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Abstract
The challenging yet relevant task of automated essay scoring (AES) continuously gains attention from multiple disciplines
over the years. With the advent of pre-trained large language models such as BERT, fine-tuning those models has become
the dominant technique in various natural language processing (NLP) tasks. Several studies fine-tune BERT for the AES task
but only utilize the final pooled output from its last layer. With BERT’s multi-layer architecture that encodes hierarchical
linguistic information, we believe we can improve overall essay scoring performance by leveraging information from its
intermediate layers. In this study, we diverge from the canonical fine-tuning paradigm by exploring different combinations
of model outputs and single- and multi-layer pooling strategies, as well as architecture modifications to the task-specific
component of the model. Using a hybrid pooling strategy, experimental results show that our best essay representa-
tion combined with a simple architectural modification outperforms the average QWK score of the basic fine-tuned BERT
with default output on the ASAP AES dataset, suggesting its effectiveness for the AES task and potentially other long-text tasks.
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1. Introduction
In an educational setting, essay writing is an impor-
tant tool to help in the development of students’ lan-
guage proficiency skills, as well as higher-order think-
ing skills such as critical thinking and idea synthesis.
Over the years, several efforts have been made to auto-
mate the essay scoring process to reduce costs and pro-
vide instantaneous feedback. This task of Automated
Essay Scoring (AES) aims to assign a score to an essay
written on a certain topic or prompt based on its over-
all quality or different writing criteria. Earlier works
leverage handcrafted features to represent the different
measurable properties of essays such as essay length
and grammatical errors that contribute to their quality.
However, manual feature engineering is an expensive
and elaborate process and features extracted are usu-
ally limited to lower-level textual features since com-
plex and higher-level features that capture the seman-
tics, discourse, and pragmatics (Dong et al., 2017) are
difficult to extract (Beseiso and Alzahrani, 2020).
With the rise of neural networks, end-to-end models
for learning good essay representations that can cap-
ture deep semantic features have been developed. Ex-
isting works are usually based on Convolutional Neu-
ral Networks (CNNs) and Long Short Term Memory
(LSTM) networks (Taghipour and Ng, 2016; Dong and
Zhang, 2016; Dong et al., 2017). While these mod-
els have obtained promising performance for the AES
task without laborious feature engineering, they require
large quantities of labeled data for training to obtain
good performance. This poses a challenge in the task of
AES since it is difficult and expensive to obtain a large
amount of human-annotated essays for each specific es-
say prompt. To address this challenge, researchers uti-

lize transfer learning, which allows a pre-trained model
to be adapted to fit different downstream tasks without
the need to build and train a new model from scratch.

In recent years, there has been a surge of research inter-
est in transfer learning due to its improved performance
and representation ability in a variety of downstream
tasks. With the advent of pre-trained language models
(PLMs), knowledge learned from a large corpus of text
data can be transferred to many downstream tasks by
fine-tuning, which is done by simply replacing the out-
put layer of the model with a task-specific layer to op-
timize task-specific objectives for only a few training
epochs. This pre-training-then-fine-tuning paradigm
has since become the common practice in the field of
natural language processing (NLP) and forms the basis
of state-of-the-art results on many tasks (Devlin et al.,
2018; Yang et al., 2019).

One of the most effective PLMs is Bidirectional En-
coder Representations from Transformers (BERT) (De-
vlin et al., 2018). Fine-tuning pre-trained BERT has led
to significant boosts in the state-of-the-art performance
for a variety of NLP tasks (Wang et al., 2018), showing
its remarkable ability to learn universal language rep-
resentations. BERT’s striking success can be explained
by its use of a novel language modeling approach and
a multi-layer bidirectional Transformer (Vaswani et al.,
2017), which helps to capture the context in long se-
quences of words. This makes it very attractive when it
comes to AES, as it is one of the more challenging NLP
tasks due to relatively longer texts as compared to other
tasks like machine translation. Furthermore, with the
help of BERT’s use of the self-attention mechanism, it
is able to capture longer time dependencies introduced
by the length and structure of essays and focus on the
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most relevant features for the task at hand.
Existing AES approaches using pre-trained BERT uti-
lize the output of BERT’s final layer as the essay rep-
resentation. This output corresponds to the activation
of the special [CLS] token that summarizes informa-
tion for each essay using the self-attention mechanism.
However, leveraging output from a single layer could
restrict the power of obtained representation since the
semantic knowledge learned at the intermediate layers
is ignored (Yang and Zhao, 2019; Song et al., 2020).
BERT’s multi-layer architecture allows it to encode a
hierarchy of linguistic information for the specific task:
it learns more general and transferable (surface and
syntactic) features in the lower layers and more task-
specific (semantic) information in the top layers (Hao
et al., 2020; Jawahar et al., 2019; Peters et al., 2019).
We believe that we can utilize the information learned
from intermediate layers to learn better essay represen-
tations that capture more semantic information.
In this study, we investigate different ways of fine-
tuning BERT by utilizing its intermediate layers to im-
prove its performance on the task of AES. We first per-
form initial experiments to find good base hyperparam-
eters to be used for the rest of the experiments. For our
main experiments, we focus on finding the best essay
representation for the essay scoring task. We do this by
utilizing BERT’s intermediate layers and testing the us-
age of combinations for different BERT model outputs
and pooling strategies. We also test these representa-
tions in combination with different model architectures
for the task-specific component of the model.
Our main contributions are as follows:

1. To the best of our knowledge, this is the first
study to go beyond the traditional way of fine-
tuning specifically for the AES task by finding
other essay representations and modifying the
task-specific architectures.

2. We examine the potential of utilizing BERT inter-
mediate layers in combination with different pool-
ing strategies (for single and multiple layers) for
the AES task. Our best essay representation uses
a hybrid method that combines different single-
and multi-layer pooling strategies.

3. Experimental results show that compared to us-
ing the default BERT last-layer output, we can
greatly improve performance by pooling informa-
tion from all 12 layers of the BERT-base model,
or even just a subset of the layers. Moreover, we
present simple modifications to the task-specific
component of the model that can be beneficial for
the essay scoring task.

4. We also perform some hyperparameter tuning to
establish good initial hyperparameters. We also
consider the overlooked SGD optimizer over the
default Adam optimizer for BERT and show that
it can achieve better overall test performance.

2. Related Literature
2.1. Automated Essay Scoring
Traditional methods construct handcrafted features to
be fed as input to statistical methods. Recently, re-
searchers have leveraged advances in deep learning for
AES. Deep neural networks such as LSTM and CNN
were shown to achieve competitive performance com-
pared to traditional approaches. Taghipour and Ng
(2016) was the first to do this for the AES task by uti-
lizing a single-layer LSTM. Since then, several archi-
tectures and techniques were proposed to improve per-
formance (Dong and Zhang, 2016; Dong et al., 2017).
These works use pre-trained word embeddings such as
word2vec (Mikolov et al., 2013) and GloVe (Penning-
ton et al., 2014), where a word’s representation is the
same in all contexts. For a document-level task such
as AES, it is important to capture context and long-
distance relationships between words.
Contextual word representations obtained from large
neural language models such as BERT (Devlin et al.,
2018) have become dominant as they encode useful
representations that are adjusted based on their context.
Following BERT’s success in many NLP tasks, it has
now been used for AES (Rodriguez et al., 2019; May-
field and Black, 2020; Yang et al., 2020; Wang et al.,
2022; Sun et al., 2022). Rodriguez et al. (2019) com-
pares BERT and XLNet (Yang et al., 2019) and other
traditional methods for the AES task. Yang et al. (2020)
propose a multi-loss model that fine-tunes BERT for
the essay scoring and ranking task. Wang et al. (2022)
uses BERT to jointly learn a multi-scale essay repre-
sentation, improving over traditional deep methods.

2.2. Utilizing BERT Intermediate Layers
AES methods that fine-tune BERT use the output of
the final classification ([CLS]) token as essay repre-
sentation (Rodriguez et al., 2019; Yang et al., 2020;
Sun et al., 2022). However, due to BERT’s multi-layer
architecture, the information captured specializes for
the language modeling tasks as we approach its last
layers (Hao et al., 2020; Jawahar et al., 2019; Peters
et al., 2018; Liu et al., 2019). Thus, the single fi-
nal layer might not always be the best representation.
Some studies utilize intermediate layers of BERT for
other tasks and showed performance improvements. In
BERT’s original paper (Devlin et al., 2018), combina-
tions of features from different layers are used for a
named entity recognition task and found that concate-
nation of the last four layers achieved the best perfor-
mance. In (Song et al., 2020), multi-layer represen-
tations of the [CLS] token are integrated with LSTM
and attention pooling, which both showed improve-
ments in sentiment analysis and natural language in-
ference (NLI) tasks. Tenney et al. (2019) achieved sig-
nificant performance gains that are attributed to the in-
termediate layers containing the most relevant features.
These studies motivated us to exploit the representa-
tions learned by intermediate layers for AES.
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Figure 1: Comparison of traditional fine-tuning paradigm for BERT and our proposed model for utilizing BERT
intermediate layers. Different model outputs (obtained from single or multi-layer pooling or their combination),

denoted by yellow circles, are used for our representation learning experiments.

3. Methodology
Figure 1 shows our proposed general model architec-
ture. We differ from the traditional fine-tuned BERT
in 2 main ways: the chosen model output as essay rep-
resentation and the task-specific or regression head of
the model. We experiment with model outputs from
different BERT layers using several pooling strategies,
which are applied to either a single layer or a set of mul-
tiple layers. Our chosen model applies different single-
layer and multi-layer pooling strategies on all layers of
the BERT encoder. For the model’s regression head, we
test 2 architecture modifications alongside the common
way of appending a single linear layer to BERT.

3.1. Background: BERT
BERT (Devlin et al., 2018) employs a Transformer ar-
chitecture (Vaswani et al., 2017) with a multi-head self-
attention mechanism in each layer which can help cap-
ture long-distance relationships between words. It is
pre-trained on BookCorpus (Zhu et al., 2015) and En-
glish Wikipedia (in total 3.3B words) with the masked
language modeling (MLM) and next sentence predic-
tion (NSP) objectives. By leveraging bi-directional
self-attention for the pre-training tasks, it can produce
contextual representations that fuse information from
the left and right context jointly in all layers.
To use BERT on downstream tasks, preprocessing of
the input text is required. Specifically, a special to-
ken (“[CLS]”) is prepended to each text. Typically, the
model output corresponding to this token is used as the
aggregated text representation that is passed to the task-
specific layer for fine-tuning to fit the target task.

3.2. Dataset
We use the Automated Student Assessment Prize
(ASAP) dataset1, which was the official dataset used
in the ASAP competition in 2012. This benchmark
dataset for AES consists of about 13,000 English es-
says written by students in Grades 7 to 10 across
eight different prompts. A train/validation/test split of
60/20/20 is used. Details of the dataset are shown in
Table 1. The token length refers to the average length
of the WordPiece tokens for the essays in each prompt.

Set Essay
Type

#
Essay

Ave
Len

Score
Range

Token
Len

1 Argumentative 1785 350 2 - 12 649
2 Argumentative 1800 350 1 - 6 704
3 Source-dependent 1726 150 0 - 3 219
4 Source-dependent 1772 150 0 - 3 203
5 Source-dependent 1805 150 0 - 4 258
6 Source-dependent 1800 150 0 - 4 289
7 Narrative 1569 300 0 - 30 371
8 Narrative 723 650 0 - 60 1077

Table 1: Description of the ASAP dataset.

3.3. Experimental Setup
Preprocessing of the essays is done by converting
all characters to lowercase, removing special charac-
ters, and performing tokenization using WordPiece tok-
enizer (Wu et al., 2016), which adds two special tokens:
[CLS] to the beginning of each input and [SEP] to sep-
arate. Since BERT can only take a maximum sequence
length of 512 tokens, we truncate essays longer than

1https://www.kaggle.com/c/asap-aes/data
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510 words (taking the 2 special tokens into account).
We also perform padding to shorter essays.
For the implementation, we use the pre-trained weights
of the ”bert-base-uncased” model implementation of
the Huggingface transformers library (Wolf et al.,
2019), which consists of 12 layers that each has a hid-
den size of 768 and 12 attention heads. We perform
the traditional way of fine-tuning language models by
adding a single linear output layer, with a sigmoid ac-
tivation function to the BERT-base model, which we
refer to as BERT-finetune. We use the last hidden state
of the CLS token as the default representation of each
essay. The sigmoid activation function projects the out-
put vector x of the BERT model to a scalar value in
the range [0,1] as shown in Equation 1, where W is a
weight matrix and b is a bias value.

s(x) = sigmoid(W · x+ b) (1)

The reference scores are normalized so they are within
the range [0,1]. The predicted scores by the AES sys-
tem are scaled back to the original range of the scores
during testing. The scoring task is treated as a regres-
sion problem and thus, the Mean Square Error (MSE)
(Equation eq:mse) between the corresponding original
(ŷ) and predicted (y) score for N essays is used as the
loss function. All models are trained for 100 epochs,
but the model with the best validation QWK is chosen.
All experiments are implemented using PyTorch.

MSE(ŷi, yi) = 1N

N∑
i=1

(ŷi − yi)
2 (2)

To evaluate the performance of the method, we use the
quadratic weighted kappa (QWK) metric to measure
the agreement between two raters. This was the offi-
cial evaluation metric used in the ASAP competition
and has since been the standard metric for AES.

3.4. Initial Experiments
Using the default lhs-cls outputs, initial experiments
were done on Prompt 1. These include hyperparam-
eter tuning to find a good starting point for the hyper-
parameters to be used for the next experiments. The
hyperparameters tested are shown in Table 2.

Hyperparameters Values tested
Optimizer SGD, Adam, AdamW
Scheduler None, Linear decay, Cosine, Polynomial decay

Learning rate
SGD: 0.001, 0.01, 0.03, 0.05, 0.08, 0.1,
Adam/AdamW: 3e−6, e−5, 5e−5, 1e−4

Dropout rate 0, 0.1, 0.3, 0.5

Table 2: Hyperparameters used for initial experiments.
The chosen hyperparameters are in bold.

As we can see from the table, we explored different
hyperparameters, one of which is the choice of op-
timizer: Adam, AdamW (Adam with weight decay)
(Loshchilov and Hutter, 2017), and SGD (stochastic
gradient descent) with momentum. Adam optimizers
are typically used with BERT in previous papers, es-

pecially those that fine-tune BERT for AES. One rea-
son for this is the original BERT was also trained using
Adam optimizer, which has become the default opti-
mizer for most applications due to its fast convergence
time and need for fewer parameters during training.
Adam mainly differs from SGD by dynamically adjust-
ing individual learning rates for its parameters instead
of maintaining a single learning rate, resulting in faster
convergence. It generally gives good and acceptable re-
sults in most applications, and thus, not much effort is
given to tuning or optimizing its performance, or even
exploring other optimizers. However, SGD is recently
being compared to Adam optimizer in various appli-
cations due to its better generalization performance on
the test set despite taking longer to converge (Keskar
and Socher, 2017; Zhou et al., 2020). Thus, we ex-
plore these optimizer choices through hyperparameter
tuning. For SGD, we use a momentum of 0.9.

3.5. Representation Learning
BERT’s default output representation is as follows:
given a sequence of n tokens {w1, . . . , wn}, which in-
clude special tokens and the words in an input essay,
BERT encodes the sequence into the contextualized
representation R ∈ Rn×d given by:

R = BERT ({w1, . . . , wn}) (3)

where R is the output of the last layer of the BERT
encoder and d is the hidden size. R corresponds to the
first token ([CLS]) of the last hidden state. However,
other types of model outputs from intermediate layers
could also provide a better representation of the essays
for the AES task.
In this study, we explore two main outputs of the BERT
model. The first is the last hidden state (lhs), which is
the sequence of hidden states at the last layer of the
model, and the second is hidden states (hs), which con-
tain the aggregation of hidden states of multiple lay-
ers and sequences. We consider different variations for
the lhs and hs outputs. For the lhs output, we not only
consider the last layer (lhs), but also the second-, third-
, and fourth-to-the-last layers, denoted by 2lhs, 3lhs,
and 4lhs, respectively. For the hs output, we consider
the aggregation of the hidden states of the last 4 layers
(gl4 - get last 4), the first 8 layers (gf8 - get first 8), and
all 12 layers (ahs - all hidden states).
Moreover, various pooling strategies for the lhs and
hs outputs are considered, as shown below. We refer
to the pooling of lhs outputs as single-layer pooling,
while pooling the hs outputs of a set of multiple layers
is referred to as multi-layer pooling. Different com-
binations of model representations/output and pooling
strategies are used. For example, the default represen-
tation of getting the CLS embedding of the last hidden
state is denoted as lhs-cls. The second-to-last hidden
state with attention pooling is denoted as 2lhs-att while
concatenating the last 4 hidden states is denoted as gl4-
concat, and so on.
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3.5.1. Single-layer Pooling Strategies
Pooling strategies for lhs outputs involve applying the
pooling operation to all tokens in a layer K.

CLS embedding (cls) is obtained by taking hK
cls of a

layer K. For instance, the CLS embedding of the
third-to-the last layer (3lhs-cls) is h10

CLS .
Mean pooling (mean) averages the hidden states of

all n token embeddings in a layer. We ignore the
[PAD] token by utilizing the attention masks.

hKmean = 1n
∑n

i=1 H
K
i

Max pooling (max) takes the maximum across n to-
ken embeddings. Attention masks are also used.

hKmax = maxi=1,...,n H
K
i

Mean-max pooling (mm) finds both mean and max
pooling embeddings and concatenates them.

hK
mm = hK

mean ∥ hK
max

Attention pooling (att) uses a dot-product attention
operation on all token embeddings for a layer K
to learn their contribution. This is given by:

ai = tanh (WK
a · hK

i + ba)
αi = ewα·aj

∑
ewα·aj

hKatt =
∑

αi
K
i

where Wa is the weight matrix, wα is the weight
vector, ba is the bias vector, and ai and αi are the
attention vector and attention weight for the ith

token respectively.

Conv1d pooling (conv) hK
conv uses 1-dimensional

convolution layers (Kiranyaz et al., 2021) that
slide across all n tokens to extract relevant
features and ignore unwanted ones. We use a
kernel size of 2 tokens and a padding size of 1.

3.5.2. Multi-layer Pooling Strategies
We denote the hidden states of the CLS token of BERT
with L layers as hCLS = {h1

CLS , h
2
CLS , . . . , h

L
CLS}.

By default, pooling strategies for hs outputs (hs pool)
are applied on the CLS embeddings from a set of lay-
ers S (e.g. gl4-concat uses concatenates the CLS em-
beddings of the last 4 layers, or S = {9, 10, 11, 12}).
When using single-layer pooling other than CLS em-
bedding, we add the pooling method after the notation
(e.g. gl4-att-concat concatenates output obtained from
attention pooling from each of the last 4 layers).
Mean pooling (mean-hs) involves taking the mean

pooling of the outputs for each layer in a combi-
nation of layers and stacking them together.

hmean−hs = 1|S|
∑

l∈S hl
cls

Concatenate pooling (concat) simply concatenates
outputs from multiple layers into one. For exam-
ple, gl4-concat concatenates the outputs from the
last 4 layers.

hconcat =l∈S hl
cls

Weighted layer pooling (wl) takes the weighted
mean of the token embeddings of layers in S.

hwl =
∑

wα · hl
cls

∑
wα

Figure 2: Model Architectures tested

3.6. Model Architectures
Three different model architectures were tested, as
shown in Figure 2, all of which use the BERT-base
model as the backbone. Only the regressor (task-
specific layers) are changed. The default way of fine-
tuning (adding an output layer) is used in bert-finetune.
In bert-double, 2 linear layers are added with a ReLU
(Rectified Linear Unit activation function (LeCun et al.,
2015) between them. bert-lstm uses a single LSTM
layer to pool the BERT output before it is passed to
the final layer. By default, all models with different
output and pooling combinations are trained with these
hyperparameters: batch size of 32, dropout rates of 0,
0.1, and 0.3, linear scheduler with 0 warmup steps, and
gradient clipping with max norm of 1.0. We initialize
model parameters to the pre-trained values for use on
the task-specific dataset.

3.7. Baseline Models
The baseline models for comparison are described be-
low:

EASE (Phandi et al., 2015) employs regression tech-
niques using handcrafted features, such as Sup-
port Vector Regression (SVR) and Bayesian Lin-
ear Ridge Regression (BLRR) . It is the best open-
source system2 that joined the ASAP competition,
ranking third place overall.

LSTM-based deep neural networks are studied in
(Taghipour and Ng, 2016). In particular, we
compare with the vanilla LSTM network and the
LSTM + CNN network that combines CNN and
LSTM ensembles over 10 runs in their experi-
ments.

Simpler transformer-based models are studied in
(Rodriguez et al., 2019), with results for using
BERT and XLNet (Yang et al., 2019) models, as
well as ensembles for BERT, XLNet, and their
combination.

2http://github.com/edx/ease
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Hybrid models that use both low-level features and
high-level semantic feature representation meth-
ods are shown in (Cozma et al., 2018). Results
for HISK and ν-SVR, BOSWE and ν-SVR, and
HISK+BOSWE and ν-SVR are reported.

Parameter-Efficient Transformer (Sethi and Singh,
2022) use transformer-based pre-trained language
model with adapter models to reduce number of
trainable parameters.

Self-supervised methods from (Cao et al., 2020)
use two self-supervised tasks and a domain ad-
versarial training technique, becoming the first
work that employs pre-trained language model to
outperform LSTM-based methods. Their study
report results on hierarchical LSTM model and
BERT as their base encoders, which are HA-
LSTM+SST+DAT and BERT+SST+DAT respec-
tively.

R2BERT (Yang et al., 2020) employs a multi-loss
function that combines regression and ranking to
fine-tune BERT model.

4. Results and Discussion
4.1. Initial Experiments
Initial hyperparameter tuning was performed to deter-
mine a good combination of the optimizer, learning
rate, and dropout rates. There is not much of a signif-
icant difference between the performance of the Adam
and AdamW optimizer, but the latter is slightly better.
Five configurations are then chosen and trained on all
the prompts using the three model architectures. The
results are shown in Table 3. Using the default bert-
finetune model, we can see that using SGD with a 0.01
learning rate achieves the best average QWK. For bert-
double and bert-lstm, SGD lr=0.03 achieves the best
average QWK.
On average, we notice SGD optimizer to have better
scoring performance on all essay prompts using all 3
model architectures. Although its loss curves confirm
slower convergence compared to the Adam optimizers,
we use SGD for the next experiments du.l,e to its abil-
ity to better generalize on the test set. Our results add
to the studies that confirm that SGD with momentum
can be more beneficial than Adam or AdamW when it
comes to generalization performance, at least for AES
using the ASAP dataset.

MODEL LR lhs-cls lhs-att lhs-mean lhs-max lhs-mm lhs-conv

bert-finetune 0.01 0.8351 0.8336 0.8102 0.8324 0.8364 0.8059
0.03 0.8152 0.8398 0.8205 0.8333 0.8240 0.8015

bert-double 0.01 0.8259 0.8317 0.8327 0.8301 0.8388 0.8314
0.03 0.8202 0.8231 0.8238 0.8351 0.8206 0.8381

bert-lstm 0.01 0.8259 0.8095 0.8203 0.8299 0.8368 0.8155
0.03 0.8202 0.8183 0.8349 0.8349 0.8446 0.8321

Table 4: QWK scores using different pooling
strategies on the last layer. All models have SGD as
the optimizer. The better values for each model and

pooling strategies are in bold.

4.2. Main Results
4.2.1. Representation Learning
We perform experiments by training the model archi-
tectures on Prompt 1 using the different hyperparam-
eter configurations and combinations of model output
(lhs and hs outputs) and pooling strategies to get an idea
of which pooling methods work well for each model. In
Table 4, we report the results of using different pooling
strategies on the final layer only. For the default bert-
finetune model, conv and mean pooling do not give the
best scoring performance while the rest are good pool-
ing methods for the last layer. With att pooling, we
achieve the best test QWK for this model. For bert-
double, conv pooling works well, while cls embedding
does not work as well as in the previous model. The
best scoring performance is achieved with mm pool-
ing. Finally, for the bert-lstm model, mm pooling also
achieved the best QWK score, with mean pooling also
getting good results. Also, att pooling and cls embed-
ding do not work as well as the others. We also ob-
serve that a higher learning rate (0.03) works better for
most of the representations. Overall, mm pooling does
a great job of capturing the essay representations at the
last layer across the models. The best QWK score is
achieved with the bert-lstm model, mm pooling, and
learning rate of 0.03. Thus, we use a 0.03 learning rate.
Next, we present the test QWK scores using the out-
put from the last 4 layers, for each model and pool-
ing strategy in Table 5. Since we want to utilize multi-
ple BERT layers, we compare the average QWK scores
for all 4 layers. For the bert-finetune model, the pool-
ing method that got the best average performance is att
pooling. We also notice that att and mean pooling are
the only methods to surpass the average performance
using the default cls output. It can be seen that for 3lhs
and 4lhs, the cls output got a much better score than
the other pooling methods. This shows that for the de-
fault fine-tuning technique, the CLS output from only
the last layer may not be the best essay representation
and it is important to consider other layers too.
For the bert-double model, all other pooling methods
improved over the cls embedding. Moreover, the pool-
ing method with the best performance is conv pooling,
but we can also see that max and mm pooling achieved
good scores. Lastly, for the bert-lstm model, the pool-
ing method with the best average performance is mm
pooling, with max pooling as a good pooling method
too. Just as with the bert-double model, all the other
pooling methods got improved average performance
compared to the cls embedding, which shows that con-
sidering different pooled outputs can obtain better es-
say representations. Out of all the configurations, the
best average performance for all 4 layers is achieved
with the bert-lstm model using mm pooling. We at-
tribute this to the ability of the LSTM layer to learn and
remember long sequences of inputs since the output of
mm pooling is twice as long as the other pooled out-
puts. Based on the table, we note the improvement of
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MODEL CONFIG SET 1 SET 2 SET 3 SET 4 SET 5 SET 6 SET 7 SET 8 AVE

bert-finetune

AdamW lr=3e−6 0.8480 0.6361 0.6774 0.8085 0.8024 0.8179 0.8022 0.7678 0.7700
AdamW lr=5e−5 0.8216 0.6579 0.6888 0.8135 0.7957 0.8228 0.8114 0.7007 0.7641
AdamW lr=1e−4 0.8279 0.6568 0.6607 0.8232 0.8236 0.8191 0.8141 0.6793 0.7631
SGD lr=0.01 0.8351 0.6454 0.6977 0.8298 0.7999 0.8235 0.7991 0.7754 0.7757
SGD lr=0.03 0.8152 0.6000 0.6913 0.8298 0.8193 0.8309 0.8068 0.7386 0.7665

bert-double

AdamW lr=3e−6 0.8186 0.6262 0.6844 0.7925 0.7680 0.8054 0.7989 0.7501 0.7555
AdamW lr=5e−5 0.8106 0.6809 0.6744 0.8134 0.8173 0.8208 0.8131 0.7097 0.7675
AdamW lr=1e−4 0.8130 0.6583 0.7075 0.8127 0.8155 0.8233 0.7915 0.6887 0.7638
SGD lr=0.01 0.8277 0.6400 0.7096 0.7975 0.7924 0.8134 0.8107 0.7591 0.7688
SGD lr=0.03 0.8166 0.6608 0.7039 0.8168 0.8095 0.8353 0.8193 0.7689 0.7789

bert-lstm

AdamW lr=3e−6 0.8207 0.6051 0.7031 0.7809 0.7824 0.8227 0.7985 0.7343 0.7560
AdamW lr=5e−5 0.8022 0.6681 0.6811 0.8239 0.7949 0.8436 0.8044 0.7284 0.7683
AdamW lr=1e−4 0.8233 0.6303 0.7105 0.8190 0.8129 0.8268 0.7950 0.7429 0.7701
SGD lr=0.01 0.8259 0.6524 0.6947 0.8133 0.8078 0.8108 0.8066 0.7505 0.7702
SGD lr=0.03 0.8202 0.6803 0.7070 0.8271 0.8029 0.8269 0.8124 0.7468 0.7780

Table 3: QWK scores for different model architectures and hyperparameter configuration on ASAP dataset. The
default lhs-cls output is used for all models.

MODEL POOL lhs 2lhs 3lhs 4lhs AVE

bert-finetune

cls 0.8152 0.8084 0.8243 0.8234 0.8178
att 0.8398 0.8155 0.8377 0.8071 0.8250
mean 0.8205 0.8358 0.8261 0.8154 0.8245
max 0.8333 0.8111 0.7673 0.8163 0.8070
mm 0.8240 0.8208 0.8177 0.7490 0.8029
conv 0.8015 0.7856 0.7825 0.7906 0.7901

bert-double

cls 0.8202 0.8154 0.8027 0.8259 0.8160
att 0.8231 0.8176 0.8123 0.8272 0.8201
mean 0.8238 0.8157 0.8182 0.8239 0.8204
max 0.8351 0.8358 0.8215 0.8274 0.8299
mm 0.8206 0.8419 0.8376 0.8169 0.8293
conv 0.8381 0.8380 0.8239 0.8263 0.8316

bert-lstm

cls 0.8202 0.7983 0.8186 0.8273 0.8161
att 0.8183 0.8137 0.8302 0.8083 0.8176
mean 0.8349 0.8263 0.8089 0.8280 0.8245
max 0.8349 0.8444 0.8301 0.8169 0.8316
mm 0.8446 0.8309 0.8302 0.8361 0.8354
conv 0.8321 0.8103 0.8084 0.8299 0.8202

Table 5: QWK scores using different pooling
strategies on each of the last 4 layers. Best values for

each model and layer are in bold.

using modified model architectures and other pooling
methods over the default BERT fine-tuning.

MODEL POOL gl4 gf8 ahs

bert-finetune
mean-hs 0.8118 0.8174 0.8127
cc 0.8127 0.8323 0.8164
wl 0.8207 0.8270 0.8361

bert-double
mean-hs 0.8288 0.8163 0.8311
cc 0.8445 0.8281 0.8388
wl 0.8297 0.8385 0.8253

bert-lstm
mean-hs 0.8265 0.8035 0.8063
cc 0.8158 - -
wl 0.8190 0.8340 0.8257

Table 6: QWK scores for different pooling strategies
on different layer combinations. The best values for

each model and layer combination are in bold.

We now discuss the results using different pooling
strategies for a combination of multiple layers, shown
in Table 6. The empty values are due to insufficient
memory. For the bert-finetune model, wl pooling ob-
tained good results, especially when we pool all 12
BERT layers. This shows that all layers contain in-
formation about the essay that can still help with the
scoring performance. Concatenating the first 8 layers
also gave good QWK scores, showing that the first lay-

ers can still contribute to obtaining representations rel-
evant to essay scoring. We believe this is due to the
architecture of BERT that learns more general features
in the first layers that contribute to the essay score, as
opposed to just the features learned at the last layers
that are more specialized for language modeling.
In bert-double, the cc and wl pooling methods obtained
good results. In particular, cc pooling for the last 4 lay-
ers or even all the layers achieved good performance.
For combining the first 8 layers, wl pooling is the best
pooling method. For the bert-lstm model, wl pooling
seems to work the best. However, when it comes to
pooling the last 4 layers, mean-hs pooling performed
better than cc or wl. Overall, we observe the best QWK
results using gl4-cc and gf8-wl, thus, we consider their
combination for the next experiments.
We observe bert-double to be the best at capturing rele-
vant information from combinations of layers, as it has
consistently good QWK scores. Its performance boost
over the regular bert-finetune model can be seen not
just in Table 6, but also in Table 5. We attribute this
improvement to the ReLU activation function between
the 2 linear layers, which is known to overcome the
vanishing gradients problem encountered in fine-tuning
(Mosbach et al., 2020) with its close-to-linear behavior.
ReLU also produces sparse representations, thus accel-
erating representation learning.
Based on the findings from previous results, we uti-
lize intermediate layers using the chosen multi-layer
pooling strategies and the bert-double model. We con-
sider using a hybrid pooling method (wlcc) of using
cc pooling on the last 4 layers and wl pooling on the
first 8 layers so all 12 layers are utilized. We denote
the output for this as ahs-cls-wlcc, which uses cls em-
bedding for the single-layer pooling. We also consider
the other single-layer pooling methods (att, mean, max,
mm, conv) for the last 4 layers. We evaluate the per-
formance using the different representations on all the
essay sets and report the results in Table 7.
Compared to the default lhs-cls output, all other model
outputs have improved based on the average QWK per-
formance on all essay sets. This further shows that uti-
lizing intermediate BERT layers strongly boosts scor-
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OUTPUT SET 1 SET 2 SET 3 SET 4 SET 5 SET 6 SET 7 SET 8 AVE
lhs-cls 0.8277 0.6400 0.7096 0.7975 0.7924 0.8134 0.8107 0.7591 0.7688
gl4-cc 0.8445 0.6488 0.7054 0.8099 0.8053 0.8096 0.8088 0.7567 0.7736
gf8-wl 0.8385 0.6779 0.7040 0.8030 0.8009 0.8143 0.8194 0.7069 0.7706
ahs-cls-wlcc 0.8293 0.6737 0.7036 0.8316 0.7936 0.8309 0.8040 0.7638 0.7822
ahs-att-wlcc 0.8351 0.6746 0.7168 0.8131 0.8092 0.8059 0.8089 0.7865 0.7813
ahs-mean-wlcc 0.8392 0.6783 0.6958 0.8186 0.8041 0.8380 0.8081 0.7549 0.7796
ahs-max-wlcc 0.8338 0.6884 0.7080 0.8214 0.8320 0.8277 0.8172 0.7714 0.7875
ahs-mm-wlcc 0.8406 0.6618 0.7318 0.8106 0.8098 0.8240 0.8120 0.7658 0.7820
ahs-conv-wlcc 0.8168 0.7288 0.6945 0.8097 0.8166 0.8024 0.8100 0.7545 0.7791

Table 7: QWK scores of our model using different outputs on ASAP dataset.
The best values for each essay set are shown in bold.

MODEL SET 1 SET 2 SET 3 SET 4 SET 5 SET 6 SET 7 SET 8 AVE
EASE (SVR) 0.781 0.621 0.63 0.749 0.782 0.771 0.727 0.534 0.699
EASE (BLRR) 0.761 0.606 0.621 0.742 0.784 0.775 0.73 0.617 0.705
LSTM 0.775 0.687 0.683 0.795 0.818 0.813 0.805 0.594 0.746
LSTM + CNN 0.821 0.688 0.694 0.805 0.807 0.819 0.808 0.644 0.76
BERT 0.792 0.679 0.715 0.8 0.805 0.805 0.785 0.595 0.748
XLNet 0.776 0.68 0.692 0.806 0.783 0.793 0.786 0.628 0.743
BERT Ensemble 0.802 0.672 0.708 0.815 0.806 0.814 0.804 0.597 0.752
XLNet Ensemble 0.804 0.685 0.7009 0.795 0.799 0.805 0.8 0.597 0.748
BERT + XLNet Ensemble 0.807 0.696 0.703 0.819 0.808 0.815 0.806 0.604 0.757
HISK and -SVR 0.836 0.724 0.677 0.821 0.83 0.828 0.801 0.726 0.78
BOSWE and -SVR 0.788 0.689 0.667 0.809 0.824 0.824 0.766 0.679 0.756
HISK+BOSWE and -SVR 0.845 0.729 0.684 0.829 0.833 0.83 0.804 0.729 0.784
Parameter-Efficient Transformer 0.743 0.674 0.718 0.884 0.834 0.842 0.819 0.744 0.785
HA-LSTM+SST+DAT 0.836 0.73 0.732 0.822 0.835 0.832 0.821 0.718 0.79
BERT+SST+DAT 0.824 0.699 0.726 0.859 0.822 0.828 0.84 0.726 0.791
R2BERT 0.817 0.719 0.698 0.845 0.841 0.847 0.839 0.744 0.794
BERT-ahs-cls-wlcc (ours) 0.8293 0.6737 0.7036 0.8316 0.7936 0.8309 0.8040 0.7638 0.7822
BERT-ahs-wm-wlcc (ours) 0.8338 0.6884 0.7080 0.8214 0.8320 0.8277 0.8172 0.7714 0.7875*

Table 8: QWK scores of our chosen models and other baseline models on the ASAP dataset.
Best values for each essay set are in bold. Models that outperform ours use self-supervised tasks, multi-loss

learning functions, or more intricate architectures.

ing performance by providing better essay representa-
tions. We then compare the wlcc hybrid pooling to just
using cc and wl on the last 4 and first 8 layers, respec-
tively. From this, it can be seen that all the models
that use hybrid pooling have an improvement in av-
erage QWK scores, indicating that using all 12 layers
contributes more relevant essay information than only
using a subset of layers. This also shows that the wlcc
hybrid pooling is effective.

By comparing the average QWK score obtained from
using gl4-cc and gf8-wl, we can see that gl4-cc is
slightly better, which suggests that concatenating the
last 4 layers can give a slightly better representation for
all the essay sets in general. For the most part, scores
obtained by each output for the essay sets are similar,
except for essay sets 1, 2, and 8. These are the essay
sets that exceed the maximum token length capacity
of BERT from Table 1, so the performance difference
can be due to the essay length. We can also see the
large average QWK difference in essay set 8, which has
the largest average token length (more than double the
capacity). Here, gl4-cc performed significantly better,
which likely means that the more complicated features
encoded in the last 4 layers contribute more to the over-
all quality of the essay than the more general features
in the first layers.

Out of all the models using the hybrid wlcc pooling, the
one that got the best average QWK score is ahs-max-
wlcc. Even on the longer essay sets (1, 2, 8), it was
able to give generally high QWK scores. Max pool-
ing summarizes the primary or most activated feature
in the essay that so it must be able to properly extract
the features contribute most to the essay score. More-
over, since only the main features are extracted, over-
fitting is somehow reduced, thereby contributing to its
good overall performance. Using the default cls em-
bedding for each layer (ahs-cls-wlcc) obtained the next
best performance, with the other pooling methods un-
able to outperform it.

4.2.2. Comparison with Baseline Models
Table 8 shows the experimental results of our mod-
els with the ahs-max-wlcc and ahs-cls-wlcc outputs
and other model baselines. In terms of average QWK
score, our models outperform most of the existing mod-
els except the models that use self-supervised tasks
(HA+LSTM+SST+DAT, BERT+SST+DAT) or multi-
loss function (R2BERT) for the BERT-ahs-wm-wlcc
model. Considering that our model architecture is very
simple (BERT followed by 2 linear layers), with no
ensembles, self-supervised tasks, or multi-loss func-
tions, our model performed very well for the essay
scoring task. This shows that utilizing all BERT lay-
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ers is indeed effective since it captures good represen-
tations. Moreover, we can observe the great potential
of our model to further improve if we optimize it fur-
ther or use other strategies for improvement, such as
self-supervised tasks and multi-task learning.
Our models, particularly the BERT-ahs-wm-wlcc
model, were able to outperform EASE, the RNNs
and hierarchical models, and the vanilla and ensem-
ble transformer models (BERT and XLNet) on all es-
say sets by large margins, showing that good repre-
sentation learning can go a long way. It is, how-
ever, unable to outperform the state-of-the-art statis-
tical HISK/BOSWE models on essay sets 1 and 2,
which are argumentative essays. These models are
well-designed to capture the explicit structure and the
semantic features that are relevant in argumentative es-
says. Our best model obtained the best QWK on essay
set 8, showing its potential to handle very long essays
and a wider score range. Although it was not able to
achieve the best scores, considering our simple model
architecture using only a different BERT output, it gave
a consistently high performance, ranking second when
it comes to the best average QWK score.

5. Conclusions

In this paper, we tackle the AES task and go beyond the
traditional way of fine-tuning BERT by making modi-
fications to the default fine-tuning network and find-
ing the best essay representation. To find good essay
representations, we utilize intermediate layers and dif-
ferent ways of pooling each single layer and multiple
layers for the fine-tuning of BERT. We found that we
can improve essay scoring performance by using all
or even several BERT layers and not just the default
last layer output since there is relevant essay informa-
tion captured by the different layers. Aside from the
canonical fine-tuning process of adding a single output
layer, we also explored 2 other architectures and found
that both modifications can improve performance. In
addition, with some hyperparameter tuning, we were
able to find good base hyperparameter configurations
and eventually found that the SGD optimizer general-
izes better for different essay sets than Adam optimiz-
ers using BERT. We believe our proposed simple model
modification using a hybrid pooled BERT representa-
tion has great potential for the AES task and potentially
long-text tasks in general.
Our study can be expanded by exploring more com-
plicated architectures, multitask learning with other
loss functions or NLP tasks, and various optimization
strategies. A detailed error analysis can also be per-
formed to detect future improvements. We also hope to
evaluate our model on trait-specific scoring and cross-
prompt settings. Furthermore, conducting assessments
of our model across various datasets and other long-text
tasks to evaluate its generalizability represents another
avenue for future research.
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