of correct intermediate sentences decreased in all
conditions. In particular, excluding criterion 3 con-
sistently degraded the performance across differ-
ent seeds.

When using only one of the three criteria, crite-
rion 2 achieved the best result, and the difference
between the conditions using criteria 1 and 3 was
small. The number of entries in the database using
only criterion 2 (10,876 entries) is almost the same
as that using criteria 1 and 2 (10,304 entries). This
means that most (Xs, Xinter, Xt) triplets following

criterion 2 also followed criterion 1.
The average number of correct cases for the

condition without all criteria was much less than
that with all criteria, suggesting our data selection
method to create the database was effective.

C. IDs of Newsela-Auto Used for TS
Dataset

Table 11 lists sentence IDs of Newsela-Auto com-
prising the TS dataset used in the experiment ex-
plained in Section 5 and the number of edit opera-
tions needed to convert a source sentence into an
edited sentence.

D. Algorithm to Generate a Lattice

Algorithm 1 shows how to generate a lattice.

1913

No. Source Sentence ID Edited Sentence ID # of Edits

1 lead-violence.en-2-24-1 lead-violence.en-3-24-1 2
2 fourthgrade-sports.en-1-27-0 fourthgrade-sports.en-3-20-0 3
3 malala-shooters.en-1-6-0 malala-shooters.en-2-6-0 1
4 beef-grassfed.en-0-22-0 beef-grassfed.en-1-28-0 3
5 samesexmarriage-alabama.en-0-11-1 samesexmarriage-alabama.en-1-16-1 2
6 liberia-ebolafree.en-1-16-1 liberia-ebolafree.en-2-16-1 1
7 climate-surfing.en-1-19-0 climate-surfing.en-3-18-0 1
8 naacp-ethnicity.en-2-15-0 naacp-ethnicity.en-3-16-0 3
9 oregon-plague.en-0-9-2 oregon-plague.en-1-13-2 2

10 syrian-swimmers.en-1-17-0 syrian-swimmers.en-3-17-0 3
11 kraft-yellowdye.en-1-8-2 kraft-yellowdye.en-3-8-2 2
12 gilgamesh-lines.en-3-7-0 gilgamesh-lines.en-4-4-0 1
13 johnnash-obit.en-0-19-0 johnnash-obit.en-2-16-0 3
14 samesexmarriage-alabama.en-3-13-1 samesexmarriage-alabama.en-4-15-1 1
15 fake-leonardo.en-1-4-2 fake-leonardo.en-2-4-3 1
16 challenger-anniversary.en-2-18-1 challenger-anniversary.en-3-20-1 3
17 jamestown-discovery.en-1-4-0 jamestown-discovery.en-2-4-0 1
18 iraq-books.en-1-25-0 iraq-books.en-2-21-0 4

19 projectsyndicate-labor.en-3-8-3 projectsyndicate-labor.en-3-8-3
projectsyndicate-labor.en-4-8-2 1

20 isisattack-procon.en-2-40-1 isisattack-procon.en-4-40-2 2
21 samesexmarriage-alabama.en-1-3-0 samesexmarriage-alabama.en-3-4-0 3
22 mars-liquidwater.en-0-5-1 mars-liquidwater.en-2-4-3 4
23 fisherman-found.en-0-12-0 fisherman-found.en-4-12-0 4
24 scienceart-institute.en-1-25-0 scienceart-institute.en-4-23-0 3
25 poverty-braindevelopment.en-3-8-2 poverty-braindevelopment.en-4-8-2 3
26 femaleengineer-cars.en-3-3-0 femaleengineer-cars.en-4-3-0 2
27 karate-80yo.en-0-15-2 karate-80yo.en-4-10-1 1
28 rejectrefugees-procon.en-2-30-3 rejectrefugees-procon.en-3-34-2 1
29 slaveship-artifacts.en-1-8-0 slaveship-artifacts.en-3-7-0 4
30 museums-selfies.en-3-4-0 museums-selfies.en-4-2-0 2
31 nobel-chemistry.en-0-15-1 nobel-chemistry.en-2-18-1 4
32 obama-policetaskforce.en-3-20-0 obama-policetaskforce.en-4-20-0 2
33 china-kitemakers.en-0-21-0 china-kitemakers.en-3-20-0 6
34 climate-surfing.en-0-4-1 climate-surfing.en-2-5-2 4
35 arthropod-fossil.en-0-18-0 arthropod-fossil.en-2-22-0 4
36 student-testing.en-0-6-0 student-testing.en-1-5-0 4
37 fourthgrade-sports.en-3-19-1 fourthgrade-sports.en-4-18-1 3
38 hispanics-education.en-3-2-2 hispanics-education.en-4-2-3 2
39 quake-doomsday.en-0-3-0 quake-doomsday.en-2-3-0 4
40 sledding-ban.en-1-1-1 sledding-ban.en-2-1-1 1
41 clinton-presannounce.en-2-17-0 clinton-presannounce.en-3-14-0 4
42 bat-survival.en-3-2-2 bat-survival.en-4-6-1 3
43 millennials-justicesurvey.en-1-14-0 millennials-justicesurvey.en-4-18-0 3
44 sugar-label.en-0-1-0 sugar-label.en-2-1-0 4
45 kraft-yellowdye.en-1-12-1 kraft-yellowdye.en-3-10-1 6
46 lead-violence.en-0-14-1 lead-violence.en-2-18-1 8
47 shakespeare-analysis.en-2-9-5 shakespeare-analysis.en-4-8-5 3
48 bat-survival.en-0-12-0 bat-survival.en-2-13-0 8
49 zika-virus.en-3-5-0 zika-virus.en-4-3-0 2
50 gmo-salmon.en-0-15-0 gmo-salmon.en-3-16-0 4

Table 11: Sentence IDs of Newsela-Auto comprising the TS dataset and the number of edit operations
needed to convert a source sentence into an edited sentence.

1914

Algorithm 1 Generate Lattice

Require: input: SOURCE SENTENCE src
Require: input: EDITED SENTENCE edt
Require: input: THRESHOLD OF GRAMMATICALITY AND UNSWERVINGNESS thresholdgu
1: openList← [(src, edt)] // initialize a openList
2: closedList← [] // initialize a closedList
3: while openList.length > 0 do
4: (s, t)← openList.pop()
5: closedList.push((s, t))
6: editNum← TranslationEditNum(s,t) // calculate the number of edits by TER
7: if editNum == 1 then
8: CONTINUE // cannot make any intermediate sentences
9: end if

10: inters← GenerateInter(s,t) // generate candidates of intermediate sentences
11: sims,t ← CalSim(s,t) // calculate similarity by arbitrary text similarity metrics
12: for inter ∈ inters do
13: sntsPriorS← GetPrecedingSnts(s,openList,closedList) // get all sentences preceding to s
14: sntsAfterT← GetSucceedingSnts(t,openList,closedList) // get all sentences succeeding to t
15: if inter ∈ sntsPriorS or inter ∈ sntsAfterT then
16: CONTINUE // do not generate a cycle
17: end if
18: sims,inter ← CalSim(s,inter)
19: siminter,t ← CalSim(inter,t)
20: probgu ← CalProb(s,inter,t) // calculate grammaticality and unswervingness of (s, inter)
21: if sims,t < sims,inter and sims,t < siminter,t and probgu > thresholdgu then
22: if (s,inter) /∈ openList and (s,inter) /∈ closedList then
23: openList.push((s, inter))
24: end if
25: if (inter,t) /∈ openList and (inter,t) /∈ closedList then
26: openList.push((inter, t))
27: end if
28: end if
29: end for
30: end while
31: lattice← []
32: for (s, t) ∈ closedList do
33: A← {a|(s, a) ∈ closedList}
34: if ∀a ∈ A;(a, t) /∈ closedList then
35: lattice.push((s, t))
36: end if
37: end for
38: return lattice

	Introduction
	Related Work
	Problem Statement
	Problem to be Solved
	Features of the Problem
	Constraints

	Our Proposed Method
	Overview
	Lattice Generation
	Intermediate Sentence Generators
	Edit Operation Filter

	Path Search

	Experiment
	Implementation Details
	Intermediate Sentence Generators
	Edit Operation Filter
	Primitiveness Scorer
	Edit Operation Extractor

	Evaluation Data
	Evaluation Method
	Results
	Types of Identified Edit Operations
	Analyses of System's Behavior

	Conclusions and Outlook
	Limitations
	Acknowledgements
	Bibliographical References
	Experiment to Determine LLM Method
	Implementation Details
	Evaluation Data and Method
	Results

	Ablation Study
	Settings
	Results

	IDs of Newsela-Auto Used for TS Dataset
	Algorithm to Generate a Lattice

