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Abstract

The International Classification of Diseases (ICD) is an authoritative medical classification system of different
diseases and conditions for clinical and management purposes. ICD indexing assigns a subset of ICD codes to a
medical record. Since human coding is labour-intensive and error-prone, many studies employ machine learning to
automate the coding process. ICD coding is a challenging task, as it needs to assign multiple codes to each medical
document from an extremely large hierarchically organized collection. In this paper, we propose a novel approach for
ICD indexing that adopts three ideas: (1) we use a multi-level deep dilated residual convolution encoder to aggregate
the information from the clinical notes and learn document representations across different lengths of the texts; (2)
we formalize the task of ICD classification with auxiliary knowledge of the medical records, which incorporates not
only the clinical texts but also different clinical code terminologies and drug prescriptions for better inferring the ICD
codes; and (3) we introduce a graph convolutional network to leverage the co-occurrence patterns among ICD codes,
aiming to enhance the quality of label representations. Experimental results show the proposed method achieves
state-of-the-art performance on a number of measures.

Keywords: extreme multi-label text classification, knowledge-enhanced text classification, graph convolu-
tional network, ICD classification

1. Introduction

Electronic health records (EHRs)1 contain all of the
key administrative clinical data relevant to a per-
son’s care under a particular provider, including
demographics, past history notes, progress notes,
laboratory reports, diagnoses, and medications.
EHRs have been increasingly used in a variety of
settings which provide opportunities to enhance
patient care and facilitate clinical research. The
International Classification of Diseases (ICD)2 is
often used as a surrogate for clinical outcomes of
interest, as it is designed to provide diagnostic as-
sistance and classify health disorders. ICD is a
medical classification taxonomy maintained by the
World Health Organization (WHO)3, which serves
a broad range of uses in diagnostic processes, epi-
demiology, health management, and other clinical
activities. There are two types of codes in the ICD
coding system, namely procedure codes4 (that are
used to identify specific surgical, medical, or diag-
nostic interventions) and diagnosis codes5 (that are
used to identify diseases, disorders and symptoms).

1https://www.cms.gov/Medicare/E-Health/
EHealthRecords

2https://www.who.int/standards/classifications/
classification-of-diseases

3https://www.who.int
4https://en.wikipedia.org/wiki/Procedure_code
5https://en.wikipedia.org/wiki/Diagnosis_code

In the 10th edition, there are over 70,000 procedure
codes and over 69,000 diagnosis codes6.

The task of ICD indexing aims to associate ICD
codes with EHR documents. Currently, ICD index-
ing is carried out manually by human annotators,
which is labour-intensive and error-prone (O’Malley
et al., 2005). Therefore, automatic annotation has
gained interest in the research community. Au-
tomatic ICD indexing can be regarded as an ex-
treme multi-label text classification (XMTC) prob-
lem, where each EHR document can be labeled
with multiple ICD codes. Compared with standard
multi-label classification tasks, XMTC finds relevant
labels from an extremely large set of labels. Large-
scale ICD indexing is severely challenged by sev-
eral problems. First, the distribution of ICD codes
is extremely long-tailed: while some ICD codes
occur frequently, many others seldom appear, if
at all, because of the rarity of the diseases. For
instance, among the 942 unique 3-digit ICD codes
in the MIMIC-III (Johnson et al., 2016) dataset (the
largest publicly available medical dataset), the ten
most common codes account for 26% of all code
occurrences and the least common 437 codes ac-
count for only 1% (Bai and Vucetic, 2019). Second,
unstructured clinical texts are long (containing an
average of 1596 words in the MIMIC-III dataset) and
noisy (including irrelevant information, misspellings,
and non-standard abbreviations). These difficulties

6https://www.cdc.gov/nchs/icd/icd10cm_pcs.htm

https://www.cms.gov/Medicare/E-Health/EHealthRecords
https://www.cms.gov/Medicare/E-Health/EHealthRecords
https://www.who.int/standards/classifications/classification-of-diseases
https://www.who.int/standards/classifications/classification-of-diseases
https://www.who.int
https://en.wikipedia.org/wiki/Procedure_code
https://en.wikipedia.org/wiki/Diagnosis_code
https://www.cdc.gov/nchs/icd/icd10cm_pcs.htm
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Figure 1: An example of a patient record from
the MIMIC-III dataset which includes the discharge
summary, assigned ICD codes and auxiliary knowl-
edge. We colour each code and its corresponding
mentions in the discharge summary and auxiliary
knowledge. We use the auxiliary knowledge of the
notes to predict relevant codes of summary.

make extracting relevant information from clinical
texts, for all ICD codes, very challenging.

We propose a novel auxiliary knowledge-induced
medical code labelling architecture to address
these issues. To lessen the problems caused by the
long-tailed distribution of ICD codes, we leverage
code co-occurrence and join auxiliary knowledge
with the clinical texts to improve coding accuracy.

Code Co-occurrence The co-occurrence of
codes in clinical texts provides valuable insights
into the relationships between different diseases or
conditions. For instance Figure 1 shows that the
code for “Dementia in conditions classified else-
where without behavioral disturbance” (294.10) can
be easily captured from the text (i.e., the highlighted
words in desaturated cyan). However, inferring the
code for “Alzheimer’s disease” (331.0) is more chal-
lenging as the clues are less explicit. Fortunately,
there is a strong association between these two
diseases, with “Alzheimer’s disease” being one of
the most common causes of “dementia”. This asso-
ciation can be captured by leveraging the fact that
the codes for these two diseases often co-occur
in clinical texts. By leveraging code co-occurrence
patterns, we can capture the dependencies and
correlations among codes. This allows us to better
understand the context in which specific codes oc-
cur and make more accurate predictions based on
these relationships beyond using only the clinical
texts themselves.

Auxiliary Knowledge EHR auxiliary knowledge
is widely available, but is often overlooked in pre-
vious studies. In addition to clinical texts, an EHR
document is also associated with various auxiliary
knowledge such as code systems (other than ICD
codes) and drug prescriptions. Specifically, we
are interested in two code terminologies (diagnosis-
related group (DRG)7 codes and current procedural
terminology (CPT)8 codes), as well as the medica-
tions prescribed to patients, which could be strong
indicators of ICD predictions. For instance, Figure
1 shows “Namenda” in drug prescriptions, which
would strongly suggest the patient is most likely to
have Alzheimer’s disease. By incorporating auxil-
iary knowledge, we augment the information avail-
able for coding tasks. This external knowledge
provides additional context and insights that can
aid in accurately assigning appropriate ICD codes.

To alleviate the long text issue, we introduce a
multi-level dilated residual convolutional network to
ensure the extracted representations focus on the
long clinical notes. With multi-level dilation rates,
convolutions can capture broader contexts while
preserving spatial resolution, enabling the network
to have a larger receptive field without increasing
the number of parameters.

The contributions of this paper are as follows:

• We propose a framework that is capable of
simultaneously dealing with both long-tail and
long-text issues in the ICD prediction task.

• To alleviate the long-tail issue, we propose a
graph convolutional network to leverage code
co-occurrence which captures the connections
among codes with different frequencies. We
integrate external knowledge using an auxiliary
knowledge mask which constrains the large
space of possible ICD codes.

• To handle long texts, we use a multi-level di-
lated residual convolutional network, enabling
the model to capture long-range dependencies
and local context with different dilation rates.

• We evaluate on a widely used automatic ICD
coding dataset, MIMIC-III, and the results show
that our proposed model outperforms previous
methods on a number of measures.

2. Related Work

2.1. Automatic ICD Indexing
Automatic ICD indexing is a long-standing task in
the healthcare domain. To the best of our knowl-

7https://www.cms.gov/Medicare/
Medicare-Fee-for-Service-Payment/
AcuteInpatientPPS/MS-DRG-Classifications-and-Software

8https://www.ama-assn.org/amaone/
cpt-current-procedural-terminology

https://www.cms.gov/Medicare/Medicare-Fee-for-Service-Payment/AcuteInpatientPPS/MS-DRG-Classifications-and-Software
https://www.cms.gov/Medicare/Medicare-Fee-for-Service-Payment/AcuteInpatientPPS/MS-DRG-Classifications-and-Software
https://www.cms.gov/Medicare/Medicare-Fee-for-Service-Payment/AcuteInpatientPPS/MS-DRG-Classifications-and-Software
https://www.ama-assn.org/amaone/cpt-current-procedural-terminology
https://www.ama-assn.org/amaone/cpt-current-procedural-terminology


2008

edge, the earliest work was proposed by Larkey
and Croft (1996), who combined three classifiers
(K-nearest-neighbour, relevance feedback, and
Bayesian independence classifiers) to automati-
cally assign ICD codes to dictated inpatient dis-
charge summaries. de Lima et al. (1998) proposed
a hierarchical model that used the topology of the
code structure, and then calculated the cosine sim-
ilarity of TF-IDF representations between clinical
texts and ICD codes. A variety of rule-based meth-
ods (Crammer et al., 2007; Farkas and Szarvas,
2008) and statistical machine learning algorithms,
such as support vector machines (Lita et al., 2008),
were later applied to the ICD coding task.

With deep neural networks, many previous works
have proven the effectiveness of convolutional neu-
ral networks (CNNs), recurrent neural networks
(RNNs), and their variants for ICD coding. Mullen-
bach et al. (2018) combined a CNN with an atten-
tion mechanism to capture relevant information in
the clinical texts for each ICD code. Xie et al. (2019)
further improved the CNN attention model by incor-
porating multi-scale feature attention. Many other
CNN variants were proposed to deal with lengthy
and noisy clinical texts, such as MultiResCNN (Li
and Yu, 2020), DCAN (Ji et al., 2020), and Effective-
CAN (Liu et al., 2021). MultiResCNN introduced a
multi-filter residual CNN to capture text patterns of
different lengths and used a residual convolutional
layer to enlarge the receptive field. DCAN stands
for ‘dilated convolutional attention network’, which
used a single filter and the dilation operation to con-
trol the receptive field. EffectiveCAN used a CNN
based encoder with squeeze-and-excitation net-
works together with residual networks to aggregate
the information across clinical texts. RNN-based
models, which have also been widely used in the
ICD coding task, are able to capture contextual
information across input texts. Shi et al. (2017) pro-
posed a character-aware long short-term memory
(LSTM) recurrent network to learn the representa-
tions of the clinical texts. Xie and Xing (2018) used
a tree-of-sequences LSTM architecture and adver-
sarial learning to capture hierarchical relationships
among ICD codes. Baumel et al. (2018) presented
a hierarchical attention-bidirectional gated recur-
rent unit (HA-GRU) to label a document by iden-
tifying the sentences relevant for each ICD code.
LAAT (Vu et al., 2020) used a bidirectional Long-
Short Term Memory (BiLSTM) encoder and cus-
tomized label-wise attention mechanism to learn
label-specific vectors across clinical text fragments.

To tackle the hierarchical relationships among
ICD codes, graph convolutional neural networks
(GCNNs) (Kipf and Welling, 2017) can be employed.
For instance, Rios and Kavuluru (2018) and Xie
et al. (2019) leveraged GCNN to capture both the
hierarchical relationships among ICD codes and

the semantics of each code. HyperCore (Cao et al.,
2020) considered both code hierarchy and code
co-occurrence to learn code representations in the
co-graph by exploiting the GCNN. Our work does
not consider the ICD hierarchy because the parent-
child hierarchy is shallow, i.e., the ICD hierarchy
has only three levels. Also, the possibility of a
parent code and a child code both being assigned
to the same discharge summary is essentially zero
in the MIMIC-III dataset, since the child code is a
more specific description of the parent code.

Besides employing ICD code information, some
other external knowledge has also been considered.
For instance, Bai and Vucetic (2019) proposed a
knowledge source integration (KSI) model that in-
corporates external knowledge from Wikipedia to
calculate matching scores between a clinical note
and disease-related Wikipedia documents, in or-
der to obtain useful information for ICD predictions.
Yuan et al. (2022) proposed a multiple synonym
matching network (MSMN) to leverage synonyms of
the ICD codes for better code representation learn-
ing. Yang et al. (2022) further incorporated a pre-
trained language model with three domain-specific
knowledge sources: code hierarchy, synonyms,
and abbreviations to help the code classification.

2.2. Extreme Multi-label Text
Classification

Extreme Multi-label Text Classification (XMTC) is
designed to assign relevant labels to objects from
an extremely large set of potential labels. Deep
learning methods have been employed for XMTC
tasks to learn semantic representations of text. For
instance, XML-CNN (Liu et al., 2017) used a 1-
dimensional convolutional network with different
vertical filters and dynamic pooling to learn the text
representations. The model utilizes convolutional
filters of varying sizes (vertical filters), which oper-
ate across different n-gram sizes. Dynamic pool-
ing is then added to allow the model to handle
input texts of varying lengths by aggregating the
feature maps produced by the convolutional layers
into fixed-size representations. Furthermore, Atten-
tionXML (You et al., 2019) employs a BiLSTM layer
followed by an attention mechanism, a strategy de-
signed to capture the most relevant text features
for each label. Wang et al. (2022) introduced a
knowledge-enhanced mask attention module in the
KenMeSH framework, designed to refine the candi-
date label set by reducing its size. This innovative
module leverages external knowledge to guide the
attention mechanism, focusing it on the most rel-
evant labels for a given text. By filtering out less
pertinent labels, the model can concentrate on a
more manageable subset of candidates, effectively
improving the accuracy of the predictions.
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Figure 2: The architecture of our model. There are four main components in our method: a document
encoder that contains multiple multi-level dilated residual blocks, a label encoder that includes label
co-occurrence representation learned by GCN and an auxiliary knowledge mask, a label-wise attention
layer and a classifier.

3. Method

We treat ICD indexing as an extreme multi-label
text classification problem in which a set of medical
recordsX = {x1, x2, ..., xN} and a set of ICD codes
Y = {y1, y2, ..., yL} is given. The objective of multi-
label classification is to learn L binary classifiers
in which each classifier is to determine yj ∈ {0, 1}
using the training set D = {(xi, Yi)}, Yi ⊂ Y, i =
1, ..., N , where j is the j-th label in Y , and N is the
number of records in the set.

In this section, we present a neural architecture
for ICD indexing shown in Figure 2(a). Our model
is composed of a clinical text encoder that extracts
the long-term dependencies and generates higher-
level semantic representations for each clinical text,
a label encoder that utilizes label co-occurrence
relations and auxiliary knowledge to generate dy-
namic code presentations for each clinical note, a
label-wise attention layer that produces the code-
aware document representation, and a classifier
that produces the final predictions of the ICD codes.

3.1. Clinical Text Encoder

3.1.1. Input Layer

Our model leverages a clinical record C as
the input that consists of a sequence of words
{w1, w2, ..., wn}, where n is the sequence length.
The embedding matrix Ẽ ∈ Rde is pre-trained using
word2vec (Mikolov et al., 2013a) from the raw texts
of the dataset, where de is the dimension of the

word vectors. A word wi in the medical record cor-
responds to an embedding vector ei by looking up
Ẽ. Therefore, the word embedding matrix for the in-
put medical record is E = {e1, e2, ..., en} ∈ Rn×de ,
where n is the sequence length.

3.1.2. Multi-level Dilated Residual Block

To transform the clinical record into informative rep-
resentations, we apply multiple multi-level dilated
residual (Dilated-Res) convolutional blocks to gen-
erate representations of semantic units with differ-
ent lengths. Each Dilated-Res block, as shown
in Figure 2(b), is composed of two parallel mod-
ules that are referred to as the multi-level dilated
convolutional module and the residual module.

We introduce a dilated convolutional layer
(DCNN) to learn the high-level semantic represen-
tations of the input texts. The concept of dilated
convolution has become popular in semantic seg-
mentation in computer vision (Wang et al., 2018)
and audio signal modeling (van den Oord et al.,
2016), and it has been applied to natural language
processing tasks such as neural machine transla-
tion (Kalchbrenner et al., 2016) and text classifica-
tion (Lin et al., 2018). The main concept of DCNN
expands the kernel by inserting holes between its
consecutive elements in the filters, which aggre-
gates multi-scale contextual information, such as
words, phrases, and sentences. Inspired by Lin
et al. (2018), we use a three-level DCNN with differ-
ent dilation rates to generate high-level semantic
representations of the input texts. We input the
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word embeddings E of the medical records into
the 1-dimensional convolution operator with kernel
size K and dilation rates [r1, r2, ..., rm], where m
is the number of layers of 1-dimensional convolu-
tions. The dilated convolutional procedure can be
formalized:

Hi = (E ∗r f)(s) =
K−1∑
j=0

f(i) · Es−r·j (1)

where Hi is the output channel for layer i = 1, ...,m,
∗ denotes the convolution operation, r is the dilation
rate, s is the element of the input sequence, K is
the kernel size, and s−r ·j refers to past time steps.
We force the length of the output of the m-layer 1-
dimensional DCNN to be the same as the input E,
to keep the sequence length unchanged after the
convolution, that is, Hm ∈ Rn×de . To achieve this,
we set a padding size p = r(K−1)

2 with a stride of 1.
In addition to the multi-level dilated convolutional

module, we also simultaneously transform input
embedding E and add it to Hm as in the residual
network (He et al., 2016), which reduces the gradi-
ent vanishing issue in the deep encoder structure.
We use a 1-dimensional convolutional layer with
dilation rate r1 to transform the input embedding
E into H̃. Then we add H̃ with Hm, the output
from the multi-level dilated convolutional module,
to form:

D = σ(Hm + H̃), (2)

where D ∈ Rn×de represents the final clinical text,
and σ(·) denotes an activation function.

3.2. Label Encoder

3.2.1. Label Co-occurrence Encoding

The co-occurrence of disease codes in clinical texts
is often observed when certain diseases are concur-
rent or have a causal relationship with each other.
This means that the codes representing these re-
lated diseases tend to appear together in clinical
text data. In order to capture the co-occurrence
between disease codes in clinical texts, we con-
struct a code co-occurrence graph. This is built
using the code co-occurrence matrix, which serves
as the adjacency matrix for the graph. To gener-
ate the code co-occurrence adjacency matrix, we
model the correlation dependency between labels
in terms of conditional probabilities. Specifically, we
calculate the probability P (Lj |Li), which denotes
the probability of occurrence of label Lj when label
Li appears. To facilitate graph construction, we
binarize the correlation probability P . This entails
converting the probability values into binary values,
indicating whether a correlation exists between two

labels. The operation can be written as:

Aij =

{
0, if P < λ

1, if P ≥ λ,
(3)

where A is the binary correlation matrix, and λ is the
hyper-parameter threshold to filter the noise edges.
In our experiment, λ = 1, which means that the two
labels in each pair will always appear together. With
λ = 1, we obtain 39,166 ICD pairs (which are also
the number of edges in the graph). Decreasing the
probability rate causes an exponential growth of
the number of edges, which greatly increases the
complexity of the graph. We hypothesized that the
performance of the model would not benefit from
a denser graph, since a larger number of edges
would result in overfitting. This hypothesis can be
explored in the future.

We employ a two-layer Graph Convolutional Net-
work (GCN) to incorporate the co-occurrence rela-
tionships among labels. Specifically, we use the
ICD full descriptors to generate a feature vector for
each code. To calculate the feature vector for a
specific code, we start by obtaining the word em-
beddings for each word in its descriptors, and then
average the word embeddings to obtain a consoli-
dated representation for the code:

vi =
1

Z

Z∑
j=1

wj , i = 1, 2, ..., L, (4)

where vi ∈ Rde , Z is the number of words in its de-
scriptor, and L, the number of codes. The code vec-
tor set can be represented as V = {v1, v2, ..., vL}.
In our graph structure, each node represents an
ICD code, and the edges between nodes represent
code co-occurrence relationships. In each layer of
the GCN, the node features are aggregated based
on these edge types to generate new label features
for the subsequent layer:

hl+1 = σ(A · hl ·W l), (5)

where hl and hl+1 ∈ RL×de indicate the node repre-
sentation of the lth and (l+1)th layers, h0 = V , A is
the adjacency matrix of the label co-occurrence, W
is the layer-specific weight matrix and σ(·) denotes
an activation function. We denote the last layer
representation as Hlabel ∈ RL×de , which captures
the code co-occurrence correlations.

3.2.2. Dynamic Auxiliary Knowledge Mask

ICD codes have a wide range of occurrence fre-
quencies. Consequently, each ICD code has sig-
nificantly more negative examples than positive
ones. Inspired by Wang et al. (2022), to improve
the classifier’s performance, we dynamically gen-
erate a unique mask for each clinical note by in-
tegrating auxiliary knowledge in the EHR system.
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The dynamic mask that is selected for each sum-
mary helps down-sample the negative examples
and focus the classifier on candidate labels.

To generate the auxiliary knowledge masks,
we consider three external knowledge sources:
diagnosis-related group (DRG) codes, current pro-
cedural terminology (CPT) codes, and medications
prescribed to patients. DRG codes are used to
facilitate inpatient billing and reimbursement, and
they categorize patients by their ICD codes and the
cost associated with treatments. DRG codes are
divided into medical DRGs (which don’t reflect op-
erating room procedures) and surgical DRGs. CPT
codes are used to describe clinical procedures and
services in healthcare. They provide a standard-
ized way of documenting and billing for medical
services. Such code terminologies play a crucial
role in improving ICD code predictions. Prescribed
drugs also appear to be highly informative in pre-
dicting ICD codes, since they are often the final step
of the episode of care. As patients near the end
of their treatment or care, the prescribed medica-
tions play a crucial role in managing their conditions.
Consequently, these medications serve as strong
indicators or signals of the underlying health con-
ditions or diagnoses, making them valuable in pre-
dicting the corresponding ICD codes. We build an
auxiliary knowledge-label co-occurrence matrix us-
ing conditional probabilities, i.e., P (Li |Mj), which
denote the probabilities of occurrence of label Li

when auxiliary knowledge Mj appears.

P (Li |Mj) =
CLi∩Mj

CMj

, (6)

where CLi∩Mj denotes the number of co-
occurrences of Li and Mj , and CMj is the number
of occurrences of Mj in the training set. To avoid
the noise of rare co-occurrences, a threshold τ
filters noisy correlations. M̃j denotes the selected
ICD set for auxiliary knowledge j.

M̃j = {Lk|P (Lk|Mj) > τ, k = 1, ..., L}. (7)

We then join the ICD codes generated from the
auxiliary knowledge co-occurrences for the DRG
codes, CPT codes and prescribed drugs to form
the final ICD mask set T :

T = M̃DRG ∪ M̃CPT ∪ M̃drug. (8)

Then we assign a value to each label in Y to form
Tvec ∈ [0, 1]Y . We assign 1 if the label appears
in T , and 0 otherwise. The label order of Tvec is
the same as Hlabel. We then apply the mask to the
label co-occurrence representation Hlabel to form:

Hmasked = Hlabel ⊙ Tvec, (9)

where Hmasked ∈ RL×de indicates the masked code
representation.

3.3. Label-wise Attention Layer
After encoding the clinical notes and their associ-
ated ICD codes, we obtain a clinical text represen-
tation denoted as D and a masked code represen-
tation denoted as Hmasked. As we aim to assign mul-
tiple codes to each clinical note and recognize that
different codes may be relevant to different sections
of the document, we employ a code-wise attention
mechanism. This mechanism allows the model to
learn the relevant document representations spe-
cific to each code. To generate the code-wise at-
tention vector, we use a matrix-vector product:

α = softmax(D ·Hmasked) (10)

Finally, we leverage the document representationD
and corresponding code-wise attention vector α to
generate the code-aware document representation:

C = α ·D, (11)

where C ∈ RL×de .

3.4. Classifier
To perform classification, we compute the probabil-
ity for each code by using a fully connected layer
followed by a sigmoid transformation:

ŷ = sigmoid(W · C), (12)

where W ∈ Rde×1 indicates the weight matrix. Our
model is trained using the multi-label binary cross-
entropy loss:

L =

L∑
i=1

[−yi · log(ŷi)− (1− yi) · log(1− ŷi)], (13)

where yi is the ground truth of code i.

4. Experiments

4.1. Dataset and pre-processing
We use the MIMIC-III dataset (Johnson et al.,
2016), which is the largest publicly available clini-
cal dataset for text, and comprises hospital records
associated with over 40,000 patients. We focus on
the discharge summaries that are human expert-
labeled with a set of ICD-9 codes. We follow the
experimental setting of Mullenbach et al. (2018) to
form MIMIC-III-full and MIMIC-III-top 50. To pre-
process the clinical notes, we first remove all dei-
dentified information and replace punctuation and
atypical alphanumerical character combinations
(e.g., 3a, 4kg) with white space. We then trans-
form every token into its lowercase. The maximum
length of a token sequence is 4,000 and any that
exceed this length is truncated.
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Hyper-parameters Values
embedding size 100, 200
filter size 3, 5, 9
prediction threshold 0.0005
dropout 0.2, 0.5
dilation rate [1, 2, 4], [2, 5, 9]
learning rate 0.0001, 0.0003, 0.0005
batch size 8, 16, 32

Table 1: Hyper-parameter settings. Bold: the opti-
mal values.

4.2. Evaluation Metrics and
Implementation Details

Following previous work (Mullenbach et al., 2018),
we evaluate our method using both macro and mi-
cro F1 and AUC metrics, as well as precision at K
(P@K) that indicates the proportion of the correctly
predicted labels in the top-K predictions.

We implement our model in PyTorch (Paszke
et al., 2019) on a single NVIDIA A100 40G GPU.
The training process completes in 5 hours, while
inference requires only 30 minutes (about 0.5s per
note). This performance underscores the compu-
tational efficiency of our method, indicating it is not
only effective in handling complex tasks but also
practical in terms of computational resources and
time. We use word2vec (Mikolov et al., 2013b) to
pre-train the word embeddings of dimension 100
on the pre-processed MIMIC-III texts. We use a
three-level dilated convolution with dilation rate [1,
2, 4], and the filter size of the convolution is 9. We
use the Adam optimizer and early stopping strate-
gies. The learning rate is initialized to 0.0001, and
the decay rate is 0.9 in every epoch. The gradi-
ent clip is applied to the maximum norm of 5. The
batch size is 32. Table 1 shows our detailed hyper-
parameter settings. We evaluate with 5 different
random seeds for the model and report the average
test results. Our code is available at https://github.
com/xdwang0726/MIMIC-ICD-Classification.

5. Results and Discussions

To evaluate the effectiveness of our proposed
model, we compare with existing state-of-the-art
methods, which are given in Table 2. Each row rep-
resents the evaluation metrics for a specific method.
The best score for each metric is highlighted. Ac-
cording to the reported results, our model demon-
strates superior performance across the majority
of evaluation metrics, with the exceptions of Macro-
AUC and Macro-F1 on the MIMIC-III-full dataset.
Under the Top-50 codes setting, our model per-
forms better than the KEPTLongformer on all met-
rics and achieves state-of-the-art scores. These

results confirm the effectiveness of leveraging aux-
iliary knowledge and label co-occurrence relations.

5.1. Ablation Studies
We aim to investigate the influence of various mod-
ules of our model, and we seek to understand how
these modules contribute to the performance of the
model in terms of both effectiveness and robust-
ness. In order to conduct a fair comparison and
isolate the effects of specific modules, we system-
atically remove certain modules from our model.
Specifically, we conduct controlled experiments
with three different settings: (a) examining the influ-
ence of different embedding methods by replacing
built from scratch embeddings with pre-trained con-
textual embeddings, i.e., Clinical-Longformer (Li
et al., 2023) and pre-trained biomedical context-
free embeddings, i.e., BioWordVec (Zhang et al.,
2019); (b) replacing the co-occurrence graph learn-
ing with a fully connected layer; (c) removing the
auxiliary knowledge mask from our model. The
experimental results are shown in Table 3.

Effectiveness of Embedding Methods As
shown in Table 3, using pre-trained context-free
word embeddings (BioWordVec) and pre-trained
contextual embeddings (Clinical-Longformer) have
negative impacts on the performance. This obser-
vation shows that although the use of pre-trained
word embeddings has shown impressive perfor-
mance across a wide range of natural language
processing tasks, their performance on clinical
datasets can sometimes be suboptimal. Under-
standing why this can occur will require further
study.

Effectiveness of Learning Label Representa-
tions Table 3 shows the positive contribution of
label representations learned by GCN. By using
GCN, our model gains the ability to capture and
leverage the relationships and dependencies be-
tween labels, leading to improvements in perfor-
mance. This indicates that the incorporation of
label co-occurrence information in a GCN enables
the model to learn from the collective behaviour
of labels, facilitating a more comprehensive under-
standing of the underlying label relationships.

Effectiveness of Involving Auxiliary Knowl-
edge Mask We have three types of auxiliary knowl-
edge involved to build the mask: DRG codes, CPT
codes, and drug prescriptions. As reported in Ta-
ble 3, performance drops when removing the aux-
iliary knowledge mask, suggesting that the auxil-
iary knowledge mask plays a crucial role in guiding
the model’s attention towards relevant information
and aiding in the classification process. This result
provides further evidence supporting the premise
that the auxiliary knowledge mask effectively lever-
ages external knowledge to mitigate the challenges
posed by an extensive pool of potential ICD codes.

https://github.com/xdwang0726/MIMIC-ICD-Classification
https://github.com/xdwang0726/MIMIC-ICD-Classification
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Models
MIMIC-III-full MIMIC-III-top 50

AUC F1 P@K AUC F1 P@5Macro Micro Macro Micro P@8 P@15 Macro Micro Macro Micro
CAML (Mullenbach et al., 2018) 0.895 0.986 0.088 0.539 0.709 0.561 0.875 0.909 0.532 0.614 0.609

DR-CAML (Mullenbach et al., 2018) 0.897 0.985 0.086 0.529 0.690 0.548 0.884 0.916 0.576 0.633 0.618
MultiResCNN (Li and Yu, 2020) 0.910 0.986 0.085 0.552 0.734 0.584 0.899 0.928 0.606 0.670 0.641

LAAT (Vu et al., 2020) 0.919 0.988 0.099 0.575 0.738 0.591 0.925 0.946 0.666 0.715 0.675
Joint-LAAT (Vu et al., 2020) 0.921 0.988 0.107 0.575 0.735 0.590 0.925 0.946 0.661 0.716 0.671

EffectiveCAN (Liu et al., 2021) 0.915 0.988 0.106 0.589 0.758 0.606 0.915 0.938 0.644 0.702 0.656
MSMN (Yuan et al., 2022) 0.950 0.992 0.103 0.584 0.752 0.599 0.928 0.947 0.683 0.725 0.680

KEPTLongformer (Yang et al., 2022) - - 0.118 0.599 0.771 0.615 0.926 0.947 0.689 0.728 0.672

Ours 0.948 0.994 0.112 0.605 0.784 0.637 0.928 0.950 0.692 0.734 0.683
± 0.022 ± 0.013 ± 0.027 ± 0.021 ± 0.022 ± 0.011 ± 0.014 ± 0.018 ± 0.016 ± 0.012 ± 0.023

Table 2: Comparison to previous methods across three main evaluation metrics MIMIC-III dataset. We
report the mean ± standard deviation of each result. Bold: best scores in each column.

Methods AUC P@K
Macro Micro P@8 P@15

Full Model 0.948 0.994 0.784 0.637
embedded w/ Longformer 0.918 0.987 0.751 0.592
embedded w/ BioWordVec 0.923 0.989 0.765 0.609

w/o label feature 0.904 0.986 0.736 0.583
w/o masked attention 0.912 0.986 0.756 0.592

Table 3: Ablation experiment results. Bold: the
optimal values.

By incorporating external knowledge through the
auxiliary knowledge mask, the model gains the
ability to narrow down and focus on relevant labels,
thereby enhancing its efficiency and accuracy in the
final prediction. To select the proper mask for each
clinical note, one hyper-parameter is used: thresh-
old τ of auxiliary knowledge-label co-occurrence.
With τ = 0.005, 99.22% of the gold-standard ICD
codes are guaranteed to be in the mask, and the av-
erage number of codes in the mask is 1460 which
is about 1

6 of the complete set of codes.

5.2. Case Studies
We conduct case studies to qualitatively under-
stand the effects of incorporating the label co-
occurrence (as shown in Figure 3) and the aux-
iliary knowledge (as shown in Figure 4). For each
patient, we show the discharge summary, ground
truth ICD codes, label co-occurrence information /
auxiliary knowledge information as well as the top-
8 predicted ICD codes of the full model and ablated
models. In Case 1, the ground truth ICD codes
include “46.85 Dilation of intestine”, a diagnosis
not explicitly mentioned in the discharge summary.
The observed label co-occurrence between “560.2
Volvulus” and “46.85 Dilation of intestine” serves as
a robust indicator, effectively suggesting the pres-
ence of the “46.85 Dilation of intestine” diagnosis
in the patient. Without the label co-occurrence sig-
nals, the ablated model makes a wrong prediction
“789.07 Abdominal pain, generalized” that ignores
the latent label information. In Case 2, the patient
has been diagnosed with “331.0 Alzheimer’s dis-
ease” with less explicit information in the discharge
summary. Notably, the presence of “Donepezil”

Figure 3: Case study on the effectiveness of incor-
porating label co-occurrence. Correctly predicted
labels are marked in green and the incorrect ones
are marked in red.

in the drug prescription, an element of the auxil-
iary knowledge, indicates that the patient is most
likely to have Alzheimer’s disease. The ablated
model, lacking the auxiliary knowledge, mistakenly
predicts “285.8 Other specified anemias”. Case 1
and Case 2 exemplify the advantages of incorporat-
ing label co-occurrence and auxiliary knowledge,
respectively.

6. Conclusion

In this paper, we propose a novel auxiliary
knowledge-induced medical code labelling frame-



2014

Figure 4: Case study on the effectiveness of incor-
porating auxiliary knowledge. Correctly predicted
labels are marked in green and the incorrect ones
are marked in red.

work which uses multiple multi-level dilated residual
blocks and jointly exploits label co-occurrence and
auxiliary knowledge. Specifically, incorporating la-
bel co-occurrence relations and external knowledge
through the auxiliary knowledge mask serves as
a valuable mechanism for addressing the inherent
complexity and size of the label space, ultimately
leading to improved performance and more effec-
tive utilization of the model’s resources. Moreover,
to deal with the length of the clinical texts, the multi-
level dilated residual block helps capture and un-
derstand long dependencies. Experimental results
demonstrate that our proposed model outperforms
the baseline models. We are interested in integrat-
ing more external knowledge in the future, such as

the Unified Medical Language System (UMLS), to
seek further improvements.

7. Limitations

Our work is limited to evaluate the MIMIC-III-full
and MIMIC-III-top 50, which are mostly focused
on common diseases (i.e., the most frequent ICD
codes). It is not possible to define rare diseases
simply from the distribution of ICD codes in the
dataset since rare ICD codes do not necessarily
indicate the presence of rare diseases exclusively.
This limits evaluation on diseases that are rare a
priori. A list of rare diseases proposed by domain
experts for more specific medical tasks would be
helpful to explore more focused use cases.

Our auxiliary knowledge masks are limited by ex-
ternal knowledge including DRG codes, CPT codes,
and drug prescriptions. Other knowledge sources,
including disease-symptom, disease-lab relations,
for example, could potentially be useful for the auto
ICD coding task.
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