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Abstract

Code generation aims to generate code in a general-purpose programming language, such as C++, based
on natural language intents. Existing efforts primarily focus on relatively simple programming problems and
fail to evaluate the thought process involved in complex programming scenarios. In this paper, we introduce
"steps-guided code generation", a task that assesses the quality of both thought steps and code implementation
to evaluate the overall management of handling a complex programming problem. To support this task, we
construct CodeStepsEval, a real-world scenario dataset of complex programming problems in the C++ programming
language with varying levels of difficulty. Comprehensive experiments on this dataset demonstrate the importance
of high-quality steps in enhancing code generation performance and the challenges faced by the code LLMs in this task.

Keywords: code generation, real-world complex programming dataset

1. Introduction

Programming is a highly vital skill in modern society,
offering the ability to automate tasks and enhance
efficiency. However, mastering the art of translating
natural language(NL) intents into executable code
typically requires years of study and practice. Code
generation, also known as program synthesis, ad-
dresses this challenge by automatically generating
code based on NL intents. This not only makes
programming more accessible and efficient for non-
programmers but also provides significant benefits
to experienced developers. One notable example
is GitHub Copilot,1 an in-IDE developer assistant
that automatically generates code based on the
user’s context, greatly aiding efficient and effective
code writing.

Various methods have been introduced for code
generation. Early works (Ling et al., 2016; Xiao
et al., 2016; Sun et al., 2019) typically approach
code generation as a sequence-to-sequence prob-
lem and focus on developing neural architectures.
However, these models often struggle to learn so-
phisticated programming patterns. More recently,
Large Language Models (LLMs) pre-trained on nu-
merous code data, such as GPT-3 (Brown et al.,
2020) have opened up new opportunities for ad-
dressing these limitations. Initialization with GPT-
3, OpenAI’s Codex (Chen et al., 2021) demon-
strates impressive performance by correctly solv-
ing 30-70% of novel Python problems. However,
these LLMs primarily focus on relatively simple pro-
gramming problems where implementing a func-
tion to achieve a specific small-scale functional-

∗Corresponding authors
1https://github.com/features/copilot/

Figure 1: An example of a programming problem
adapted from CodeStepsEval dataset. Only one
test case is shown in this example.

ity, such as "Write a function to get the n small-
est items from a list". They face challenges in
handling complex programming problems. For in-
stance, in the APPS benchmark which contains
programming competition problems, CodeRL pro-
posed by (Le et al., 2022) surpasses the Codex
model and achieves the best results across differ-

https://github.com/features/copilot/
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ent difficulty levels(Hendrycks et al., 2021a). How-
ever, CodeRL only achieves 4.48% and 2.36% for
interview and competitive problems, respectively,
significantly lower than its pass rate of 15.27% for
introductory problems2. This highlights the signifi-
cant challenge that current code generation models
face in handling complex programming problems.

In a real-world programming context, handling
complex programming problems necessitates two
distinct capabilities. The first is to conceive high-
level thoughts that outline the steps to address a
given problem(Dijkstra et al., 1976; Jiang et al.,
2023). The second is to implement code based on
these thought steps and NL intents. These two abil-
ities together constitute a comprehensive reflection
of one’s problem-solving capabilities in complex
programming scenarios. For instance, during job
interviews, interviewers assess a developer’s pro-
gramming proficiency by simultaneously evaluating
their problem-solving conceptual thought and code
implementation capabilities. Existing work concen-
trates on code-only evaluation while neglecting the
evaluation of thought steps. As a result, it fails
to depict programming proficiency in complex pro-
gramming contexts.

To fill this gap, we propose a new code gener-
ation task: steps-guided code generation. This
task focuses on real-world complex programming
problems and evaluates not just the quality of im-
plemented code but also the quality of generated
thought steps. For steps evaluation, we design a
steps-wise similarity(SWS) metric to evaluate the
quality of steps at a sub-step level. Nevertheless,
the lack of code generation datasets with annotated
steps hinders the development of steps-guided
code generation. Therefore, we devise a semi-
automatic pipeline that aids in the creation of a
code generation dataset containing thought steps.

Our constructed dataset, CodeStepsEval, con-
sists of 10,479 programming problems in C++ lan-
guage categorized into different difficulty levels: ba-
sic, challenging, and advanced. As illustrated in
Figure 1, each problem in CodeStepsEval includes
NL intents, thought steps, a solution with a ref-
erence C++ program, and multiple test cases to
evaluate the correctness of the generated code.
To demonstrate the effectiveness of CodeStepsE-
val in advancing research on code generation, we
conduct extensive experiments using three base-
line models with parameter sizes ranging from
350M to 2.7B. These experiments include assess-
ing the model’s performance with the guidance of
the thought steps, investigating the factors con-
tributing to the effects of the steps, and evaluating

2As mentioned in APPS, interview-level and
competition-level problems are more complex than
introductory ones. This arises from their inclusion of
problems in programming competitions such as ACM

the models’ performance across different levels of
difficulty.

Our main contributions can be summarized as
follows:

• We introduce a steps-guided code generation
task that simulates the real-world scenario in
solving complex programming problems.

• We create the CodeStepsEval for the intro-
duced task in C++ programming language.
Unlike prior work on code generation which
mostly focuses on simple problems and code-
only evaluation, we evaluate models on their
ability to generate C++ code for complex prob-
lems with thought steps evaluation into consid-
eration.

• We undertake a comprehensive analysis of the
curated dataset, which not only shows the qual-
ity and utility of the resulting data but also sub-
stantiates the effectiveness of thought steps
to tackle complex programming problems.

2. Related works

Code Generation (Ling et al., 2016) treats code
generation as a sequence-to-sequence modeling
problem and proposes a structured attention mech-
anism to generate the source code. To exploit syn-
tactic and semantic constraints of code, many re-
searchers turn to the Seq2Tree model for code
generation. For instance, (Yin and Neubig, 2017,
2018) propose a Seq2Tree model powered by code
grammar to capture the code syntax as prior knowl-
edge. From a different direction, (Yin and Neubig,
2019) improves the code generation performance
by reranking an N-best list of predicted codes. (Xu
et al., 2020) enhances the code generation model
by incorporating the extracted external knowledge
such as API documentation. Furthermore, (Wei
et al., 2019) boosts the performance based on dual
learning with the help of the code summarization
task.

Recently, Large Language Models (LLMs) such
as GPT-3 (Brown et al., 2020) have opened up
new opportunities for addressing code generation.
OpenAI’s Codex (Chen et al., 2021), trained on 54
million software repositories from GitHub, demon-
strates impressive performance by correctly solv-
ing 30-70% of novel Python problems. Follow-
ing that, various code LLMs like InCoder(Fried
et al., 2022), CodeGen(Nijkamp et al., 2022), Al-
phaCode(Li et al., 2022), and CodeT5+(Wang et al.,
2023) have been emerging, yielding impressive re-
sults. Generally, these code LLMs demonstrate
a preference and more proficiency in solving rela-
tively simple Python programming problems, and
they face challenges in tackling complex program-
ming tasks. This has sparked some studies with
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a concentration on addressing complex program-
ming problems. For instance, (Jiang et al., 2023)
introduces a non-training self-planning approach
based on few-shot prompting to enhance the per-
formance of the code-davinci-002(GPT-3.5 series)
model on HumanEval-X. (Li et al., 2023) utilizes a
brainstorming strategy to generate diverse thoughts
and select them by a trained ranker model. In this
work, we unify the stages of thought and code im-
plementation into a comprehensive assessment of
complex programming proficiency.

Code generation datasets Several datasets
have been proposed for code generation. (Chen
et al., 2021) introduces HumanEval, a dataset that
encompasses 164 hand-written programming prob-
lems in Python and evaluates code by designed test
cases. HumanEval-X (Zheng et al., 2023) serves
as a multilingual version of the HumanEval dataset,
incorporating various programming languages such
as C++, Java, and Python. MBXP(Athiwaratkun
et al., 2022) is a manually curated multilingual
dataset for code generation, it contains 848 C++
programming problems. The dataset mentioned
above focuses on relatively simple programming
tasks, such as implementing a function to achieve
a specific small-scale functionality, for instance,
"Write a function to get the n smallest items from
a dataset". Differ from the datasets mentioned
above, APPS(Hendrycks et al., 2021a) comprises
code competition programming problems that in-
volve real-world scenarios with multiple complex
requirements. The APPS dataset (Hendrycks et al.,
2021a) consists of a total of 10,000 code competi-
tion problems(5,000 for training, 5,000 for testing)
and their associated Python code. Unlike existing
datasets, the goal of our dataset focuses on solv-
ing complex programming problems in C++ and
additionally serves as a resource to evaluate both
thought and code.

3. The CodeStepsEval Dataset

In this section, we provide a comprehensive
overview of the creation process for the CodeStep-
sEval. We begin by introducing the steps-guided
code generation task. Subsequently, we explore
the creation of CodeStepsEval. Finally, we present
the essential statistics of CodeStepsEval and com-
pare it with other code generation datasets.

3.1. Task definition

The steps-guided code generation task initially
takes the NL intents as input and produces the
thought steps as output. Subsequently, it proceeds
to implement the code based on the NL intents and
the generated thought steps. Specifically, this task

can be formalized as the following:

p(c|i) = p(s|i) · p(c|i, s), (1)

where i, s, and c denote the NL intents text along
with the prompt, the thought steps, and the code.

3.2. Dataset Creation
NL-code collection We focus on algorithmic pro-
gramming competitions as they encompass com-
plex programming problems that require program-
mers to have a deep understanding of the problem,
devise effective strategies, and apply various al-
gorithms. We collect programming problems from
Luogu3 website, which hosts competitions and of-
fers problems spanning different levels of difficulty.
Each problem collected from the website consists
of the following four components: (1) NL intents,
which describe the problem to be solved; (2) Prob-
lem difficulty, indicating the level of difficulty for the
problem; (3) Multiple candidate C++ codes, the so-
lutions that successfully pass platform testing. (4)
A few input-output pairs that serve as test cases.

Next, we carefully filter out problems that could
potentially lead to security vulnerabilities, such as
the C++ code "int result = system("rm -rf *");"-this
code becomes vulnerable since it could remove all
files in our local host by calling the system function.
This precaution is taken to prevent the model from
learning malicious behaviors. Lastly, we rely on the
Google benchmark toolkit4 and execute all candi-
date codes to select the optimal C++ code (with the
minimum run time) as the reference code in candi-
date codes, ensuring the inclusion of high-quality
solutions5.

Steps annotation Next, we annotate the col-
lected problems with steps using a semi-automatic
approach. We choose the semi-automatic way to
obtain the thought steps for two reasons: First, man-
ual annotation of steps requires annotators with
high problem-solving skills for complex problems,
and thus it is too costly. Second, considering the
advancements in large language models (LLMs),
these models already demonstrate surprising per-
formance in understanding the problem intents. To
facilitate manual annotation and boost efficiency,
we begin by employing LLM as a tool to generate
preliminary steps, followed by manual refinement
of these steps.

Specifically, GPT-3.5-turbo, a powerful large
language model, is employed to generate the
preliminary steps for each programming problem.
The prompt for constructing preliminary steps is as

3https://www.luogu.com.cn/
4https://github.com/google/benchmark
5Note that CodeStepsEval comprises multiple C++

codes for each problem, which can be employed for
reinforcement learning or contrastive learning.

https://www.luogu.com.cn/
https://github.com/google/benchmark
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follows:
Instruction:"Your goal is to act as a human being
to generate accurate and easy-understand thought
steps to solve a programming problem, according
to the given description and reference program of
the programming problem. The requirement is as
follows:
1. Provide steps in JSON list format.
2. Ensure the generated steps effectively capture
the essence of the given code.
Prolem description:
<fill the programming problem description here>
Reference C++ program:
<fill the reference c++ program here>

For manual refinement of steps, we recruited 15
annotators who are proficient in C++ programming
language and have actively participated in algorith-
mic programming competitions. The objective of
10 annotators is to refine the steps for all problems,
including ensuring the correctness of all steps, rec-
tifying erroneous steps, removing redundant steps,
and incorporating essential steps that might be over-
looked. 5 annotators verify the correctness of all
modified steps, and those with unanimous agree-
ment are retained. The entire refinement takes two
months to complete.

3.3. Dataset Statistics
After applying all of the aforementioned filtering
steps, we successfully obtained the CodeStepsEval
dataset6, which consists of 10,479 data instances
for steps-guided code generation. Additionally, We
randomly chose 1,000 instances as the test set
with 300, 350, and 350 instances for basic level,
challenging level, and advanced level, respectively.
In addition, as test cases play a crucial role in ver-
ifying a code’s correctness and can be used for
reinforcement learning (Le et al., 2022), we manu-
ally augment test cases in the test set based on the
NL intents and verify the correctness of test cases
with the reference code. On average, we include
1.6 test cases in the training set and 17.6 test cases
in the test set. Detailed statistics of CodeStepsEval
is displayed in Table 1

Table 2 compares CodeStepsEval to existing
code generation datasets. Compared with C++
datasets MBXP and HumanEval-X, codeStepsEval
exhibits a longer intent and code. This implies that
CodeStepsEval is more challenging and capable of
assessing a model’s proficiency in solving complex
programming problems. Additionally, CodeStep-
sEval has more test cases. This can substantially
reduce the number of "false passed" codes. More-
over, compared with competition-related datasets

6https://github.com/galbya/
CodeStepsEval

such as APPS, CodeStepsEval is focused on the
C++ programming language and enables the mea-
surement of the quality of thought steps, thereby
reflecting the real-world programming scenario in
solving complex programming problems.

Figure 2: Three baselines.

4. Baselines

As shown in Figure 2, we adopt three approaches
to train and evaluate across multiple code LLMs on
the CodeStepsEval dataset, serving as baselines
for code generation tasks: no-steps, self-guided,
and self-guided-KE.

Non-steps: This baseline can be regarded as
classic code generation in view of models taking
NL intents as input and directly generating code
without the phase of generating steps. For this
baseline, we prompt models using the following
input: "NL intents:\n + p_str + \n + Answer:\n",
where p_str represents the raw text of NL intents.

Self-guided: In this baseline, as illustrated in
Equation 1, the code LLM initially generates steps
and subsequently generates code based on both
the steps and the NL intents. It is noteworthy that
we can employ casual language modeling to gen-
erate steps and code at the implementation level.
Specifically, we use the same prompt in non-steps
but the label in this baseline is the concatenation of
steps and code, with "\n Below is the code\n" as a
separator. As shown in Figure 2, the separator can

https://github.com/galbya/CodeStepsEval
https://github.com/galbya/CodeStepsEval
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Basic level Challenge level Advanced level Total/Avg

Train

# Problems 468 2,795 6,216 9,479
Avg NL Length 223 262 298 284

Avg Code Length 44 76 174 138
Avg Solutions 5.3 5.0 4.3 4.5

Avg Steps 5.8 5.9 5.7 5.7
Avg Steps Length 58 67 69 68
Avg Test Cases 1.4 1.6 1.7 1.6

Test

# Problems 300 350 350 1,000
Avg NL Length 199 256 270 237

Avg Code Length 41 72 164 82
Avg Solutions 4.5 4.9 4.3 4.6

Avg Steps 5.5 5.6 5.6 5.6
Avg Steps Length 56 66 65 62
Avg Test Cases 21.2 17.3 12.2 17.6

Table 1: Detailed statistics of CodeStepsEval.

MBXP HumanEval HumanEval-X APPS CodeStepsEval
#Problems 848* 164 164* 10,000 1,0479*

Source HW HW HW Competitions Competitions
Intent Length 39.2 61.7 61.3 319.4 236.8
Code Length 29.2 24.3 21.1 62.2 82.6
Test Cases 3.1 7.7 7.7 20.0 17.6

Thought Steps No No No No Yes
Programming Language C++ Python C++ Python C++

Table 2: Comparison of existing code generation datasets. Source: HW(Hand-written) or Competi-
tion(Programming competition website). * denotes the number of instances in C++ programming language

function as a specific indicator when we need to ex-
tract the steps. This means that models must learn
to generate the separator between steps and code
during the training process. In our experiments,
we find that fine-tuned models are able to do this
without difficulty.

Self-guided-KE: Given that code LLMs are ded-
icated to code understanding and generation, their
capability for step generation may be limited. We
propose a knowledge-enhanced self-guided base-
line, denoted as "self-guided-KE". At this baseline,
we use the GPT-3.5-turbo model for generating
the enhanced steps. During testing, we integrate
the enhanced steps into the self-guided prompt for
code generation.

4.1. Models
For each baseline, we conducted the experimental
evaluation on various existing code LLMs:

CodeGen(Nijkamp et al., 2022): a family of code
LLMs available in different parameter sizes (350M,
2.7B, 6.1B, and 16.1B). Models are trained using
a combination of NL and code data collected from
THEPILE (Gao et al., 2020)). We use the multi-
lingual version with parameter sizes of 350M and
2.7B as baseline models, both of them are addi-
tionally trained on the BIGQUERY7, which contains

7https://cloud.google.com/bigquery/public-data

code under an open-source license in multiple pro-
gramming languages.

Starcoderbase (Fried et al., 2022): an ensem-
ble of models with parameter sizes ranging from 1B
to 7B. It is trained on 80+ programming languages
from The Stack(Kocetkov et al., 2022), utilizing the
fill-in-the-middle objective. For our experiments,
we utilize the Starcoderbase model with 1B param-
eters.

5. Experiments

5.1. Fine-tuning
We perform fine-tuning for each baseline on the
CodeStepsEval training set with both problem text
and problem format(described in Section 4). Dur-
ing fine-tuning, We adopt the cross-entropy loss as
the training loss. Note that the prompt text is ex-
cluded from the training loss. For CodeGen-350M,
we fine-tuned all parameters in the model. For
Starcoderbase-1B and CodeGen-2.7B, due to the
limitation of computation resources, we resorted
to parameter-efficient fine-tuning approaches that
only fine-tune a small number of model parameters
while freezing most parameters of the pre-trained
LMs. Specifically, we adopt the LoRA approach
(Hu et al., 2021) on the query, key, and value ma-
trices with a rank of 8. This results in fine-tuning
the Starcoderbase-1B model with 3.47M param-
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Algorithm 1 The computation procedure of SWS and F1
1: Input: Ground truth steps s = {s1, s2, ..., sM}

predicted steps s
′
= {s′

1, s
′

2, ..., s
′

N}, threshold α
2: Define j = 1, sim_sum = 0, correct = 0
3: for i=1,2,...,M do
4: While j <= N do
5: Calculate the similarity sim between si and s

′

j

6: If sim >=α
7: j = j+1
8: sim_sum += sim
9: correct += 1; break
10: j = j+1
11: end While
12: end for

// SWS computation
13: SWS = sim_sum/M

// F1 computation
14: precision = correct / N ; recall = correct/M

15: F1 = 2 ∗ precision∗recall
precision+recall

eters and the CodeGen-2.7B model with 1.64M
parameters, respectively.

5.2. Metrics
We evaluate steps from two dimensions: the over-
all perspective and the local perspective. For the
overall perspective evaluation, we employ auto-
mated metrics BLEU@k, Rouge-L@k, and Sim-
ilarity@k. These metrics consider steps as a whole
and measure the character or semantic similarity
between reference and predicted steps. BLEU@k
is defined as the highest BLEU-4 score among
k sampled steps, while Rouge-L@k and Similar-
ity@k are similarly defined as the highest Rouge-
L scores and Similarity scores among k sampled
steps. We compute the Similarity score using
sentence-transformers8. For the assessment from
a local perspective, we involve the designed step-
wise Similarity (SWS) metric and the F1 metric.
Given the reference steps s = {s1, s2, ..., sM}, and
the generated steps s

′
= {s′

1, s
′

2, ..., s
′

N}, SWS cal-
culates the similarity between each reference sub-
step and each predicted substep. Sub-steps are
deemed identical if their similarity surpasses a pre-
defined threshold α. We compute the sum of sim-
ilarities for all identical sub-steps and utilize the
average Similarity as the value of SWS. In Algo-
rithm 1, we summarize the computation procedure
for SWS and the F1 metric.

To evaluate the code, we rely on CodeBLEU@k
and Pass@k(Kulal et al., 2019). CodeBLEU(Ren
et al., 2020) is an automatic match-based metric
specifically designed for code generation tasks. It
is based on BLEU(Papineni et al., 2002) but con-
siders syntactic and semantic matches based on
the code structure and n-gram match. Pass@k is
an execution-based metric for measuring the exact
functional correctness of generated code, where k

8https://www.sbert.net/

code samples are generated for each problem. A
problem is considered solved if any sample passes
all the unit tests. Since this computation of Pass@k
can have high variance, we follow (Chen et al.,
2021) and use the unbiased version of Pass@k as
the estimator:

Pass@k = Eproblems[1−
(
n−c
k

)(
n
k

) ] (2)

where k ≤ n is the number of samples and c ≤ n is
the number of codes that pass all test cases. 1−
(n−c

k )
(nk)

is the estimated Pass@k for a single problem.
E is the expectation of Pass@k over all problems.

5.3. Settings
For training, we truncate the problem(the concate-
nation of prompt and program) up to 2048 tokens.
We adopt AdamW(Loshchilov and Hutter, 2019)
with a learning rate of 2e-5 and weight decay of
0.01 to update the model parameters for 5 epochs.
The batch size is set to 4, 2, and 2 for CodeGen-
350M, Starcoderbase-1B, and CodeGen-2.7B, re-
spectively. For testing, the α in the SWS metric
is set to 0.8. We compute the average pass@k
with n=20 and k=1, 5, 10. Following (Chen et al.,
2021), we use a temperature of 0.2 for pass@1 and
pass@5, and a temperature of 0.8 for pass@10.
We adopt nucleus sampling (Holtzman et al., 2019)
with a top-p value of 0.95 for all program evalua-
tions in this work. We use the Nvidia 3090 GPU
and Nvidia Tesla P100 GPU for fine-tuning and
inference, respectively.

5.4. Results
Main Results We present the main results for all
baselines in Table 3. We find that the performance
of the self-guided models is inferior to that of the
non-step models. In the case of the CodeGen-
2.7B model, the self-guided approach yields lower
results on the pass@1 metric compared to the non-
step approach. We hypothesize that these results
may arise because code LLMs like CodeGen are
primarily tailored for code generation, potentially
resulting in limited proficiency in generating steps.
Consequently, the poor quality of generated steps
may lead the model to produce erroneous code.

In addition, we observe that the performance of
self-guided-KE models surpasses the self-guided
models by a large margin. When compared to
self-guided CodeGen-350M, the self-guided-KE
CodeGen-350M shows over ten times improve-
ments in SWS@10 and F1@10 scores, respec-
tively. Regarding the code evaluation metrics,
Pass@5 and CodeBLEU@5, the self-guided-KE
Starcoderbase-1B model outperforms the self-
guided Starcoderbase-1B model by 141% and

https://www.sbert.net/
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Setting Model Steps evaluation Code evaluation
BL@10 RG@10 Sim@10 SWS@10 F1@10 Pass@1 Pass@5 Pass@10 CB@1 CB@5 CB@10

Non-Steps
CodeGen-350M - - - - - 1.81 5.56 8.08 22.89 26.98 28.53

Starcoderbase-1B - - - - - 4.73 11.53 14.88 28.21 33.15 34.86
CodeGen-2.7B - - - - - 2.12 5.79 8.59 22.96 26.96 28.35

Self-guided
CodeGen-350M 8.37 31.83 0.64 5.16 5.77 1.01 4.11 6.87 22.81 28.91 30.94

Starcoderbase-1B 8.25 31.83 0.65 7.21 8.32 1.32 5.15 8.33 24.44 30.51 32.58
CodeGen-2.7B 6.57 29.77 0.61 5.58 5.85 1.07 4.17 6.88 23.70 29.90 32.03

self-guided
-KE

CodeGen-350M 57.42 71.29 0.91 58.76 63.41 2.79 7.88 11.29 27.06 33.81 35.98
Starcoderbase-1B 57.75 71.33 0.91 59.40 63.75 5.30 12.40 17.30 28.97 35.08 37.44

CodeGen-2.7B 56.81 70.63 0.89 58.13 62.96 2.38 7.70 11.41 26.68 32.82 35.06

Table 3: Main results on the test set. BL, RG, Sim, and CB denote BLEU-4, Rouge-L, Similarity, and
CodeBLEU, respectively

Setting Model Failed Type(%)
SynE SemE Timeout RE

Non-Steps
CodeGen-350M 13.09 72.55 0.55 1.07

Starcoderbase-1B 17.31 63.59 0.89 2.00
CodeGen-2.7B 15.87 70.74 0.45 1.07

Self-guided
CodeGen-350M 32.22 54.77 2.70 3.22

Starcoderbase-1B 27.30 57.88 2.04 3.57
CodeGen-2.7B 31.75 54.53 3.81 3.44

Self-guided-KE
CodeGen-350M 39.34 44.92 2.81 3.30

Starcoderbase-1B 31.57 49.34 2.36 3.76
CodeGen-2.7B 36.32 47.69 3.11 4.04

Table 4: Failed type percentage on failed programs
in the test set. SynE(Syntax Error): generated code
fails to compile (e.g., missing semicolons or lacking
braces). SemE(Semantic Error): the code gener-
ated by the model can compile but does not align
with the expected output of the test cases. Time-
out: the program’s run time exceeds the predefined
limit. RE(Runtime Error): the program is able to
compile without errors but encounters errors during
execution, such as out of bounds of an array.

14.9%. Moreover, we find that with the substan-
tial enhancement in step quality, self-guided-KE
models consistently outperform non-steps mod-
els in terms of code evaluation. Considering the
Pass@10 and CodeBLEU@10 scores, the self-
guided-KE Starcoderbase-1B model exhibits a
16.2% and 7.6% improvement over the self-guided
Starcoderbase-1B model. This indicates that high-
quality steps play a pivotal role in enhancing the
model’s ability to address programming problems.
Furthermore, this implies that the primary reason
for the diminished effectiveness of self-guided mod-
els lies in the low quality of their generation steps
as poor-quality steps predicted by models can lead
to misguided guidance. It also highlights the impor-
tance of the model’s capability to predict correct
steps in the steps-guided code generation task.

Failed Program Analysis To explore how
steps improve the model’s performance, we con-
ducted a qualitative failed type analysis on gen-
erated codes that failed to pass test cases. The
results are given in Table 4. We observe that
with the guidance of steps, the steps-related
models(self-guided and self-guided-KE) show a
significant reduction in semantic error, while lead-
ing to an increase in syntax errors(non-steps
CodeGen-350M vs self-guided CodeGen-350M,

non-steps Starcoderbase-1B vs self-guided-KE
Starcoderbase-1B) and a slight rise in timeout
and runtime errors. Furthermore, we also find
that with higher-quality steps provided, self-guided-
KE models exhibit a further reduction in semantic
errors(Self-guided CodeGen-2.7B vs Self-guided-
KE CodeGen-2.7B). As a result, we can conclude
that steps contribute to enhancing the semantic
correctness of syntactically correct code while hav-
ing a negative impact on generating syntactically
correct codes. We hypothesize that this might be
due to the model’s overemphasis on the guidance
of steps while leading to a neglect of syntax in the
code implementation.

Comparing different difficulty To explore the
performance of the model at different difficulty lev-
els, we report the steps and code evaluation re-
sults of all baselines across three difficulty levels.
As shown in Table 5, with the increase in diffi-
culty, the model’s performance across three base-
lines gradually decreases, highlighting the substan-
tial challenges that remain in current models for
tackling complex programming problems. Addi-
tionally, We observe that the self-guided-KE Star-
coderbase model exhibited a 196% improvement in
Pas@5 performance compared to the self-guided
Starcoderbase model at the basic level of difficulty.
However, the improvement was only 94% and 3.5%
at the challenging level and advanced level, respec-
tively. This suggests that the enhancement gains by
the self-guided-KE model are evident in addressing
basic-level programming problems. As the com-
plexity of the problems increases, the importance of
correct code implementation becomes increasingly
prominent.

Effect of the α As shown in Algorithm 1, the α in
SWS metric is an important hyper-parameter that
controls the threshold for step similarity. we vary α
from 0.6 to 0.9 with an increment of 0.1 and inspect
the performance of the self-guided Starcoderbase-
1B model across various SWS@5 intervals. The
larger α indicates that we are stricter in determining
whether two steps are aligned. Tabel 7 shows the
results. we can find that at higher α, SWS@5 at
higher intervals is more robust to imply the higher
performance of code. For instance, at alpha=0.6,
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Setting Models Basic level Challenging level Advanced level
SWS@5 F1@5 P@5 CB@5 SWS@5 F1@5 P@5 CB@5 SWS@5 F1@5 P@5 CB@5

Non-Steps
CodeGen-350M - - 8.03 33.51 - - 3.73 26.05 - - 4.14 17.88

Starcoderbase-1B - - 21.73 41.14 - - 6.40 31.73 - - 2.41 22.37
CodeGen-2.7B - - 7.15 34.92 - - 5.93 25.88 - - 3.44 15.79

Self-guided
CodeGen-350M 4.65 5.77 5.12 34.80 5.10 6.38 3.29 28.12 4.96 5.64 3.63 20.59

Starcoderbase-1B 5.79 6.60 7.18 36.97 5.61 6.97 3.86 29.86 4.84 5.39 3.70 21.09
CodeGen-2.7B 4.74 6.11 5.90 36.83 3.12 3.61 3.06 29.03 3.64 4.02 2.96 20.08

Self-guided-KE
CodeGen-350M 59.17 62.34 12.66 40.96 57.41 61.09 4.11 32.79 54.89 59.42 4.30 23.83

Starcoderbase-1B 60.18 63.10 21.27 42.71 57.95 61.54 7.53 34.21 54.73 58.73 3.83 24.13
CodeGen-2.7B 58.79 61.83 12.71 39.90 56.70 60.84 3.98 32.05 53.95 58.54 3.72 22.62

Table 5: Comparing different difficulty.

Setting Basic level Challenging level Advanced level
Alignment Correctness False Positive Alignment Correctness False Positive Alignment Correctness False Positive

Self-guided 1.5 3.62 0.2 1.42 3.62 0 0.8 4.4 0
Self-guided-KE 3.25 3.92 0.5 2.45 3.95 0 3.75 4.6 0

Table 6: Human evaluation results from sampled 30 problems with different difficulty levels. Alignment
and Correctness denote the average score across problems.

Setting SWS@5 Basic level Challenging level Advanced level
P@5 CB@5 P@5 CB@5 P@5 CB@5

α = 0.6

0.0-0.2 7.65 37.10 3.56 29.05 3.59 20.65
0.2-0.4 5.97 36.65 3.75 32.01 4.62 22.93
0.4-0.6 10.44 35.96 13.42 33.16 0.0 25.05
0.6-0.8 0.0 37.72 0.0 33.16 - -
0.8-1.0 - - - - - -

α = 0.7

0.0-0.2 7.19 37.19 3.61 29.31 3.91 20.73
0.2-0.4 8.26 35.27 4.68 32.72 2.40 23.68
0.4-0.6 0.0 35.31 14.91 38.52 0.0 24.10
0.6-0.8 0.0 47.18 - - - -
0.8-1.0 - - - - - -

α = 0.8

0.0-0.2 7.15 36.90 3.71 29.49 3.75 20.89
0.2-0.4 8.05 37.50 4.12 34.45 2.98 24.40
0.4-0.6 0.0 51.68 0.0 44.56 - -
0.6-0.8 - - - - - -
0.8-1.0 - - - - - -

α = 0.9

0.0-0.2 7.01 36.85 3.71 29.69 3.67 20.93
0.2-0.4 12.25 40.77 7.89 34.55 4.47 25.12
0.4-0.6 - - - - - -
0.6-0.8 - - - - - -
0.8-1.0 - - - - - -

Table 7: Effect of α. - signifies the lack of samples
falling within this interval, and as a consequence,
there are no associated results.

the model’s Pass@5 within the 0.2-0.4 range is
inferior to that in the 0.0-0.2 range. In contrast, at
alpha=0.9, SWS@5 demonstrates a strong correla-
tion with the quality of the generated code. Opting
for a higher alpha value enables a more robust as-
sessment of the correlation between steps quality
and code quality.

6. Human evaluation

In this section, we conduct a human evaluation
to assess the generated steps and code on the
Starcoderbase-1B model of self-guided and self-
guided-KE baselines. Specifically, for each base-
line, we select a total of 30 problems from the test
set, covering basic level (10 problems), challeng-
ing level (10 problems), and advanced level (10
problems). We introduce two criteria to assess the
generated steps and codes:

• Alignment: Steps comprise precise and abun-
dant information to guide the generation of

correct code.

• Correctness: The generated code is accurate
to pass all annotated test cases and handling
boundary test cases properly.

Then, four undergraduate students majoring in soft-
ware engineering with C++ programming compe-
tition experience are recruited to score generated
steps and codes from two criteria. Each criterion
is scored from a minimum of 0 to a maximum of 5
points. For each programming problem, we calcu-
late the Alignment and Correctness score based
on the average of all student’s scores.

The evaluation results are shown in Table 6. First,
we observe that, compared to the self-guided base-
line, the self-guide-KE baseline showed a signifi-
cant improvement in the Alignment criteria but a
slight improvement in the Correctness criteria. This
indicates that the self-guided-KE baseline gener-
ated partially correct steps but lacked comprehen-
sive guidance for generating correct code. Second,
we find that as the difficulty level increased, both
baselines enhanced in the Correct criteria. This
suggests that simple problems are more prone to
generating false positive codes.

7. Conclusion

In this paper, we introduced the steps-guided code
generation task to model the behavior of construct-
ing thought steps and implementing code in solv-
ing complex programming problems and have cu-
rated CodeStepsEval, a code generation dataset
with thought steps. Experimental results and in-
depth analysis demonstrate the effectiveness of
thought steps and the challenge of this task. We
hope that the CodeStepsEval dataset can serve
as an important resource for assessing a model’s
comprehensive programming ability (Thought steps
construction and code implementation) in complex
programming problems.
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