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Abstract
Recently, we have witnessed a significant performance boosting for dialogue response selection task achieved by
Cross-Encoder based models. However, such models directly feed the concatenation of context and response
into the pre-trained model for interactive inference, ignoring the comprehensively independent representation
modeling of context and response. Moreover, randomly sampling negative responses from other dialogue contexts
is simplistic, and the learned models have poor generalization capability in realistic scenarios. In this paper, we
propose a response selection model called BERT-BC that combines the representation-based Bi-Encoder and
interaction-based Cross-Encoder. Three contrastive learning methods are devised for the Bi-Encoder to align context
and response to obtain the better semantic representation. Meanwhile, according to the alignment difficulty of
context and response semantics, the harder samples are dynamically selected from the same batch with negligible
cost and sent to Cross-Encoder to enhance the model’s interactive reasoning ability. Experimental results show
that BERT-BC can achieve state-of-the-art performance on three benchmark datasets for multi-turn response selection.

Keywords: Response Selection, Bi-Encoder, Cross-Encoder, Contrastive Learning

1. Introduction

Dialogue response selection aims to find the best-
matched response from a set of candidates given
a dialogue context (Huang et al., 2020). In addi-
tion to the dialogue system, this technique can also
be applied to in-context retrieval-augmented large
language model to solve the problem of LLM hal-
lucination (Borgeaud et al., 2022; Li et al., 2022;
Ram et al., 2023). Therefore, response selection
techniques have attracted widespread interest from
industry and academia.
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Figure 1: Matching paradigms of Bi-Encoder and
Cross-Encoder. u1, u2, ..., un denotes the context
and r denotes the response.

Pre-trained response selection model can
be mainly divided into two approaches, namely
representation-based Bi-Encoder model and
interaction-based Cross-Encoder model (Thakur
et al., 2021). Figure 1 illustrates the matching
paradigms of Bi-Encoder and Cross-Encoder for
response selection.

∗Corresponding author.

The Bi-Encoder model focuses on getting a better
semantic representation of context and response
and then employs a similarity function to obtain the
matching score. The Bi-Encoder model is com-
putationally fast with low cost and performs better
for the semantically related samples (Figure 2
(a)) with high keyword co-occurrence and seman-
tic approximation between context and response.
However, the Bi-Encoder is restricted by the sin-
gle vector representation, so it has to face the up-
per bound of representation capacity (Luan et al.,
2021; Li et al., 2023). Researchers have studied
post-interaction methods to exploit the potential
of the Bi-Encoder. Poly-Encoder (Humeau et al.,
2020) encodes the context into multiple potential
vectors and uses a simple attention mechanism
to post-interactively match the context with candi-
date responses. But this kind of work essentially
designs a better similarity function for Bi-Encoder
and cannot solve conversationally related sam-
ples that require conversational-level understand-
ing and relational reasoning, such as Figure 2 (b).
There is no explicit semantic similarity between the
context and response of conversationally related
samples, but they have a coherent relationship be-
tween dialogue contextual utterances. In Figure 2
(b), both U1 and U2 mention that they can’t find a
certain flavor of snack nowadays, and the response
is implicitly related to the nostalgia for the taste of
childhood.

In order to model conversational coherence re-
lationship in multi-turn dialogue, recent research
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U1: Hello, please confirm your order information.
U2: The walnuts I just ordered, which tastes better, 
the milk flavor or the original flavor?
U3: These two flavors have their own advantages 
and disadvantages, and they are both delicious.

R: Then I bought the original flavor, please help 
me change it to half of the milk flavor and half of 
the original flavor.

U1: Why doesn't everyone eat Ashley's proper 
cereal now?
U2: I've always wanted to buy it, but it's gone 
out of sight in the supermarkets.
U3: Yeah, the supermarkets on my side don't 
have this brand nowdays either.

R: Ehn, just a childhood memory, and still 
quite like it.
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Figure 2: An illustration of the semantically re-
lated sample and conversationally related sample.
The examples are drawn from Chinese Dataset E-
Commerce (Zhang et al., 2018) and Douban (Wu
et al., 2017), separately.

has focused on pre-trained Cross-Encoder mod-
els. Researchers devise auxiliary self-supervised
tasks to learn the dependencies and coherence
between utterances in multi-turn dialogue (Xu et al.,
2021; Han et al., 2021). Although the above Cross-
Encoder methods have achieved promising results,
two shortcomings are retained. Firstly, the Cross-
Encoder model concatenates all utterances in a
dialogue using special tokens, leading to an in-
comprehensive representation of context and re-
sponse as independent units. Secondly, most con-
ventional methods leverage simple heuristics to
construct negative samples by selecting responses
from other conversations, which makes it challeng-
ing to distinguish stronger distractors in realistic
scenarios (Li et al., 2019; Lin et al., 2020).

The evidence suggests that the adequate inter-
action between context and response is necessary
for performance improvement; however, the per-
formance can also benefit from comprehensively
modeling context and response separately. Thus,
in this paper we propose an end-to-end framework
BERT-BC, which unifies the Bi-Encoder and Cross-
Encoder models for response selection. In the pro-
posed hierarchical BERT-like framework:

(i) The Bi-Encoder performs representation learn-
ing on context and response through multiple con-
trastive learning. By comparing context-response
pair features within the same batch, it can enhance
the representation ability of the encoder to model
context and response separately. Furthermore, this
comparison also assists the encoder extract criti-
cal features for distinguishing semantically related
samples, thus reducing the learning difficulty of the
high-layer Cross-Encoder and enabling the Cross-
Encoder to focus on learning conversationally re-
lated samples that require conversation-level un-
derstanding and logical reasoning.

(ii) In order to improve the discriminative ability
of the Cross-Encoder for conversationally related
samples, we devise a negligible cost resampling
strategy for hard negative samples, i.e., negative
responses that are more difficult to be discriminated
by Bi-Encoder in the same batch are selected as
hard negative samples. Similar to curriculum learn-

ing (Bengio et al., 2009), the discriminative ability of
Bi-Encoder is weaker in the early training stage, the
model prefers to randomly select other responses
within the same batch as negative samples. As
the performance of the Bi-Encoder improves, the
difficulty of the selected negative samples gradu-
ally increases. Notably, unlike previous curriculum
learning approaches (Su et al., 2021), our model
does not need training negative sample difficulty
scoring function, which can significantly reduce the
cost required for training.

Our main contributions are outlined below:
(i) We propose a pre-trained response se-

lection model BERT-BC, which combines the
representation-based Bi-Encoder and the
interaction-based Cross-Encoder.

(ii) We devise a multiple contrastive learning
method to enhance the Bi-Encoder’s ability to learn
semantically related samples and propose a hard
negative resampling strategy to enhance the Cross-
Encoder’s interaction ability to learn conversation-
ally related samples.

(iii) The empirical results show that our approach
can achieve new state-of-the-art performance on
three benchmark datasets. 1

2. Related Work

2.1. Multi-turn Response Selection

In terms of modeling approaches, response se-
lection models can be divided into representation-
based and interaction-based methods, and in terms
of encoder skeletons, they can be further divided
into traditional encoding models and pre-trained
models.

2.1.1. Traditional Models

The traditional response selection model mainly
encodes the context and response by encoders
such as RNN (Lowe et al., 2015), CNN (Pang
et al., 2016), etc. Zhou et al. (2016) proposes a
multi-view model which jointly models information
from word view and utterance view. However, the
representation-based approach ignores the conver-
sational coherence between response and multi-
turn context. With the emergence of attention mech-
anisms (Vaswani et al., 2017), researchers have
proposed interaction-based approaches. Tao et al.
(2019) performs shallow to deep matching between
the context and the response through multiple in-
teraction modules.

1https://github.com/
thinkingmanyangyang/BERT-BC
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2.1.2. Pre-trained Models

With the successful application of pre-trained mod-
els in many downstream tasks, BERT-based re-
trieval models have become the mainstream of re-
search. Reimers and Gurevych (2019) employs
BERT as the Bi-Encoder to represent the input text
as a single vector for response selection. Khat-
tab and Zaharia (2020) proposes a fine-grained
alignment method that balances both performance
and query speed. Although the above approaches
optimize the Bi-Encoder to some extent, they still
lack comprehensive contextual understanding and
logical reasoning ability. Xu et al. (2021) devises
four auxiliary tasks to endow the pre-trained Cross-
Encoder models with coherence and consistency
in dialogues.

Previous work mainly focuses on how to im-
prove the performance of the Bi-Encoder or Cross-
Encoder. We argue that Bi-Encoders and Cross-
Encoders play distinct roles in the retrieval process,
a facet that has seldom been explored in prior
research. Diverging from previous methods, we
achieve this by horizontally partitioning the BERT
model into two separate components, working as
the Bi-Encoder and the Cross-Encoder. We utilize
contrastive learning and hard negative resampling
to make Bi-Encoder and Cross-Encoder focus on
different types of samples (semantically-related and
conversationally-related), which serve complemen-
tary effects.

2.2. Contrastive Learning

Contrastive learning is a type of self-supervised
learning that can effectively enhance the feature
representation capability of the model. Li et al.
(2021) proposes a multimodal pre-trained model
to maximize the mutual information between text-
image pairs by contrastive learning. Poddar et al.
(2022) devises a ConMix method to construct posi-
tive and negative samples by mixing up the context
token within the same batch, which enhances the
robustness of dialogue representation.

The above work on contrastive learning focuses
on the construction methods of positive and neg-
ative samples, however, cross-grained contrast
has rarely been explored. In this paper, we intro-
duce a multi-grained contrastive learning method
to enhance the representation capability of the Bi-
Encoder.

3. Method

3.1. Problem Formulation

Assume that given a conversation dataset con-
sisting of a triplet D = (ci, ri, yi)

N
(i=1). ci =

{ui,1, ui,2, . . . , ui,m} denotes dialogue history utter-
ances; m indicates the number of utterances in the
context; ri denotes a candidate response; yi is a
label, when yi = 1, ri is a suitable response about
ci and yi = 0 otherwise. The purpose of the re-
sponse selection task is to learn a matching model
g (·, ·). For a given context-response pair (ci, ri),
the matching scores of ci and ri are obtained by
g(ci, ri).

3.2. Model Architecture
The BERT-BC model follows the principle of "align-
ment first, interaction later", and the overall frame-
work of the model is shown in Figure 3. The Bi-
Encoder module is mainly used for alignment and
the Cross-Encoder module is mainly used for inter-
action.

The Bi-Encoder module consists of a context
encoder and a response encoder for feature extrac-
tion. The Cross-Encoder module conducts deep
interactive reasoning on context and response fea-
tures and computes the final match score. All the
encoders are composed of Transformer blocks,
where the weights of the context and response en-
coders are shared.

3.3. Context-Response Encoder
BERT-BC employs the low-layer BERT as
the Bi-Encoder to encode the context and re-
sponse. For the input context ci, we concatenate
all utterances into a sequence denoted as
[CLS] [BOC]ui,1 [EOU ]ui,2 [EOU ] . . . ui,m [EOU ]
[SEP ], [CLS] is the classification token of BERT
model, and [SEP ] is the segmentation token.
[BOC] represents the beginning of the context and
[EOU ] represents the end of the utterance. For
the input response, we add a [BOR] token in front
of the response to indicate the beginning of the
response. We input the processed context and
response to Bi-Encoder to learn the representation,
{hcls, hboc, hc1 . . . hsep} and {hbor, hr1, . . . , hsep},
where, hboc and hbor represents the global fea-
ture representation of context and response.
Hc = {hc1 . . . hsep} and Hr = {hr1, . . . , hsep}
represents the token-level feature representation
of context and response respectively.

3.4. Multiple Contrastive Learning
In order to effectively extract explicit semantic align-
ment information, we propose a multiple contrastive
learning mechanism to optimize the context and
response encoder. Specifically, our alignment
method contains three contrastive learning objec-
tives, i.e., CRA (Context Response Alignment),
FGA (Fine-Grained Alignment), and CCL (Context
Contrastive Learning).
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Figure 3: The overall framework of our BERT-BC model.

3.4.1. Context Response Alignment

CRA aims to pull the global representation of pos-
itive context-response pairs closer while pushing
negative context-response pairs apart. In other
words, CRA intends to maximize the lower bound
of the global mutual information (MI) between the
representation of context and response (Li et al.,
2021). We use cosine similarity to compute the
global alignment score Sg between the context and
response.

Sg =
gc(hboc)

T
gr (hbor)

||gc (hboc) || · ||gr(hbor)|| (1)

where Sg ∈ RB×B , B denotes the batch size, gc, gr
is a linear layer that map the global representation
into a low-dimensional space representation.

3.4.2. Fine-Grained Alignment

Both context and response are composed of many
tokens. For a token in context, not all tokens in
response have a match, thus bringing in many
noisy signals and unnecessary information for align-
ment (Yuan et al., 2019). We propose a fine-
grained alignment mechanism (FGA) for learning
the similarity at the token level.

First, we calculate the similarity matrix Mw be-
tween the context token feature Hc and response
token feature Hr.

Mw = HT
c Hr (2)

where token similarity matrix Mw ∈ Rnc×nr , nc

represents the token number in the context, nr rep-
resents the token number in the response.

To adaptively adjust the importance of each token
during the matching, we use the softmax function to
measure the contribution of different tokens(αc, αr).
Then, we use a weighted pooling function to obtain
the final context-to-response FGA score simc−r

f

and response-to-context FGA score simr−c
f :

simc−r
f =

∑nc

i=1
αc
imax(Mw

i,∗) (3)

simr−c
f =

∑nr

j=1
αr
jmax(Mw

∗,j) (4)

simf = simc−r
f + simr−c

f (5)

where fine-grained alignment score simf is a sin-
gle real value, then we calculate the fine-grained
matching matrix Sf ∈ RB×B for each context and
response within the same batch.

Finally, we sum the CRA score and the FGA
score as the semantically related score S:

S = Sg + Sf (6)

where semantically related score S ∈ RB×B .
We use InfoNCE loss to optimize the alignment

objective:

Lcr = −Ep(C,R)

[
log

exp (Si,+/τ)∑B
j=1 exp (Si,j/τ)

]
(7)

Lrc = −Ep(C,R)

[
log

exp (S+,j/τ)∑B
i=1 exp (Si,j/τ)

]
(8)

La = Lcr + Lrc (9)

where τ denotes temperature coefficient, Lcr de-
notes the context-to-response alignment loss, Lrc

denotes the response-to-context alignment loss.
La denotes the alignment loss.
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3.4.3. Context Contrastive Learning

Since the context usually contains several utter-
ances and the length is much longer than the
response, we enhance the encoder’s ability to
represent the context by introducing CCL (Con-
text Contrastive Learning). Given a set of a posi-
tive context-response pair (ci, r+i ) and a negative
context-response pair (ci, r−i ) that have the same
context and different responses, we follow Gao
et al. (2021) by taking the two forward-propagated
representations of the contexts ci in the set as pos-
itive samples and using the other contexts within
the same batch as negative samples. Unlike CRA
and FGA, CCL mainly learns the differences be-
tween positive and negative samples among con-
texts. The CCL loss is denoted as Lc.

3.5. Hard Negative Resampling
In multi-turn dialogue response selection, if a nega-
tive context-response pair with high lexical overlap
and semantic similarity, but without dialogue coher-
ence and logic, this pair is easily misclassified as a
positive sample by the Bi-Encoder. However, such
matching clues can be learned more efficiently by
the Cross-Encoder. In order to improve the ability
of the Cross-Encoder to discriminate these conver-
sationally unrelated samples, we propose a hard
negative resampling strategy (HNR).

We use the semantically related score S of con-
text and response in Equation 6 to find difficult sam-
ples within the same batch. For each context ci
within the same batch, we use the softmax value
of the semantically related score S as the sam-
pling probability pi,j of sampling to other negative
responses rj .

pi,j =

{
exp(Si,j)

∑
ĵ∈B exp(Si,ĵ)

, j �= i

0, j = i
(10)

3.6. Context Response Matching
In order to fuse and interact context and response
features to reason about the conversational coher-
ence of dialogues, we adopt the high-layer BERT as
the Cross-Encoder interaction model. After the con-
text and response representation, Cross-Encoder
takes concatenation of {hcls, hboc, hc1 . . . hsep} and
{hbor, hr1, . . . , hsep} as input, using the hidden
state of the encoded [CLS] token as a joint repre-
sentation of the input context-response pairs, and
then feeds it into a fully connected classification
layer to predict the matching probability φ (C,R).
The ground-truth labels of the samples are y(C,R).
The context-response matching loss Lcrm is de-
fined as:

Lcrm = Ep(C,R)H
(
φ (C,R) , y(C,R)

)
(11)

where H (·, ·) is the cross-entropy loss function. We
assume the samples constructed by hard nega-
tive resampling are labeled as 0. The loss Lhm

of hard negative samples is calculated using the
same method.

The overall training objective of our model is:

L = La + Lc + Lcrm + Lhm (12)

3.7. Dialogue Domain Pre-training
Previous studies on multi-turn response selection
further reduce the adverse effects by designing self-
supervised tasks related to dialogue features and
post-training on a dialogue corpus (Xu et al., 2021).
Following previous work (Han et al., 2021), we
adopt a fine-grained dialogue domain pre-training
approach (DDP). Specifically, the method splits
all utterances in a dialogue into short context-
response pairs to learn continuous relations and
interactions at the utterance level. We train the
three contrastive learning and the hard negative
resampling together with the dialogue domain pre-
training method and subsequently fine-tune them
on the corresponding dataset.

4. Experiment

4.1. Datasets
We test our model on three widely used benchmark
datasets, including Ubuntu Corpus V1 (Lowe et al.,
2015), Douban Corpus (Wu et al., 2017), and the
E-Commerce Corpus (Zhang et al., 2018). The
statistics of three datasets are shown in Table 1.

Ubuntu Corpus: The Ubuntu Corpus V1 con-
struct is based on log records of chats in Ubuntu
forums, that focus on troubleshooting and technical
support for the Ubuntu operating system.

Douban Corpus: The Douban corpus is an
open-domain dataset crawled from the social net-
working service, Douban. It consists of conversa-
tions between two people that are longer than two
turns.

E-Commerce corpus: The E-Commerce cor-
pus is a multi-turn conversation in Chinese col-
lected from Taobao. It contains real-world conver-
sations between customers and customer service
staff.

Dataset Train Valid Test

Ubuntu #pairs 1M 500K 500K
pos:neg 1:1 1:9 1:9

Douban #pairs 1M 50K 6670
pos:neg 1:1 1:1 1.2:8.8

E-Commerce #pairs 1M 10K 10K
pos:neg 1:1 1:9 1:9

Table 1: Corpus statistics of datasets
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Inspired by the previous work (Han et al., 2021),
we reconstruct the pre-training data for three
datasets using the same approach. Specifically,
out of the one million triples in the training set of
each benchmark, we use 500K triples with positive
labels for construction.

4.2. Evaluation Metrics
Following previous studies (Yuan et al., 2019), we
employ several retrieval metrics to evaluate our
model. The recall (R10@k) represents the probabil-
ity that the correct response exists in the top k candi-
date responses out of the 10 candidate responses.
Specifically, in the experiments, R10@1, R10@2, and
R10@5 are adopted. In addition to R10@k, we also
utilize MAP (mean average precision), MRR (mean
reciprocal rank), and P@1 (precision at one) for
the Douban corpus, since the Douban dataset may
contain multiple positive responses from the same
context.

4.3. Experiment setup
In this paper, we use AdamW optimizer to optimize
the BERT-BC model, and the train batch size is set
to 64, and the test batch size is set to 100. The
maximum lengths of context and response are set
to 190 and 70. The initial learning rates in the pre-
training and fine-tuning stages are set to 2e-5, 5e-6,
and gradually decays during the training process.
The number of hard negative samples in HNR is
set to 2. The BERT-BC model is trained on an
A6000 GPU for 20 epochs. The layer of contrastive
learning added to the model is 9, 6 and 9 on Ubuntu,
Douban and E-Commerce, respectively.

4.4. Baseline Methods
We compare our proposed model BERT-BC with
the following previous models.

Single-turn matching models: Lowe et al.
(2015), Kadlec et al. (2015) proposed basic models
based on RNN, CNN.

Multi-turn matching models: SMN (Wu et al.,
2017) matches candidate responses and each ut-
terance of the context interactively at multiple gran-
ularity. DAM (Zhou et al., 2018) computes matching
between context and response by self-attention and
cross-attention based on Transformer. MSN (Yuan
et al., 2019) uses a multi-hop selector to filter out
unnecessary information.

BERT-based models: BERT fine-tunes the re-
sponse selection task on the pre-trained model.
Poly-Encoder (Humeau et al., 2020) improves the
accuracy of the Bi-Encoder by adding an atten-
tion post-interaction layer. UMSBERT+ (Whang
et al., 2021) devises three utterance manipula-
tion strategies to learn the temporal dependen-

cies between utterances. BERT-FP (Han et al.,
2021) implements a post pre-training method in-
cluding short context-response pair training and
utterance relevance classification. BERT-TAP (Lin
et al., 2022) highlights the significance of the NSP
task for dialogue response selection pre-training.
Uni-encoder (Song et al., 2023) concatenates all
candidate responses to the context and jointly in-
puts them into the encoder.

4.5. Experimental Results
Table 2 shows the performance of baselines and
the proposed BERT-BC model evaluated on three
benchmark datasets. The Poly-Encoder, primar-
ily composed of the Bi-Encoder component, per-
forms better when applied to domain-specific E-
commerce datasets characterized by a substan-
tial correlation between context and response. In
contrast, BERT-FP (Cross-Encoder) exhibits better
results on more daily and open-domain dataset
Douban. This observation partly indicates that
the Bi-Encoder and Cross-Encoder excel in han-
dling different types of response selection sam-
ples. In BERT-based models, our BERT-BC outper-
forms all other baseline models. Compared to the
vanilla BERT model, BERT-BC achieves absolute
improvements of 11.6%, 7.6% and 34.7% in R10@1
on the Ubuntu Corpus V1, Douban Corpusand E-
Commerce Corpus, respectively. Compared to the
previous state-of-the-art model Uni-Encoder, BERT-
BC consistently achieves notable performance im-
provements across all metrics. Compared to our
BERT-BC model, although Uni-Encoder addition-
ally introduces comparison information between
responses by encoding all candidate responses
simultaneously, it also leads to an increase in GPU
memory and cannot handle scenarios where the
number of candidate responses is not fixed.

In summary, the performance of response selec-
tion is significantly improved by the combination of
Bi-Encoder and Cross-Encoder with multiple con-
trastive learning and hard negative resampling.

4.6. Ablation Study
To further investigate the role of modules in the
BERT-BC model, we conduct extensive ablation
studies on the E-Commerce dataset. Our Base
model is a combination of the Bi-Encoder and
Cross-Encoder models, initialized with the weights
of BERT, without incorporating the contrastive learn-
ing and hard negative resampling strategy.

As presented in Table 3, the addition of CRA or
FGA separately yields a marked improvement in
the metrics to the Base model. This illustrates that
the alignment of context and response improves the
accuracy of the model in recognizing samples with
high semantic relevance. When CRA and FGA are
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Models Ubuntu Douban E-commerce
R10@1 R10@2 R10@5 MAP MRR P@1 R10@1 R10@2 R10@5 R10@1 R10@2 R10@5

TF-IDF 0.410 0.545 0.708 0.331 0.359 0.180 0.096 0.172 0.405 0.159 0.256 0.477
RNN 0.403 0.547 0.819 0.390 0.422 0.208 0.118 0.223 0.589 0.325 0.463 0.775
CNN 0.549 0.684 0.896 0.417 0.440 0.226 0.121 0.252 0.647 0.328 0.515 0.792
SMN 0.726 0.847 0.961 0.529 0.569 0.397 0.233 0.396 0.724 0.453 0.654 0.886
DAM 0.767 0.874 0.969 0.550 0.601 0.427 0.254 0.410 0.757 0.526 0.727 0.933
MSN 0.800 0.899 0.978 0.587 0.632 0.470 0.295 0.452 0.788 0.606 0.770 0.937
BERT 0.808 0.897 0.975 0.591 0.633 0.454 0.280 0.470 0.828 0.610 0.814 0.973

PolyEncoder+FP* 0.884 0.950 0.991 0.617 0.664 0.498 0.316 0.492 0.844 0.914 0.965 0.995
UMSBERT+* 0.875 0.942 0.988 0.625 0.664 0.499 0.318 0.482 0.858 0.762 0.905 0.986

BERT-FP* 0.911 0.962 0.994 0.644 0.680 0.512 0.324 0.542 0.870 0.870 0.956 0.993
BERT-TAP* 0.912 0.966 0.994 0.644 0.684 0.511 0.323 0.548 0.853 0.926 0.980 0.998

Uni-Encoder*† 0.916 0.965 0.994 0.648 0.688 0.518 0.327 0.557 0.865 - - -
BERT-BC(ours) 0.924 0.968 0.995 0.665 0.701 0.538 0.356 0.565 0.870 0.957 0.981 0.998

Table 2: Evaluation results on Ubuntu, Douban, and E-Commerce datasets. * denotes pre-train on
corresponding dialogue corpus. † denotes previous state-of-the-art model.

Methods Metric
Base CRA FGA CCL HNR DDP R10@1/5/10 MAP
� 0.641/0.824/0.970 0.777
� � 0.826/0.934/0.989 0.898
� � 0.837/0.935/0.985 0.903
� � � 0.846/0.945/0.990 0.910
� � � � 0.855/0.942/0.993 0.914
� � � � � 0.905/0.960/0.998 0.943
� � � � � � 0.957/0.980/0.998 0.974
� � � � � � 0.906/0.964/0.993 0.945

Table 3: Ablation study on E-Commerce, � de-
notes the adoption of the different strategies and �
denotes the adoption of the LCCC dataset for DDP.

utilized in combination, they bring in better results
than alone, demonstrating that the global and fine-
grained alignment approaches are complementary.
HNR effectively increases the recognition accuracy
of the Cross-Encoder module for samples requiring
conversational-level understanding and reasoning.
By dialogue domain pre-training on the correspond-
ing dialogue corpus, BERT-BC outperforms the
current state-of-the-art model on the E-Commerce
dataset. We also experimented with DDP on a
different dataset, the LCCC corpus (Wang et al.,
2020), and found that the advantage is not obvi-
ous. We argue that DDP primarily benefits from
the domain knowledge from corresponding data.

5. Further Analysis

5.1. Impact of Contrastive Learning at
Different Layer

We conduct experiments on contrastive learning at
different BERT-BC layers to explore the impact of
the proportion of Bi-Encoder and Cross-Encoder.
The Base model initializes the BERT-BC with BERT
as the checkpoint and uses only multiple con-

trastive learning. The results of the experiments on
the three datasets are shown in Table 4. In this ta-
ble, "3-layer" represents the model adding multiple
contrastive learning at layer 3.

Dataset Layer R10@1 R10@2 R10@5 MAP

Ubuntu

3 0.820 0.905 0.977 0.887
6 0.827 0.911 0.980 0.891
9 0.835 0.917 0.981 0.897
11 0.778 0.887 0.973 0.861

Douban

3 0.296 0.480 0.822 0.604
6 0.299 0.490 0.835 0.610
9 0.283 0.484 0.840 0.601
11 0.258 0.429 0.781 0.560

E-Commerce

3 0.752 0.891 0.983 0.850
6 0.836 0.936 0.993 0.903
9 0.855 0.942 0.993 0.914
11 0.822 0.931 0.986 0.849

Table 4: Impact of contrastive learning at different
layer

The results from the E-Commerce experiments
in Table 4 demonstrate an increasing trend from
3 layers to 6 layers, and further to 9 layers. In
contrast, the comparative results of 11-layer and
9-layer show a decrease, which suggests that both
representation and interaction play an important
role in the discrimination of response selection.

It is easy to notice that the Douban dataset
achieves the best performance at 6-layer, while
E-Commerce performs best at 9-layer, which sug-
gests that the explicit alignment signal between con-
text and response is less on the Douban dataset,
and the model relies more on interaction and rea-
soning. This might be attributed to the fact that
the Douban dataset primarily consists mainly of
daily conversation posts on open-domain social net-
working sites, whereas Ubuntu and E-Commerce
datasets have explicit themes. These evidences
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demonstrate that response selection tasks in differ-
ent domains have different reliance on representa-
tion and interaction, and the model needs to adjust
the proportion of representation and interaction ac-
cording to the task characteristics in time.

5.2. Effectiveness of HNR Strategy

Table 5 compares the effects of the HNR strategy
and different negative sampling strategies on the
model performance. The Base model initializes
BERT-BC with BERT as a checkpoint and without
applying contrastive learning and other negative
samples, while Base+MCL incorporates multiple
contrastive learning on the Base model. Random
indicates that negative responses are randomly se-
lected as additional negative samples within the
same batch. CUR employs curriculum learning
to control the difficulty threshold of negative sam-
ples sampled during the training process. HNR
directly samples the hardest samples within the
same batch. HCL stands for Hierarchical Curricu-
lum Learning proposed by Su et al. (2021).

Methods R10@1 R10@2 R10@5 MAP
Base 0.641 0.824 0.970 0.777
MCL 0.855 0.942 0.993 0.914

MCL+Random 0.869 0.951 0.989 0.921
MCL+CUR 0.892 0.952 0.991 0.935
MCL+HNR 0.905 0.960 0.988 0.943

HCL 0.721 0.896 0.993 -

Table 5: Performance of different negative sam-
pling strategies

As shown in Table 5, the results of Random im-
prove 1.4% over R10@1 of Base+MCL, which sug-
gests that more negative samples can enhance
the model’s ability to discriminate wrong responses.
Moreover, the HNR method achieves the best per-
formance, exhibiting a 3.6% improvement in R10@1
compared to the ordinary Random strategy. This
signifies that learning more challenging negative
samples can effectively enhance the model’s ro-
bustness. Meanwhile, the HNR does not need to
train a difficult evaluator in advance as HCL does,
which has a negligible computation cost.

5.3. Computational Cost Analysis

In addition to the analysis of model performance,
we also compare the computational cost of BERT-
BC with other paradigms (Cross-Encoder, Uni-
Encoder, Poly-Encoder). We randomly select 1000
samples on Ubuntu V1 and vary the candidate size
from 10, 20, 50, 100 to 200 for each context by ran-
domly selecting additional responses from the cor-
pus. The results are presented in Figure 4. BERT-

Figure 4: The inference time comparison.

BC demonstrates 2.4× faster inference speed com-
pared to Cross-Encoder. As the candidate size
increases, the advantages of BERT-BC become
more pronounced.

5.4. Visualization of Alignment Matrix
In the above discussion, we assume that the align-
ment relationship between context and response
can be learned through the contrastive learning
mechanism.

Figure 5: Visualization of the alignment matrix.
(a) alignment matrix with contrastive learning, (b)
alignment matrix without contrastive learning

As shown in Figure 5, we visualize the similar-
ity matrix before and after using the contrastive
learning mechanism. The horizontal and vertical
axes of the graph represent context and response
respectively, and darker colors represent higher
alignment scores. It can be found that Figure 5
(a) shows a good alignment relationship between
context and response, and Figure 5 (b) has almost
no alignment between context and response, which
demonstrates that semantically related relationship
between context and response can be effectively
learned through multiple contrastive learning. At
the same time, Figure 5 (a) illustrates that not all
context and response positive sample pairs can
achieve good alignment. We conjecture that some
samples cannot be discriminated only by simple
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semantic similarity and word overlap, which further
illustrates the necessity of the Cross-Encoder rea-
soning model and the HNR strategy proposed in
this paper.

6. Conclusion

In this paper, we propose a response selec-
tion model BERT-BC that combining Bi-Encoder
and Cross-Encoder with three contrastive learn-
ing mechanisms and a hard-negative resampling
strategy. The BERT-BC increases the Bi-encoder
encoding ability of the model by multiple contrastive
learning, which improves the recognition of seman-
tically related samples. At the same time, the Cross-
Encoder is able to focus on discriminating conver-
sationally related samples through the hard nega-
tive resampling strategy. The experimental results
demonstrate the superiority of our proposed BERT-
BC model in the response selection task. In fu-
ture work, we consider introducing common-sense
knowledge in response selection.
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