
LREC-COLING 2024, pages 2119–2131
20-25 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

2119

“Barking Up the Right Tree”, a GAN-Based Pun Generation Model
through Semantic Pruning

JingJie Zeng1, Liang Yang*1, Jiahao Kang1, Yufeng Diao2, Zhihao Yang1, Hongfei Lin1
1School of Computer Science and Technology, Dalian University of Technology, Dalian, China
2School of Computer Science and Technology, Inner Mongolia Minzu University, Taoliao, China

jjtail@mail.dlut.edu.cn, liang@dlut.edu.cn, kangjiahao@mail.dlut.edu.cn,
diaoyufeng@imun.edu.cn, yangzh@dlut.edu.cn, hflin@dlut.edu.cn

Abstract
In the realm of artificial intelligence and linguistics, the automatic generation of humor, particularly puns, remains a
complex task. This paper introduces an innovative approach that employs a Generative Adversarial Network (GAN)
and semantic pruning techniques to generate humorous puns. We initiate our process by identifying potential
pun candidates via semantic pruning. This is followed by the use of contrastive learning to decode the unique
characteristics of puns, emphasizing both correct and incorrect interpretations. The learned features from con-
trastive learning are utilized within our GAN model to better capture the semantic nuances of puns. Specifically, the
generator exploits the pruned semantic tree to generate pun texts, while the discriminator evaluates the generated
puns, ensuring both linguistic correctness and humor. Evaluation results highlight our model’s capacity to produce
semantically coherent and humorous puns, demonstrating an enhancement over prior methods and approach
human-level performance. This work contributes significantly to the field of computational humor, advancing the
capabilities of automatic pun generation.

Keywords:Pun generation, Semantic pruning, Contrastive learning, GAN

1. Introduction

Puns are a fascinating linguistic phenomenon that
contains humor through their unique ability to con-
vey two or more meanings using a single expres-
sion. As a cornerstone of wordplay, puns produce
a humorous effect by exploiting linguistic ambigu-
ity, creating unexpected connections and interpre-
tations that evoke surprise and delight. One mean-
ing of such an expression is often intuitive and
clear, while the other may be more subtle, requir-
ing the reader or listener to have a certain under-
standing and decoding ability to capture(Attardo,
2010). Puns are often used in our daily lives, as
discovering and understanding the hidden mean-
ings in puns often brings people a sense of in-
tellectual satisfaction, which is very similar to our
feelings when we comprehend humor. Moreover,
many jokes and humorous stories rely on puns
to build punchlines(Chiaro, 2006; Hempelmann,
2004; Alexander, 1997).
The task of generating puns is a complex cre-

ative work that has recently garnered interest
within the realm of academic research(Mittal et al.,
2022; Sun et al., 2022a; Tian et al., 2022). Un-
derstanding and generating puns are notably dif-
ficult tasks. They necessitate a broad spectrum
of commonsense and worldly knowledge, which
can be challenging even for humans to master and
utilize. Despite advancements in large language
models like ChatGPT, which appear to make the

*Corresponding author

task of pun generation almost effortless, there’s
still room for improvement in computational humor.
In an evaluation of over 1000 generated jokes,
more than 90% were found to be variations of the
same 25 jokes(Jentzsch and Kersting, 2023). This
demonstrates that ChatGPT and similar models
have not yet fully mastered the complex art of hu-
mor generation, especially in a pun style.

The majority of current research on pun gener-
ation tends to concentrate on creating puns given
a pair of words or senses with pun potential. Cur-
rently, research approaches to heterographic and
homographic puns are distinct. The former in-
volves utilizing pair of homophones, consisting of
a pun word and an alternative word(Mittal et al.,
2022; Yu et al., 2020), while the latter is character-
ized by applying various senses of a single polyse-
mous word(Yu et al., 2018; Tian et al., 2022; Sun
et al., 2022b). This classification divides puns into
two categories: homophonic puns, which exploit
similar sounds, and semantic puns, which play on
multiple meanings of a word.

Inspired by real-world observations, we notice
that puns naturally emerge in language descrip-
tions, such descriptions can carry multiple mean-
ings. This multiplicity of meanings is inherent to
the nature of puns, and it’s what makes them
both interesting and challenging to interpret. Each
pun sentence can potentially contribute to multi-
ple interpretations, and depending on the path cho-
sen through these interpretations, different under-
standings of the sentence can be formed.

2120

Figure 1: Each small dot under the sentence correlates to the interpretation of a word, and the black dots
represents the selected meanings within the sentence. The larger circle at the end represents a phrase,
which, if filled in black, indicates its selection as well. Using the initial part of the sentence as an example,
paths that are unattainable are marked with a red “X”.

Consider the example: “The teacher asked a
question and the students were all up in arms.”
This sentence can be interpreted in two ways ei-
ther the students all raise their hands, or the stu-
dents are extremely angry. Both interpretations
are reasonable, and each represents a different
path through the possible meanings of the words
in the sentence. This leads us to the concept of a
“semantic tree” for understanding pun sentences.
In this semantic tree, each word in the sentence
is a node, and each possible interpretation of the
word is a branch leading from that node. The dif-
ferent paths through the tree represent the differ-
ent possible interpretations of the sentence. How-
ever, not all branches in this tree are relevant or
useful for understanding the pun. Some branches
may lead to interpretations that are far-fetched or
inconsistent with the rest of the sentence. To ad-
dress this, we propose a method for pruning the
semantic tree, which requires cutting out irrelevant
branches to leave only the most plausible interpre-
tations. Our research begins by constructing this
semantic tree for a given pun sentence, exploring
the meaning of each word, and then pruning un-
necessary branches. The process of constructing
and pruning the semantic tree is demonstrated in
Figure 1.
After constructing the semantic tree, our next

step is to leverage it. We design a generative
model that can produce pun sentences taking the
semantic tree as input. This is not straightforward,
as it involves navigating the complex structure of
the tree and selecting the appropriate branches to
form a coherent and punny sentence.
To tackle this challenge, we turn to the

power of Generative Adversarial Networks
(GANs)(Goodfellow et al., 2014). GANs have
shown remarkable success in generating realistic
data, and we believe they can be adapted to our
task of pun generation. However, simply using a
standard GAN model is not sufficient, as it may
not fully capture the unique characteristics of puns.
Therefore, we propose an innovative approach
that incorporates aspects of contrastive learning

into the GAN model. Contrastive learning is a
technique that encourages the model to produce
outputs that are similar to the target data and
dissimilar to other data. By introducing these
contrastive learning features, we aim to ensure
that the artificial pun sentences generated by
the GAN can more closely align with the original
description’s puns, thereby enhancing the quality
and authenticity of the generated puns.
The contributions of our work are threefold:
Our key contribution is the innovative seman-

tic tree approach, effectively capturing the multi-
faceted meanings of puns. By pruning irrelevant
branches, we maintain only meaningful interpreta-
tions, thereby boosting the efficiency and accuracy
of pun interpretation and generation.
Our work introduces a novel use of contrastive

learning and GANs for pun generation. This
method allows the model to encapsulate seman-
tic rules and constraints to puns, reducing depen-
dence on manual annotations and enhancing the
diversity and quality of the puns generated.
Our contribution lies in the PunIntended model’s

robust performance in the generation of puns, as
demonstrated by the consistency in our experi-
mental results. Across both homophonic and ho-
mographic pun categories, our model achieved
competitive scores in line with the leading model
and approached human-level performance.

2. Related work

Various approaches have been explored in pun
generation research. Some researchers utilize
conditional language models and decoding algo-
rithms to create puns, emphasizing two intended
senses of a homographic word(Yu et al., 2018;
Cai et al., 2018; Hashimoto et al., 2018). Some
studies have provided polysemous words and at-
tempted to integrate their various interpretations to
create pun(Mittal et al., 2022). Others have gener-
ated puns by rewriting ordinary sentences to ex-
press different semantic meanings of two homo-
phones(Yu et al., 2020). Another line of research

2121

has employed GANs, where the generator pro-
duces sentences that contains two meanings of a
target word(Luo et al., 2019). A further approach
incorporates key linguistic characteristics of puns,
such as ambiguity, distinctiveness, and surprise,
to enhance pun quality(Tian et al., 2022). How-
ever, these methods usually handle homophonic
and homographic puns separately, primarily gen-
erating puns from a “pun pair,” whichmay limit their
creativity and characteristics.

3. Approach

In this section, we will introduce our model pro-
cedure in detail. This encompasses the assem-
bly and pruning of the pun semantic tree, the de-
velopment and feature extraction processes within
the contrastive learning framework, and the spe-
cific operational intricacies of the generator and
discriminator within our GAN model. Its specific
flow chart is shown in Figure 2. We have chosen
to name our model PunIntended (PI). This name
is a playful take on the familiar phrase “No Pun
Intended”. However, in our case, the pun is ab-
solutely intended and consistent with our model’s
main objective, which is the deliberate generation
and understanding of puns.

3.1. Pun Semantic Tree

In this subsection, we dive into the process of
constructing and refining a “pun semantic tree”, a
unique structure that contains the multiple mean-
ings inherent in a pun sentence. We start by as-
sembling the tree, using tools such as the Con-
stituency Parser from Stanza(Qi et al., 2020) and
WordNet(Fellbaum, 1998) to parse the sentence
and query the meanings of each word. We
then prune the tree by comparing the similari-
ties of the interpretations using the BERT-large-
uncased(Devlin et al., 2018) model, aiming to se-
lect the most appropriate interpretations for each
word. This process allows us to effectively capture
the rich semantic complexity of puns and provides
a solid foundation for subsequent pun generation
and understanding tasks.
Assembly For instance, the sentence “The
teacher asked a question and the students were
all up in arms.” Depending on the context, this sen-
tence can express two distinct meanings. This
prompts us to consider whether a pun sentence
might possess a “semantic tree”, a collection of
paraphrases for all words in the sentence, with
puns frequently appearing at the tree’s branching
points. Accordingly, we have devised a method for
generating such a pun-specific semantic tree.
Firstly, for a given original pun sentence S =

[w1, w2, ..., wn], the symbol wn represents each in-

Algorithm 1 Assembly and Pruning of the Pun Se-
mantic Tree
Require: Original pun sentence

S = [w1, w2, ..., wn]
Ensure: Pruned pun semantic tree

Assembly
1: Derive constituency tree of S using Stanza Con-

stituency Parser
2: for each word wn in S do
3: Query meanings of wn using its part of speech

with WordNet
4: Form interpretations [i1, i2, ..., in] for wn

5: end for
Pruning

6: Initialize BERT-large-uncased model
7: for each word wn in S do
8: for each interpretation im of wn do
9: Construct sentence by replacing wn with im in

W
10: Obtain vector representation vm of the con-

structed sentence using BERT
11: end for
12: Obtain vector representation v0 of wn in the orig-

inal sentence using BERT
13: Compare v0 with each vm, retain interpretations

with similarity above threshold
14: end for

dividual word within the pun sentence. We use
a suite of toolkits to facilitate our work. To start,
we employ the Constituency Parser from Stanza
to derive the constituency tree of the pun sen-
tence and ensure to preserve the part of speech
for each constituent word. Following this, we uti-
lize WordNet to query the meanings of each word,
guided by its part of speech, and carry out an initial
screening process. For each word wn in the sen-
tence, the corresponding interpretations obtained
take the form [i1, i2, ..., in].
Of note is the rationale for obtaining the con-

stituency tree through the Constituency Parser:
puns may contain phrases (such as “up in arms”)
that contribute significantly to their overall ef-
fect. Considering that WordNet does not support
phrase querying, we have turned to an online dic-
tionary for these inquiries.1
Pruning Upon acquiring these interpretations, we
are faced with an excessively large set of candi-
date interpretations for each word, despite prelim-
inary filtering based on the speech part. To select
appropriate interpretations, we employ a method
to compare similarities, utilizing the BERT-large-
uncased model as a foundation.
Consider the sentence: “The teacher asked a

question, and the students were all up in arms.”
For the word “teacher”, two potential interpreta-
tions emerge. We integrate each interpretation
into the context of the sentence, forming two new

1https://dictionaryapi.dev/

https://dictionaryapi.dev/

2122

Figure 2: The PunIntended (PI) model, as shown in the figure, effectively abstracts puns into a semantic
tree, which in turn can be used to generate puns. The semantic tree helps our model to focus its atten-
tion on the most plausible interpretations, thus reducing the complexity of the task and increasing the
efficiency of the learning process. By aligning the representations of similar interpretations and distanc-
ing dissimilar ones, the semantic tree effectively leverages the characteristics of contrastive learning in
the process of pun generation. This approach provides a robust guide for the GAN model.

fragments. When feeding these fragments into the
language model, we obtain vector representations
v1 and v2, in the following format:
Original: “The teacher asked a question and the
students were all up in arms.”
Sentence 1: “The teacher (a person whose occu-
pation is teaching) asked a question and the stu-
dents were all up in arms.”
Sentence 2: “The teacher (a personified abstrac-
tion that teaches) asked a question and the stu-
dents were all up in arms.”
Similarly, we derive a vector representation, v0,

for “teacher” in the original sentence.
The objective is to identify which interpreted con-

text vector (v1 or v2) aligns most closely with the
original context vector (v0). By setting the thresh-
old, we can get the pruned pun semantic tree. The
specific process is shown in Algorithm 1.

3.2. Contrastive Learning with Puns

In this subsection, we illustrate the development
of a contrastive learning model and the extraction
of features that are crucial to understanding and
generating sentences. Drawing inspiration from
the semantic tree of puns, we recognize the need
for a systematic exploration of the semantic space
of puns. The tree structure provides a rich set of
potential interpretations for each word in the sen-
tence, enabling our model to understand the pun
from various perspectives. This understanding, in
turn, enhances the model’s ability to generate and

comprehend puns. Consequently, we employ con-
trastive learning to leverage these insights and fur-
ther refine our model’s capabilities.
The dataset we use in our study comprises pun

sentences paired with several (0-5) accurate inter-
pretations Sun et al. (2022a). This dataset is an im-
provement over the SemEval 2017 Task 7 dataset
Miller et al. (2017)2. To maximize the use of these
precious annotated data, we have trained a con-
trastive learning model whose objective is to effec-
tively differentiate between puns, correct interpre-
tations, and incorrect interpretations.
Wrong Explanation Selecting positive examples
in this dataset is clear-cut, but opting for nega-
tive examples, interpretations that neglect the pun,
poses a challenge. Such choices markedly influ-
ence the contrastive learning model’s grasp of the
correct versus incorrect explanations. To address
this problem, we use the GPT-3.5-Turbo API3 to
generate negative examples, with the prompt de-
tails included in the following frame. This method
guarantees that the incorrect interpretation does
not accurately delineate the pun sentence’s mean-
ing, tending more towards a literal interpretation.
Contrastive Learning We have also chosen the
BERT-large-uncased model as the foundational
model for contrastive learning. However, our goal
is to align the representation of pun sentences as

2https://alt.qcri.org/semeval2017/
task7/

3https://platform.openai.com/

https://alt.qcri.org/semeval2017/task7/
https://alt.qcri.org/semeval2017/task7/
https://platform.openai.com/

2123

I will provide you with a pun sentence as follows:

PUN: Time flies like an arrow; fruit flies like
a banana.
RIGHT_EXPLAIN: [“Time passes quickly, as
fast as an arrow. However, fruit flies are fond of
bananas.”]
WRONG_EXPLAIN: [“Time flies in the same way
an arrow does; fruit flies in the same way a banana
does.”]

Your task is to generate similar “wrong_explain”
sentences based on the provided input. The
wrong interpretation should be derived from a
nonpunning perspective.

Thus, the expected output format should be:
PUN: {pun},
RIGHT_EXPLAIN: {right_explain},
WRONG_EXPLAIN: {generated_wrong_explain}

Figure 3: The above depicts the prompt input for
GPT-3.5-Turbo, where {pun} and {right_explain}
serve as placeholders, which will be provided dur-
ing actual implementation.

closely as possible with correct interpretations and
to distance them from incorrect interpretations. To
achieve this, we strategically set the input samples
and loss functions for comparative learning, which
are detailed as follows:
For the construction of input samples in our

study, we have adopted a tri-categorization ap-
proach. Initially, we generate positive samples
by pairing each original text with two correct inter-
pretations, assigning these a label of 1. Subse-
quently, we construct negative samples by associ-
ating each original text with one correct and one in-
correct interpretation, which are given a label of 0.
Lastly, a distinct category of negative samples is
formulated by pairing each original text with two in-
correct interpretations, and these are marked with
a label of 2. Hence, the final input format is repre-
sented as (S,E1, E2, L), where S denotes the orig-
inal sentence, E1 and E2 are the interpretations
placed at the first and second positions, respec-
tively, and L indicates the type of sample accord-
ing to our categorization.
In this context, L represents the label of a sam-

ple. The distance between any two points, say i
and j, is denoted by dij . For instance, the distance
between S and E1 is represented as d12, and the
distance betweenE1 andE2 is denoted as d23. Ad-
ditionally, m stands for a predefined margin that
is employed in the calculation of certain loss func-
tions, and λ symbolizes a scaling factor that ad-
justs the impact of certain distances within the loss
computation.

This structured input sample categorization and
notation system is crucial for the clarity and pre-
cision required in the computational processes of
our study, particularly in the formulation and com-
putation of contrastive loss functions designed to
align the model’s interpretations of pun sentences
with their correct meanings while distancing them
from incorrect interpretations.
L1 calculates the loss for samples with labels 0

or 1, with an aim to ensure higher similarity among
similar interpretations. It integrates a term propor-
tional to the squared distance for samples with la-
bel 0 and a term involving the square of themargin-
adjusted distance for samples L1:

L1 = (1− L) · d212 + L ·max(0,m− d12)
2

+ L ·max(0,m− d13)
2 (1)

L2 computes the additional loss for label 2 sam-
ples, with a goal to align two incorrect interpreta-
tions towards similar outputs. This term gets acti-
vated only when the L2:

L2 =

{
d223 + (d12 − d13)

2 if L = 2

0 otherwise
(2)

Ladd introduces a contrast term that diminishes
the similarity between the original text and the
incorrect interpretation when the L1. This is
achieved by augmenting the loss when the dis-
tance d13 between the original and incorrect inter-
pretation exceeds the distance d12 between the
original and correct interpretation:

Ladd =

{
log(1 + exp(λ · (d13 − d12))) if L = 1,

0 otherwise.
(3)

Ltotal is the aggregate of these three terms and
represents the total loss:

Ltotal = L1 + L2 + Ladd (4)

The flow of the algorithm is shown in Algorithm 2.
Through this loss function, we ensure that our con-
trastive learning model brings the pun sentence
closer to the correct interpretation and distances
it from the incorrect interpretation. This approach
facilitates effective discrimination and feature ex-
traction for the subsequent GAN model.

3.3. Details of the GAN Model

In this subsection, we state clearly the details of
the implementation. In general terms, the archi-
tecture consists of a generator and a discrimina-
tor. The generator uses the T5 model(Raffel et al.,
2020), taking the pun semantic trees, constructed
in Section 3.1, as input, and generating pun text as
output. The discriminator, on the other hand, is a

2124

Algorithm 2Contrastive Learning and Feature Ex-
traction
Require: Original pun sentence S, Correct interpreta-

tion C, Incorrect interpretation I
Ensure: Feature extracted
1: Initialize GPT-3.5-Turbo API, BERT-large-uncased

model
2: Initialize m, λ and distance function d
3: for each sentence S do
4: Generate incorrect interpretation I using GPT-

3.5-Turbo API
5: Construct positive, negative samples by pairing S

with C and I
6: for each sample do
7: Compute L1, L2, Ladd

8: Compute Ltotal

9: Optimize model parameters with Ltotal

10: end for
11: end for

BERT-large-uncased model. It utilizes the [CLS]
token representation from the final hidden layer as
a feature for classification.
Process details We denote the original pun sen-
tence as S, the pun interpretation tree as T , and
the sample pair constructed for contrastive learn-
ing as (E1, E2), with E1 and E2 representing two
explanations, and L as the label. We initially per-
form a simple concatenation of the interpretations
of the semantic tree, using [PlaceHolder] as the
linking symbol, followed by encoding. For added
randomness, we randomly mask the interpreta-
tion of some words before encoding, signifying the
masked segments with [Interpretation] and set-
ting the probability at 15%.
Subsequently, we input this into the generator

to obtain the pseudo-data denoted S′. Replac-
ing the original sample pair for contrastive learn-
ing with the generated pseudo-data, we transition
from (S,E1, E2, L) to (S′, E1, E2, L), and feed this
into the contrastive learning model to obtain the
contrastive learning loss for the pseudo-data, de-
noted as Lpseudo. The original contrastive learning
loss is denoted as Ltrue.
We define the feature extracted from pun sen-

tence S using contrastive learning as Ftrue and the
feature of the pseudo-data as Fpseudo. The simi-
larity between these two features is represented
by Psimilarity. It’s crucial that the generated pseudo-
data is not too similar to the true data. This pre-
caution ensures that there isn’t a direct copy-paste
from the true data to the pseudo-data, preventing
them from being semantically very close.
The loss function for the discriminator, which dis-

tinguishes between the original and pseudo-data,
is calculated as:

LD = BCE(D(xtrue), 1) + BCE(D(xpseudo), 0)

+ λ · CL (5)

where CL is the contrastive loss represented by
|Ltrue − Lpseudo|, BCE is the binary cross-entropy
loss function, D(xtrue) and D(xpseudo) are the dis-
criminator’s outputs for true and pseudo-data, re-
spectively, and λ is the weight of the contrastive
loss, serving to adjust the importance of the con-
trastive loss within the total loss.
After updating the parameters of the discrimina-

tor and reevaluating the pseudo-data, we calculate
the generator’s loss function. The total loss for the
generator is the sum of the pseudo-data loss and
the weighted contrastive loss:

LG = BCE(D(G(z)), 1) + λ · Lpseudo (6)

where the generator is only utilize the pseudo-data
contrastive loss.
Then, we calculate the loss for the generator T5

model, and the total loss for the generator is calcu-
lated as:

LGall = LG + LT5 + Psimilarity (7)

Subsequently, we update the parameters of the
generator according to the newly derived loss. Fi-
nally, the parameters of the contrastive learning
model are updated, with the loss being:

LC = Ltrue + Lpseudo (8)

As described in Algorithm 3, we describe the
pseudo-code to combine contrastive learning with
GANs. In essence, the pun semantic tree forms
the backbone of our approach, guiding the devel-
opment and feature extraction in contrastive learn-
ing and laying a solid foundation for the subse-
quent GAN model.
Moreover, it is important to stress our rationale

for utilizing a GAN and contrastive learning to un-
dertake this task. We have fully exploited manu-
ally annotated data such as “why is it a pun” and
other similar annotation information. However, not
every pun has this kind of annotation, and when
generating puns, no such interpretation is pro-
vided. Therefore, we employ the synergy of con-
trastive learning and GAN to incorporate the se-
mantic rules and constraints of puns into themodel
itself. This approach allows us to transcend the
limitations of the existing annotation-based system
and generate a broader range of high-quality puns.

4. Experiment

4.1. Experimental Design

Dataset Selection We utilize the ExPUNations
(Sun et al., 2022a) dataset, an enhancement of
the original SemEval 2017 Task 7 dataset. The
dataset includes pun sentences paired with sev-
eral accurate interpretations, enabling an effective
combination of puns and human understanding.

2125

Algorithm 3 Procedure for contrastive learning
with GANs
Require: Pun sentence S, Pun interpretation tree T ,

Sample pair (E1, E2), Label L
1: Encode interpretation tree T into generator to obtain

the pseudo-data S′.
2: Replace original sample pair from (S,E1, E2, L) to

(S′, E1, E2, L)
3: Compute contrastive learning loss Lpseudo and Ltrue.

4: Extract features Ftrue and Fpseudo from S and S′.
5: Calculate Psimilarity between Ftrue and Fpseudo.
6: Compute discriminator loss LD.
7: Update discriminator parameters and reevaluate

pseudo-data.
8: Compute generator loss LG and T5 model loss LT5.

9: Compute and update parameters based on LGall .
10: Update contrastive learning model parameters.

The loss is LC = Ltrue + Lpseudo.

Experimental Setting The learning rate for the
contrastive learning model is set at 1e-6, while
for the generator and discriminator models in the
GAN, the rates are 3e-4 and 1e-6 respectively. No-
tably, the contrastive learning model undergoes a
round of pre-training before being trained in con-
junction with the GAN. Additionally, the hyperpa-
rameter λ in the GAN is set to 1. All experiments
are conducted on a single A100 GPU with 40GB
of VRAM.

4.2. Baseline Model

We compare our approach with the following exist-
ing baseline:
UnifiedPun(Tian et al., 2022) A model that inte-
grates key linguistic characteristics of puns, ambi-
guity, distinctiveness, and surprise.
AMBIPUN(Mittal et al., 2022) A model that gen-
erates puns by incorporating context words from
both senses.
Pun-GAN(Luo et al., 2019) A model that employs
GAN to foster ambiguity.
LCR(Yu et al., 2020) The model that initially iden-
tifies suitable lexical constraints and subsequently
restructures the sentence.
SurGen(He et al., 2019) A model that employs the
principle of local-global surprisal in a retrieve-and-
edit framework.
Neural Pun(Cai et al., 2018) A model leverages bi-
directional LSTMnetwork tomodel each sequence
of word senses in pun tasks.

4.3. Metrics

For the evaluation of pun generation tasks, we
implement a dual set of metrics. The traditional

metrics include Ambiguity(Kao et al., 2016), Dist-
1, and Dist-2. Ambiguity, although a crucial as-
pect, presents challenges in quantification due to
its subjective nature, which may not always accu-
rately reflect the true quality of the pun text. On
the other hand, while Dist-1 and Dist-2 excel in
measuring lexical diversity, they may overlook se-
mantic diversity, coherence, and readability—key
factors in evaluating the quality of generated con-
tent. Recognizing these limitations, we argue that
these metrics alone do not intuitively capture the
characteristics of the pun generation task.
Therefore, we adopt the following strategy:

Studies on pun generation have traditionally em-
ployed custom, often manually-driven, evaluation
metrics. Our research, however, takes a distinct
approach. We choose an entirely objective, au-
tomated evaluation framework with the LLM (like
GPT-4.0 and Claude-2) acting as the central ar-
biter. Recent studies have shown that GPT-4’s
opinions significantly overlap with human review-
ers(Liang et al., 2023), which points out that GPT-
4’s opinions aligned with at least one human re-
viewer 57.55% of the time. Hence, our evaluation
spotlights the following essential aspects of puns:
Creativity and Humor(C&H)(Attardo and Raskin,
1991): Good puns typically exhibit creativity,
cleverly connecting two or more meanings in a
way that elicits laughter or thoughtful reflection.
Humor is a key criterion, determining whether the
pun can bring about amusement.
Clarity(CI)(Ritchie, 2004): A pun should be
understandable without being overly obscure or
hard to grasp. If people need too much time to
understand it, it may not be a good pun.
Originality(O)(Koestler, 1964): Good puns
should be original rather than repetitive clichés.
Originality can increase the appeal of a pun.
Context Sensitivity(CS)(Chiaro, 2006): The ef-
fectiveness of a pun should align well the specific
context to have the greatest impact. A good pun
should fit seamlessly into its surroundings.
Multiple Layers of Meaning(MLM)(Wilson,
2006): Some puns may have multiple layers of
meaning, capable of eliciting different interpre-
tations or reactions in various contexts. This
richness can enhance their appeal.
For each criterion, the LLM rates puns on a

scale of 0-10, with the average scores providing a
holistic view. To account for the inherent random-
ness in the evaluation of LLMs, each assessment
was repeated 10 times, and the resulting scores
were averaged. The strengths of this method en-
compass: 1) Objectivity: Employing LLM miti-
gates biases typically associated with manual eval-
uations. 2) Depth of Understanding: With its ex-
tensive training data, LLM is adept at discerning
the finest linguistic nuances, positioning it as an

2126

Pun pair mane-main Score (GPT-4 and Claude-2) Avg.C&H Cl O CS MLM
LCR The mane object of the hair was accomplished. 5.8|5.8 6.1|7.9 5.4|5.3 5.1|6.5 4.3|4.8 5.3|6

SurGen A trot later, he was sitting away from the mane dining area. 5.5|4.9 6.5|7.3 5.1|4.8 6.3|5.9 4.5|4.3 5.6|5.4
UnifiedPun In some places, hair also makes up the mane entrance to fashion salons. 6.4|6.7 7.4|6.6 5.4|6.6 8|7.6 5.3|5.5 6.5|6.6
Human Lions don’t have to worry about every little detail in life, just the mane thing. 7.3|7.1 8.4|7.4 5.7|5.9 6.9|7.6 5.4|5.6 6.7|6.7

PI (Ours) Lions mane-tain that their haircuts are the mane event. 7.7|7.1 7.4|6.7 6.3|5.6 6.7|7.8 6.3|5.3 6.9|6.5
Even though the tiger kept his mane mostly hairless, he still made a lot of bucks. 6.8|7 7.1|7.8 6.4|6.6 5.5|6.5 6.1|5.4 6.4|6.7

Pun pair sentence → clause Score (GPT-4 and Claude-2) Avg.C&H Cl O CS MLM
Pun-GAN Due to the sentence it is in the United States. 2|0.6 1.3|2.3 3|1.9 1.5|0.8 1.2|0.5 1.8|1.22
AmbiPun The sentence is ungrammatical. The jury didn’t hear it. 5.2|3.7 6.3|6.3 5.4|4.9 5.4|5.9 4.2|3.7 5.3|4.9
UnifiedPun Ours The language on a two-page sentence for fraud is full of guilt. 2.3|2.5 1.4|3.6 3.3|3.8 2.1|2.9 2.1|2.8 2.2|3.1
Human The judge has got a stutter. Looks like I am not getting a sentence. 7.3|7.6 7.8|7.3 6.7|6.6 6.8|7.3 6|6 6.9|6.96

PI (Ours) Convict, I find that sentence very punitive. 6|6.2 7.4|7.7 5.2|5.3 6.4|6.9 5.2|5.4 6|6.3
When a jury is seasoned off, the verdict is almost well-done. 7.8|7.2 6.9|6.2 7.5|7.5 6.8|6.3 6.7|6.4 7.1|6.72

Table 1: Example outputs of different models. Including scoring using LLMs

Sentence C&H|CI|O|CS|MLM Avg.
(a) GPT-4: Why did the grammar teacher serve jail time? For too many incomplete sentences. 8.5|9.5|8|8.5|8 8.5
(b) PI (Ours): If your teacher tells you grammar rules you must completely skip, you might get more out of lesson. 7|8|8|8.5|7.5 7.8
(c) Claude-2: The defendant was outraged when the judge imposed a 20 year sentence. He insisted it was only a short sentence. 9|9.5|8.5|9|8.5 8.9
(d) PI (Ours): The defendant bluffed away his sentence, and retold an innocent truth. 8|9|8.5|9|8 8.5

Table 2: Comparing Our Model with LLMs

unparalleled evaluator for puns.
However, it must be emphasized that the stan-

dards we have established are based on specific
criteria for evaluating puns. Although these stan-
dards are crucial, they may inadvertently affect the
results and bypass other evaluation criteria. More-
over, the precise prompts provide to the LLMs
can be found in Appendix A, where we have de-
tailed descriptions and processes to guarantee
that LLMs comprehend our objectives and tasks
accurately. Additionally, to ensure a comprehen-
sive assessment, we compare our model’s output
with the exemplary puns showcased in another re-
search paper, considering them as prime exam-
ples of puns from published works.

4.4. Result and Analysis

In traditional metrics, our results are as shown in
Table 3. The outcomes indicate that our model
achieves the best performance, with the only ex-
ception being slightly lower in Dist-1 compare to
the few-shot GPT-3. However, we believe these
results do not intuitively demonstrate the quality
of our generated outcomes. Hence, we conduct
another experiment, directly comparing our results
with the showcase examples presented in their pa-
pers.
In our experiment, we select the showcase di-

rectly from UnifiedPun(Tian et al., 2022) in an ef-
fort to maintain consistency with the comparison
experiment. In the main body, we focus solely on
comparisons using one paper’s showcase. Com-
prehensive experiments conducted to compare
other generated showcases are detailed in Ap-
pendix B.
Our model’s input with the definitions of these

two words, although ideally, the input to our model

Model Ambiguity Dist-1 Dist-2
UnifiedPun 20.6 - -
AmbiPun 17.1 31.7 78.7

GPT-3 (Few-Shot) - 37.1 80.4
Neural Pun - 30.2 73.0
Pun GAN 20.1 34.6 71.9

PunIntended (Ours) 23.2 36.4 84.3

Table 3: Evaluation metrics for pun generation
models.

should be a complete sentence. This experiment
is conducted twice due to certain inherent random-
ness in the experimental design, such as the tem-
perature parameters. Finally, the output is evalu-
ated using LLMs for scoring.
As illustrated in Table 1, our model demon-

strates impressive performance. Larger models
produce a greater number of puns than humans
typically generate. The first example, “mane-
main”, represents a homophonic pun, while the
second example, “sentence → clause”, is an in-
stance of a parody pun. Despite the input for this
comparative experiment being word paraphrasing
without context, our model consistently shows its
capability. From the outset of the paraphrase
tree construction, we have anticipated encounter-
ing such pun words. Although we expect inputs to
be collections of word definitions, the 15% mask-
ing during training frequently leads to the creation
of semantically rich and diverse sentences.

4.5. What is the Perfect Pun in LLMs?

We utilize LLMs to assess pun sentences. If a
sentence receives a perfect score of 10, we use
it as a foundation for our next-generation process.
The central inquiry here is: How does our model

2127

compare to large language models like GPT-4
in terms of pun generation? In this iteration, in-
stead of inputting the pun pair, our model adopted
the pun semantic tree.
Utilizing the pun pair “sentence→ clause” as an

example, we procure two formal sentences that
fulfill the criteria, from both GPT-4 and Claude-2.
As shown in Table 2, (a) is generated by GPT-
4, while (c) is generated by Claude-2. However,
when we revert GPT-4’s memory to the evalua-
tion phase and input these sentences, they receive
scores of 8.5 and 8.9, respectively. After deriving
the pun semantic tree according to our procedure,
we feed the two acquired sentences tree into our
model. Table 2 also displays the sentence gen-
eration results: (b) is derived from (a), and (d) is
derived from (c). Upon evaluation, GPT-4 awards
sentences with score 7.8 and 8.5, respectively. Ac-
tually, our model tends to generate sentence struc-
tures that simulate those of the LLMs, at least in
terms of vocabulary. The slightly lower score for
(b) might be attributed to the sentence losing its
relevance to “sentence→ clause”, making it seem
somewhat out of place in this group. However, this
evaluation also unveils some critical findings:
Firstly, the incorporation of high-quality seman-

tic trees has been shown to significantly enhance
our model’s pun generation capabilities, proving
the effectiveness of semantic structures in this do-
main. Secondly, our model demonstrates the abil-
ity to mimic the sentence structures of larger mod-
els, achieving outcomes that are comparable with
those sophisticated models.

4.6. Case Study

Using the classic pun, ‘Time flies like an arrow; fruit
flies like a banana.’ we apply our methodology and
observe the following result:
The butterflies perceived it as a matter of life or death.

Utilizing the method in Subsection 3.1, we ana-
lyze why this is a pun and infer that “butterflies”
can be interpreted as a feeling of nervousness,
which “life or death” serves to emphasize. Alterna-
tively, “butterflies” may be understood in the literal
sense, with “life or death” depicting the survival
challenges faced by butterflies. Thus, the “butter-
flies” unfolds two distinct interpretative paths.
In another experiment, inputting the definitions

of “poker,” “deception,” and “opponent” yield:

When bullets fly out of a hole, they don’t bluff.

Though the sentence shows one path in a se-
mantic tree analysis, it still appears as a pun.
“Bluff” can mean a gaming tactic or describe bullet
behavior. It implies bullets either bluff metaphor-
ically or when shot, head straight to their target

without “intimidating”. This underscores “bluff’s”
layered meanings and suggests an oversight in
the semantic tree approach, hinting at a new di-
rection for pun studies with metaphor.

5. Conclusion

Puns as a complex rhetorical device of language
where sentences convey “dual” meanings. To ef-
fectively analyze puns, our work introduces a new
model to generate these wordplays, making the
pun analysis more accessible and feasible. By
creating a semantic tree that encapsulates the in-
trinsic semantics of puns, we have paved the way
for more intuitive pun generation. The assembly
and pruning strategies innovated guarantee that
this semantic tree only contains coherent interpre-
tations. A contrastive learning model trained on a
rich dataset, utilizing a multi-component loss func-
tion, promotes correct interpretations while penal-
izing erroneous ones. We integrate this learning
model with a GAN to further refine the training pro-
cess and enable pun generation precisely.
In addition, our model does not rely on pre-

provided pairs of words or senses, presenting a
significant stride towards autonomous pun gener-
ation. Through a comprehensive set of experi-
ments, our model has proven to outperform cur-
rent benchmarks, signifying the effectiveness of
our approach in contributing to the advancement
of linguistic creativity in pun generation.

6. Future work

In the future, our goal is to conduct in-depth re-
search on the distribution of puns, understand their
context driven characteristics and inherent creativ-
ity. We will consider the potential shift from GAN to
Variational Autoencoder (VAE) to achieve more in-
terpretable and controllable pun generation. Our
analysis will extend to puns in sentence context
and delve into the intricate relationship between
metaphors and puns. In addition, how to express
emotions vividly and unexpectedly through pun
generation will also be an important trend. We will
further explore the study of linguistic mechanisms
to achieve a deeper understanding of complex lin-
guistic phenomena.

7. Acknowledgements

We thank reviewers for their comments, which pro-
vided some insights on this research that will fur-
ther influence our future work. This work is par-
tially supported by grants from the Natural Sci-
ence Foundation of China (62076046, 62006130,
62366040, 62076051) and Inner Monoglia Sci-
ence Foundation (No.2022MS06028).

2128

8. Ethical Consideration

Automating pun generation requires a discourse
on certain ethical aspects. Firstly, the potential
for misinterpretation and miscommunication may
occur, especially in culturally diverse or sensitive
settings, given the subjective and complex char-
acteristics of humor. Secondly, the cultural intri-
cacies embedded in humor are also a challenge;
our model, despite its innovative semantic tree ap-
proach and contrastive learning techniques, may
inadvertently generate content that could be per-
ceived as disrespectful or misrepresentative of cer-
tain cultures or social groups. Lastly, the inherent
risk of bias still exists, akin to other AI systems,
where biases in the training data could transpire
into the generation of biased puns, potentially ex-
isting social prejudices.

9. Limitations

Despite the promising outcomes in pun genera-
tion, our model still has limitations. The seman-
tic pruning technique, while effective, could lead
to over-pruning, omitting unconventional pun in-
terpretations, reflecting challenges seen in neu-
ral machine translation(Gu et al., 2021). Addition-
ally, the model, although competitive, hasn’t com-
prehensively achieved human-level humor com-
prehension and generation, with the complexity
of humor often requiring deep cultural or contex-
tual understanding remaining a challenge(Veale,
2011). The generalizability of our model across
different languages and cultures remains untested,
indicating areas for future exploration to enhance
the model’s adaptability and effectiveness in auto-
mated pun generation.

10. Bibliographical References

Richard Alexander. 1997. Aspects of verbal hu-
mour in English, volume 13. Gunter Narr Verlag.

Salvatore Attardo. 2010. Linguistic theories of hu-
mor, volume 1. Walter de Gruyter.

Salvatore Attardo and Victor Raskin. 1991. Script
theory revis (it) ed: Joke similarity and joke rep-
resentation model.

Yitao Cai, Yin Li, and Xiaojun Wan. 2018. Sense-
aware neural models for pun location in texts.
In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics
(Volume 2: Short Papers), pages 546–551,
Melbourne, Australia. Association for Computa-
tional Linguistics.

Delia Chiaro. 2006. The language of jokes: Ana-
lyzing verbal play. Routledge.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language un-
derstanding. CoRR, abs/1810.04805.

Christiane Fellbaum. 1998. WordNet: An elec-
tronic lexical database. MIT press.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi
Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio.
2014. Generative adversarial nets. In Advances
in Neural Information Processing Systems, vol-
ume 27. Curran Associates, Inc.

Shuhao Gu, Yang Feng, and Wanying Xie.
2021. Pruning-then-expanding model for do-
main adaptation of neural machine translation.
In Proceedings of the 2021 Conference of the
North American Chapter of the Association for
Computational Linguistics: Human Language
Technologies, pages 3942–3952, Online. Asso-
ciation for Computational Linguistics.

Tatsunori B Hashimoto, Kelvin Guu, Yonatan Oren,
and Percy S Liang. 2018. A retrieve-and-edit
framework for predicting structured outputs. Ad-
vances in Neural Information Processing Sys-
tems, 31.

He He, Nanyun Peng, and Percy Liang. 2019. Pun
generation with surprise. In Proceedings of the
2019 Conference of the North American Chap-
ter of the Association for Computational Linguis-
tics: Human Language Technologies, Volume
1 (Long and Short Papers), pages 1734–1744,
Minneapolis, Minnesota. Association for Com-
putational Linguistics.

Christian F Hempelmann. 2004. Script opposition
and logical mechanism in punning.

Sophie Jentzsch and Kristian Kersting. 2023.
ChatGPT is fun, but it is not funny! humor is
still challenging large language models. In Pro-
ceedings of the 13th Workshop on Computa-
tional Approaches to Subjectivity, Sentiment, &
Social Media Analysis, pages 325–340, Toronto,
Canada. Association for Computational Linguis-
tics.

Justine T Kao, Roger Levy, and Noah D Goodman.
2016. A computational model of linguistic humor
in puns. Cognitive science, 40(5):1270–1285.

Arthur Koestler. 1964. The act of creation.

Weixin Liang, Yuhui Zhang, Hancheng Cao,
Binglu Wang, Daisy Ding, Xinyu Yang, Kailas

https://doi.org/10.18653/v1/P18-2087
https://doi.org/10.18653/v1/P18-2087
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://proceedings.neurips.cc/paper_files/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://doi.org/10.18653/v1/2021.naacl-main.308
https://doi.org/10.18653/v1/2021.naacl-main.308
https://doi.org/10.18653/v1/N19-1172
https://doi.org/10.18653/v1/N19-1172
https://doi.org/10.18653/v1/2023.wassa-1.29
https://doi.org/10.18653/v1/2023.wassa-1.29

2129

Vodrahalli, Siyu He, Daniel Smith, Yian Yin,
Daniel McFarland, and James Zou. 2023. Can
large language models provide useful feedback
on research papers? A large-scale empirical
analysis. In arXiv preprint arXiv:2310.01783.

Fuli Luo, Shunyao Li, Pengcheng Yang, Lei Li,
Baobao Chang, Zhifang Sui, and Xu Sun. 2019.
Pun-gan: Generative adversarial network for
pun generation. In Proceedings of the 2019
Conference on Empirical Methods in Natural
Language Processing and the 9th International
Joint Conference on Natural Language Process-
ing, EMNLP-IJCNLP 2019, Hong Kong, China,
November 3-7, 2019, pages 3386–3391. Asso-
ciation for Computational Linguistics.

AnirudhMittal, Yufei Tian, andNanyun Peng. 2022.
AmbiPun: Generating humorous puns with am-
biguous context. In Proceedings of the 2022
Conference of the North American Chapter of
the Association for Computational Linguistics:
Human Language Technologies, pages 1053–
1062, Seattle, United States. Association for
Computational Linguistics.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason
Bolton, and Christopher D. Manning. 2020.
Stanza: A Python natural language processing
toolkit for many human languages. In Proceed-
ings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics: System
Demonstrations.

Colin Raffel, Noam Shazeer, Adam Roberts,
Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J. Liu. 2020. Ex-
ploring the limits of transfer learning with a uni-
fied text-to-text transformer. J. Mach. Learn.
Res., 21:140:1–140:67.

Graeme Ritchie. 2004. The linguistic analysis of
jokes, volume 2. Routledge.

Jiao Sun, Anjali Narayan-Chen, Shereen Oraby,
Alessandra Cervone, Tagyoung Chung, Jing
Huang, Yang Liu, and Nanyun Peng. 2022a. Ex-
PUNations: Augmenting puns with keywords
and explanations. In Proceedings of the 2022
Conference on Empirical Methods in Natural
Language Processing, pages 4590–4605, Abu
Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Jiao Sun, Anjali Narayan-Chen, Shereen Oraby,
Shuyang Gao, Tagyoung Chung, Jing Huang,
Yang Liu, and Nanyun Peng. 2022b. Context-
situated pun generation. In Proceedings of the
2022 Conference on Empirical Methods in Nat-
ural Language Processing, pages 4635–4648,
Abu Dhabi, United Arab Emirates. Association
for Computational Linguistics.

Yufei Tian, Divyanshu Sheth, and Nanyun Peng.
2022. A unified framework for pun generation
with humor principles. In Findings of the Asso-
ciation for Computational Linguistics: EMNLP
2022, pages 3253–3261, Abu Dhabi, United
Arab Emirates. Association for Computational
Linguistics.

Tony Veale. 2011. Creative language retrieval: A
robust hybrid of information retrieval and linguis-
tic creativity. In Proceedings of the 49th An-
nual Meeting of the Association for Computa-
tional Linguistics: Human Language Technolo-
gies, pages 278–287.

Deirdre Wilson. 2006. The pragmatics of ver-
bal irony: Echo or pretence? Lingua,
116(10):1722–1743.

Zhiwei Yu, Jiwei Tan, and Xiaojun Wan. 2018. A
neural approach to pun generation. In Proceed-
ings of the 56th Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 1:
Long Papers), pages 1650–1660, Melbourne,
Australia. Association for Computational Lin-
guistics.

Zhiwei Yu, Hongyu Zang, and Xiaojun Wan. 2020.
Homophonic pun generation with lexically con-
strained rewriting. In Proceedings of the 2020
Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 2870–
2876, Online. Association for Computational Lin-
guistics.

11. Language Resource References

Miller, Tristan and Hempelmann, Christian and
Gurevych, Iryna. 2017. SemEval-2017 Task
7: Detection and Interpretation of English Puns.
Association for Computational Linguistics. PID
https://alt.qcri.org/semeval2017/task7/.

Sun, Jiao and Narayan-Chen, Anjali and Oraby,
Shereen and Cervone, Alessandra and Chung,
Tagyoung and Huang, Jing and Liu, Yang
and Peng, Nanyun. 2022. ExPUNations:
Augmenting Puns with Keywords and Ex-
planations. Association for Computational
Linguistics. PID https://github.com/amazon-
science/context-situated-pun-generation.

https://doi.org/10.18653/v1/D19-1336
https://doi.org/10.18653/v1/D19-1336
https://doi.org/10.18653/v1/2022.naacl-main.77
https://doi.org/10.18653/v1/2022.naacl-main.77
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://aclanthology.org/2022.emnlp-main.304
https://aclanthology.org/2022.emnlp-main.304
https://aclanthology.org/2022.emnlp-main.304
https://aclanthology.org/2022.emnlp-main.306
https://aclanthology.org/2022.emnlp-main.306
https://aclanthology.org/2022.findings-emnlp.237
https://aclanthology.org/2022.findings-emnlp.237
https://doi.org/10.18653/v1/P18-1153
https://doi.org/10.18653/v1/P18-1153
https://doi.org/10.18653/v1/2020.emnlp-main.229
https://doi.org/10.18653/v1/2020.emnlp-main.229
https://doi.org/10.18653/v1/S17-2005
https://doi.org/10.18653/v1/S17-2005
https://alt.qcri.org/semeval2017/task7/
https://aclanthology.org/2022.emnlp-main.304
https://aclanthology.org/2022.emnlp-main.304
https://aclanthology.org/2022.emnlp-main.304
https://github.com/amazon-science/context-situated-pun-generation
https://github.com/amazon-science/context-situated-pun-generation

2130

A. Detailed Prompt to Evaluation

When employing the LLMs as our evaluation tool,
we utilize the following prompt structure. Within
this structure, each evaluation index is meticu-
lously detailed, providing a comprehensive under-
standing of its significance and rationale for inclu-
sion.

You as a linguist, evaluating whether a pun is
good or bad doesn’t have a fixed criterion, as
its appreciation and evaluation are influenced
by cultural nuances, background knowledge,
personal tastes, and context. Nonetheless, when
judging a pun, one can consider the following
facets:

Creativity and Humor: Good puns typically
exhibit creativity, cleverly connecting two or
more meanings in a way that evokes laughter or
thoughtful reflection. Humor is a key criterion,
determining whether the pun can bring about
amusement.

Clarity: A pun should be understandable without
being overly obscure or hard to grasp. If people
need too much time to understand it, it may not be
considered a good pun.

Originality: Good puns should be original rather
than repetitive clichés or tired tropes. Originality
can increase the appeal of a pun.

Context Sensitivity: The effectiveness of a
pun is often context-dependent. It should align
well with the specific context to have the greatest
impact. A good pun should fit seamlessly into its
surroundings.

Multiple Layers of Meaning: Some puns may
have multiple layers of meaning, capable of
eliciting different interpretations or reactions in
various contexts. This richness can enhance their
appeal.

Please assess the subsequent sentences us-
ing the aforementioned criteria. Rate each on a
scale of 0-10. Then, based on your judgment,
compute a weighted average score for each
sentence:
{Sentence}

Figure 4: The above depicts the prompt input for
GPT-4, Where {Sentence} serve as placeholders,
which will be provided during actual pun sentence
list.

B. Further Experiments

The table 4 provides a comprehensive breakdown
of the indicators referenced in the main text. In
the primary section, only average values are pre-
sented to conserve space. In this detailed table,
we furnish scores for each specific metric: Cre-
ativity and Humor (CH), Clarity (CI), Originality (O),
Context Sensitivity (CS), and Multiple Layers of
Meaning (MLM).
The detailed comparison involves experimental

results against showcases from AMBIPUN(Mittal
et al., 2022), Pun-GAN(Luo et al., 2019), LCR(Yu
et al., 2020), and SurGen(He et al., 2019), dis-
played sequentially from top to bottom.
These showcases are considered to represent

the most focuses outcomes of their respective pa-
pers. Our evaluation against these results is con-
ducted through the lens of LLMs, which provides
scores over 10 iterations, with the average of these
iterations taken as the final score. To mitigate any
potential bias stemming from the order of presen-
tation, the sequence of sentences is randomized
in each iteration. This method ensures a fair and
unbiased comparison, allowing us to accurately
gauge our model’s performance in relation to sig-
nificant existing works in pun generation.
From the results, it is evident that our model

essentially reaches human-level performance, in-
cluding some high-quality puns that stand out for
their creativity. For instance, the pun “Waiting
for her to die, I felt heavy.” cleverly merges the
homophones “wait” and “weight” to convey a pro-
found experience of emotional and psychological
burden. This burden stems from the anticipation
of losing someone, and the sentence vividly ex-
presses the “weight” of emotion in an unexpected
manner. Such deep emotional expressions pro-
vide a crucial focal point for our future studies inte-
grating sentiment analysis.
Another example is ‘‘When the salt was

touchy, his character flaked out.” This show-
cases themodel’s ability to apply human character-
istics to inanimate objects, creating humor and un-
expectedness through linguistic creativity: By ap-
plying words associated with human emotions and
behaviors (“touchy” and “flaked out”) to describe
the nature of “salt,” the sentence creates an amus-
ing visual and conceptual image: salt “flaking out”
due to its “emotional” character. This pun humor-
ously endows salt with human traits, achieving a
humorous and unexpected effect.

2131

Pun Word Irritional Score (GPT-4 and Claude-2)
Sence 1 Real but not expressible as the quotient of two integers. C&H Cl O CS MLM Avg.Sence 2 Not consistent with or using reason.

Ext AMBIPUN I have an irrational paranoia about mathematical integers. 8|7 9|8 8.5|6 9|7 8|6 8.5|6.8
Gen AMBIPUN My calculator is unjust and illogic. It’s irrational. 8|5 8.5|7 8.5|5 8.5|5 8|6 8.3|5.6

Human Old math teachers never die, they just become irrational. 8.5|5 9|8 8|4 9|6 8|4 8.5|5.4

PI (Ours) Sometimes real problems are just too big to be squared away. 9|8 9|9 8.5|7 9|8 8.5|7 8.8|7.8
”Please take me out of the equation with the square root” asked Tom rational. 9|9 9|8 9|9 9|10 9|9 9|9

Pun Word Drive Score (GPT-4 and Claude-2)
Sence 1 A journey in a vehicle (usually an automobile) C&H Cl O CS MLM Avg.Sence 2 The trait of being highly motivated

Ext AMBIPUN What do you call a genius with cunning drive? racecar driver. 8|7 9|8 8|6 9|5 7|4 8.2|6
Gen AMBIPUN I have the determination to travel to my destination. But i don’t have the drive. 7.5|4 9|7 8|5 8|8 8|6 8.1|6

Human A boy saving up for a car has a lot of drive. 8|5 9|9 7.5|4 8.5|7 8|5 8.2|6

PI (Ours) Driving a car doesn’t drive me crazy. 8|5 9|8 7.5|4 9|6 8|5 8.3|5.6
When it was driving instructor Dan Carrel’s turn to drive, his motivation was clear. 8.5|6 8.5|7 9|5 9|8 8|6 8.6|6.4

Pun Word State Score (GPT-4 and Claude-2)
Sence 1 An organized political community forming part of a country. C&H Cl O CS MLM Avg.Sence 2 Mode or condition of being.
Pun-GAN In the state, the national assembly was established. 6|3 9|7 6.5|5 8|6 6|3 7.1|4.8
Human Many people need to learn to be happy with the state they are in. 8|8 9|8 8|7 7.5|9 9|5 8.3|7.4

PI (Ours) Politics - state your case. 7.5|8 8.5|9 7.5|8 9|8 7.5|5 8.0|7.6
You state that you are stately, but I am not a man of state. 8|8 8.5|6 8.5|9 8|5 9|4 8.4|6.4

Pun Word Torch Score (GPT-4 and Claude-2)
Sence 1 The event of something coming in contact with the body. C&H Cl O CS MLM Avg.Sence 2 A suggestion of some quality.
Pun-GAN It is a touch with the red sox. 5|4 6|7 7|3 6|5 6|2 6|4.2
Human The massage which came with the spa treatment was a nice touch. 7.5|6 9|8 7.5|5 8.5|7 8|3 8.1|5.8

PI (Ours) Potion: A Touch of Color. 7|7 8.5|6 8|7 8.5|6 7.5|4 7.9|6
When the salt was touchy, his character flaked out. 8.5|8 8|5 9|8 8|6 8.5|7 8.4|6.8

Pun pair borad-bored Score (GPT-4 and Claude-2)
C&H Cl O CS MLM Avg.

LCR your bedding is board. 4|5 6|7 6|5 7|5 5|3 5.6|5
Human do hotel managers get board with their jobs? 8|7 8|8 7.5|7 8|8 7|5 7.7|7.0

PI (Ours) For the board game, he had nothing. 7|8 8|9 7|8 8|7 6.5|6 7.3|7.6
My wife and I don’t have much of a board game habit. 7|6 9|8 6.5|6 8|7 6|4 7.3|6.2

Pun pair rune-ruin Score (GPT-4 and Claude-2)
C&H Cl O CS MLM Avg.

LCR there was nothing but desolation and rune. 5|5 7|7 6|4 7|5 6|3 6.2|4.8
Human the study of ancient symbols will lead you to rune. 6|6 9|8 7|6 8|7 6|4 7.2|6.2

PI (Ours) The rune shack was ransacked. 7|4 8|9 7|3 7|8 6.5|2 7.1|5.2
My horse must have run out of runes. 7|7 7|6 7|8 6|5 6.5|6 6.7|6.4

Pun pair butter – better Score (GPT-4 and Claude-2)
C&H Cl O CS MLM Avg.

SURGEN Well, gourmet did it, he thought, it’d butter be right. 7|4 8|7 7|3 7|4 7|3 7.2|4.2
Human Why did the dairy churn? The less said, the butter... 8|5 8|8 8|5 8|6 7|4 7.8|5.6

PI (Ours) ”It’s butter better,” Tom Butterer once said. 7|6 7|9 7|7 7|5 7|5 7|6.4
”It’s butter,” said Tom butterfully. 8|6 8|8 8|6 8|7 7|4 7.8|6.2

Pun pair peace – piece Score (GPT-4 and Claude-2)
C&H Cl O CS MLM Avg.

SURGEN That’s because negotiator got my car back to me in one peace. 8|3 8|6 7|5 7|6 7|4 7.4|4.8
Human Life is a puzzle; look here for the missing peace. 9|6 9|8 8|7 8|8 8|6 8.4|7

PI (Ours) When you need to speak with peace, you should always make a point. 7|9 7|8 7|9 7|8 7|7 7|8.2
You have to make peace with music. 7|7 8|8 8|6 7|7 7|5 7.4|6.6

Pun pair flour – flower Score (GPT-4 and Claude-2)
C&H Cl O CS MLM Avg.

SURGEN Butter want to know who these two girls are, the new members of the holy flour. 7|5 7|8 8|5 7|7 7|4 7.2|5.8
Human Betty crocker was a flour child. 9|5 9|6 9|5 8|7 8|6 8.6|5.8

PI (Ours) When the flour blooms she’s all over the map. 8|7 8|9 8|8 7|6 7|5 7.6|7
The flour and flower were all in bloom but not ready for the rain. 8|5 9|9 7|5 7|8 8|6 7.8|6.6

Pun pair wait – weight Score (GPT-4 and Claude-2)
C&H Cl O CS MLM Avg.

SURGEN Even from the outside, I could tell that he’d already lost some wait. 8|6 8|7 7|5 7|5 7|4 7.4|5.4
Human Patience is a virtue heavy in wait. 9|7 9|8 8|6 8|6 8|5 8.4|6.4

PI (Ours) Waiting for Bill, I wait only for the weight of my own mind. 8|8 8|7 8|8 8|7 9|7 8.2|7.4
Waiting for her to die, I felt heavy. 6|5 9|8 7|4 7|6 8|3 7.4|5.2

Table 4: Example outputs of different Show-Case. Including scoring using LLMs

	Introduction
	Related work
	Approach
	Pun Semantic Tree
	Contrastive Learning with Puns
	Details of the GAN Model

	Experiment
	Experimental Design
	Baseline Model
	Metrics
	Result and Analysis
	What is the Perfect Pun in LLMs?
	Case Study

	Conclusion
	Future work
	Acknowledgements
	Ethical Consideration
	Limitations
	Bibliographical References
	Language Resource References
	Detailed Prompt to Evaluation
	Further Experiments

