
LREC-COLING 2024, pages 2296–2306
20-25 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

2296

Beyond Code: Evaluate Thought Steps for Complex Code
Generation

Liuwen Cao1,2, Yi Cai1,2, Hongkui He1,2, Hailin Huang1,2, Jiexin Wang1,2,∗
1School of Software Engineering, South China University of Technology

2Key Laboratory of Big Data and Intelligent Robot
(South China University of Technology) Ministry of Education

caoliuwencc@163.com, ycai@scut.edu.cn, jiexinwang@scut.edu.cn
Abstract

Code generation aims to generate code in a general-purpose programming language, such as C++, based
on natural language intents. Existing efforts primarily focus on relatively simple programming problems and
fail to evaluate the thought process involved in complex programming scenarios. In this paper, we introduce
"steps-guided code generation", a task that assesses the quality of both thought steps and code implementation
to evaluate the overall management of handling a complex programming problem. To support this task, we
construct CodeStepsEval, a real-world scenario dataset of complex programming problems in the C++ programming
language with varying levels of difficulty. Comprehensive experiments on this dataset demonstrate the importance
of high-quality steps in enhancing code generation performance and the challenges faced by the code LLMs in this task.

Keywords: code generation, real-world complex programming dataset

1. Introduction

Programming is a highly vital skill in modern society,
offering the ability to automate tasks and enhance
efficiency. However, mastering the art of translating
natural language(NL) intents into executable code
typically requires years of study and practice. Code
generation, also known as program synthesis, ad-
dresses this challenge by automatically generating
code based on NL intents. This not only makes
programming more accessible and efficient for non-
programmers but also provides significant benefits
to experienced developers. One notable example
is GitHub Copilot,1 an in-IDE developer assistant
that automatically generates code based on the
user’s context, greatly aiding efficient and effective
code writing.

Various methods have been introduced for code
generation. Early works (Ling et al., 2016; Xiao
et al., 2016; Sun et al., 2019) typically approach
code generation as a sequence-to-sequence prob-
lem and focus on developing neural architectures.
However, these models often struggle to learn so-
phisticated programming patterns. More recently,
Large Language Models (LLMs) pre-trained on nu-
merous code data, such as GPT-3 (Brown et al.,
2020) have opened up new opportunities for ad-
dressing these limitations. Initialization with GPT-
3, OpenAI’s Codex (Chen et al., 2021) demon-
strates impressive performance by correctly solv-
ing 30-70% of novel Python problems. However,
these LLMs primarily focus on relatively simple pro-
gramming problems where implementing a func-
tion to achieve a specific small-scale functional-

∗Corresponding authors
1https://github.com/features/copilot/

Figure 1: An example of a programming problem
adapted from CodeStepsEval dataset. Only one
test case is shown in this example.

ity, such as "Write a function to get the n small-
est items from a list". They face challenges in
handling complex programming problems. For in-
stance, in the APPS benchmark which contains
programming competition problems, CodeRL pro-
posed by (Le et al., 2022) surpasses the Codex
model and achieves the best results across differ-

https://github.com/features/copilot/

2297

ent difficulty levels(Hendrycks et al., 2021a). How-
ever, CodeRL only achieves 4.48% and 2.36% for
interview and competitive problems, respectively,
significantly lower than its pass rate of 15.27% for
introductory problems2. This highlights the signifi-
cant challenge that current code generation models
face in handling complex programming problems.

In a real-world programming context, handling
complex programming problems necessitates two
distinct capabilities. The first is to conceive high-
level thoughts that outline the steps to address a
given problem(Dijkstra et al., 1976; Jiang et al.,
2023). The second is to implement code based on
these thought steps and NL intents. These two abil-
ities together constitute a comprehensive reflection
of one’s problem-solving capabilities in complex
programming scenarios. For instance, during job
interviews, interviewers assess a developer’s pro-
gramming proficiency by simultaneously evaluating
their problem-solving conceptual thought and code
implementation capabilities. Existing work concen-
trates on code-only evaluation while neglecting the
evaluation of thought steps. As a result, it fails
to depict programming proficiency in complex pro-
gramming contexts.

To fill this gap, we propose a new code gener-
ation task: steps-guided code generation. This
task focuses on real-world complex programming
problems and evaluates not just the quality of im-
plemented code but also the quality of generated
thought steps. For steps evaluation, we design a
steps-wise similarity(SWS) metric to evaluate the
quality of steps at a sub-step level. Nevertheless,
the lack of code generation datasets with annotated
steps hinders the development of steps-guided
code generation. Therefore, we devise a semi-
automatic pipeline that aids in the creation of a
code generation dataset containing thought steps.

Our constructed dataset, CodeStepsEval, con-
sists of 10,479 programming problems in C++ lan-
guage categorized into different difficulty levels: ba-
sic, challenging, and advanced. As illustrated in
Figure 1, each problem in CodeStepsEval includes
NL intents, thought steps, a solution with a ref-
erence C++ program, and multiple test cases to
evaluate the correctness of the generated code.
To demonstrate the effectiveness of CodeStepsE-
val in advancing research on code generation, we
conduct extensive experiments using three base-
line models with parameter sizes ranging from
350M to 2.7B. These experiments include assess-
ing the model’s performance with the guidance of
the thought steps, investigating the factors con-
tributing to the effects of the steps, and evaluating

2As mentioned in APPS, interview-level and
competition-level problems are more complex than
introductory ones. This arises from their inclusion of
problems in programming competitions such as ACM

the models’ performance across different levels of
difficulty.

Our main contributions can be summarized as
follows:

• We introduce a steps-guided code generation
task that simulates the real-world scenario in
solving complex programming problems.

• We create the CodeStepsEval for the intro-
duced task in C++ programming language.
Unlike prior work on code generation which
mostly focuses on simple problems and code-
only evaluation, we evaluate models on their
ability to generate C++ code for complex prob-
lems with thought steps evaluation into consid-
eration.

• We undertake a comprehensive analysis of the
curated dataset, which not only shows the qual-
ity and utility of the resulting data but also sub-
stantiates the effectiveness of thought steps
to tackle complex programming problems.

2. Related works

Code Generation (Ling et al., 2016) treats code
generation as a sequence-to-sequence modeling
problem and proposes a structured attention mech-
anism to generate the source code. To exploit syn-
tactic and semantic constraints of code, many re-
searchers turn to the Seq2Tree model for code
generation. For instance, (Yin and Neubig, 2017,
2018) propose a Seq2Tree model powered by code
grammar to capture the code syntax as prior knowl-
edge. From a different direction, (Yin and Neubig,
2019) improves the code generation performance
by reranking an N-best list of predicted codes. (Xu
et al., 2020) enhances the code generation model
by incorporating the extracted external knowledge
such as API documentation. Furthermore, (Wei
et al., 2019) boosts the performance based on dual
learning with the help of the code summarization
task.

Recently, Large Language Models (LLMs) such
as GPT-3 (Brown et al., 2020) have opened up
new opportunities for addressing code generation.
OpenAI’s Codex (Chen et al., 2021), trained on 54
million software repositories from GitHub, demon-
strates impressive performance by correctly solv-
ing 30-70% of novel Python problems. Follow-
ing that, various code LLMs like InCoder(Fried
et al., 2022), CodeGen(Nijkamp et al., 2022), Al-
phaCode(Li et al., 2022), and CodeT5+(Wang et al.,
2023) have been emerging, yielding impressive re-
sults. Generally, these code LLMs demonstrate
a preference and more proficiency in solving rela-
tively simple Python programming problems, and
they face challenges in tackling complex program-
ming tasks. This has sparked some studies with

2298

a concentration on addressing complex program-
ming problems. For instance, (Jiang et al., 2023)
introduces a non-training self-planning approach
based on few-shot prompting to enhance the per-
formance of the code-davinci-002(GPT-3.5 series)
model on HumanEval-X. (Li et al., 2023) utilizes a
brainstorming strategy to generate diverse thoughts
and select them by a trained ranker model. In this
work, we unify the stages of thought and code im-
plementation into a comprehensive assessment of
complex programming proficiency.

Code generation datasets Several datasets
have been proposed for code generation. (Chen
et al., 2021) introduces HumanEval, a dataset that
encompasses 164 hand-written programming prob-
lems in Python and evaluates code by designed test
cases. HumanEval-X (Zheng et al., 2023) serves
as a multilingual version of the HumanEval dataset,
incorporating various programming languages such
as C++, Java, and Python. MBXP(Athiwaratkun
et al., 2022) is a manually curated multilingual
dataset for code generation, it contains 848 C++
programming problems. The dataset mentioned
above focuses on relatively simple programming
tasks, such as implementing a function to achieve
a specific small-scale functionality, for instance,
"Write a function to get the n smallest items from
a dataset". Differ from the datasets mentioned
above, APPS(Hendrycks et al., 2021a) comprises
code competition programming problems that in-
volve real-world scenarios with multiple complex
requirements. The APPS dataset (Hendrycks et al.,
2021a) consists of a total of 10,000 code competi-
tion problems(5,000 for training, 5,000 for testing)
and their associated Python code. Unlike existing
datasets, the goal of our dataset focuses on solv-
ing complex programming problems in C++ and
additionally serves as a resource to evaluate both
thought and code.

3. The CodeStepsEval Dataset

In this section, we provide a comprehensive
overview of the creation process for the CodeStep-
sEval. We begin by introducing the steps-guided
code generation task. Subsequently, we explore
the creation of CodeStepsEval. Finally, we present
the essential statistics of CodeStepsEval and com-
pare it with other code generation datasets.

3.1. Task definition

The steps-guided code generation task initially
takes the NL intents as input and produces the
thought steps as output. Subsequently, it proceeds
to implement the code based on the NL intents and
the generated thought steps. Specifically, this task

can be formalized as the following:

p(c|i) = p(s|i) · p(c|i, s), (1)

where i, s, and c denote the NL intents text along
with the prompt, the thought steps, and the code.

3.2. Dataset Creation
NL-code collection We focus on algorithmic pro-
gramming competitions as they encompass com-
plex programming problems that require program-
mers to have a deep understanding of the problem,
devise effective strategies, and apply various al-
gorithms. We collect programming problems from
Luogu3 website, which hosts competitions and of-
fers problems spanning different levels of difficulty.
Each problem collected from the website consists
of the following four components: (1) NL intents,
which describe the problem to be solved; (2) Prob-
lem difficulty, indicating the level of difficulty for the
problem; (3) Multiple candidate C++ codes, the so-
lutions that successfully pass platform testing. (4)
A few input-output pairs that serve as test cases.

Next, we carefully filter out problems that could
potentially lead to security vulnerabilities, such as
the C++ code "int result = system("rm -rf *");"-this
code becomes vulnerable since it could remove all
files in our local host by calling the system function.
This precaution is taken to prevent the model from
learning malicious behaviors. Lastly, we rely on the
Google benchmark toolkit4 and execute all candi-
date codes to select the optimal C++ code (with the
minimum run time) as the reference code in candi-
date codes, ensuring the inclusion of high-quality
solutions5.

Steps annotation Next, we annotate the col-
lected problems with steps using a semi-automatic
approach. We choose the semi-automatic way to
obtain the thought steps for two reasons: First, man-
ual annotation of steps requires annotators with
high problem-solving skills for complex problems,
and thus it is too costly. Second, considering the
advancements in large language models (LLMs),
these models already demonstrate surprising per-
formance in understanding the problem intents. To
facilitate manual annotation and boost efficiency,
we begin by employing LLM as a tool to generate
preliminary steps, followed by manual refinement
of these steps.

Specifically, GPT-3.5-turbo, a powerful large
language model, is employed to generate the
preliminary steps for each programming problem.
The prompt for constructing preliminary steps is as

3https://www.luogu.com.cn/
4https://github.com/google/benchmark
5Note that CodeStepsEval comprises multiple C++

codes for each problem, which can be employed for
reinforcement learning or contrastive learning.

https://www.luogu.com.cn/
https://github.com/google/benchmark

2299

follows:
Instruction:"Your goal is to act as a human being
to generate accurate and easy-understand thought
steps to solve a programming problem, according
to the given description and reference program of
the programming problem. The requirement is as
follows:
1. Provide steps in JSON list format.
2. Ensure the generated steps effectively capture
the essence of the given code.
Prolem description:
<fill the programming problem description here>
Reference C++ program:
<fill the reference c++ program here>

For manual refinement of steps, we recruited 15
annotators who are proficient in C++ programming
language and have actively participated in algorith-
mic programming competitions. The objective of
10 annotators is to refine the steps for all problems,
including ensuring the correctness of all steps, rec-
tifying erroneous steps, removing redundant steps,
and incorporating essential steps that might be over-
looked. 5 annotators verify the correctness of all
modified steps, and those with unanimous agree-
ment are retained. The entire refinement takes two
months to complete.

3.3. Dataset Statistics
After applying all of the aforementioned filtering
steps, we successfully obtained the CodeStepsEval
dataset6, which consists of 10,479 data instances
for steps-guided code generation. Additionally, We
randomly chose 1,000 instances as the test set
with 300, 350, and 350 instances for basic level,
challenging level, and advanced level, respectively.
In addition, as test cases play a crucial role in ver-
ifying a code’s correctness and can be used for
reinforcement learning (Le et al., 2022), we manu-
ally augment test cases in the test set based on the
NL intents and verify the correctness of test cases
with the reference code. On average, we include
1.6 test cases in the training set and 17.6 test cases
in the test set. Detailed statistics of CodeStepsEval
is displayed in Table 1

Table 2 compares CodeStepsEval to existing
code generation datasets. Compared with C++
datasets MBXP and HumanEval-X, codeStepsEval
exhibits a longer intent and code. This implies that
CodeStepsEval is more challenging and capable of
assessing a model’s proficiency in solving complex
programming problems. Additionally, CodeStep-
sEval has more test cases. This can substantially
reduce the number of "false passed" codes. More-
over, compared with competition-related datasets

6https://github.com/galbya/
CodeStepsEval

such as APPS, CodeStepsEval is focused on the
C++ programming language and enables the mea-
surement of the quality of thought steps, thereby
reflecting the real-world programming scenario in
solving complex programming problems.

Figure 2: Three baselines.

4. Baselines

As shown in Figure 2, we adopt three approaches
to train and evaluate across multiple code LLMs on
the CodeStepsEval dataset, serving as baselines
for code generation tasks: no-steps, self-guided,
and self-guided-KE.

Non-steps: This baseline can be regarded as
classic code generation in view of models taking
NL intents as input and directly generating code
without the phase of generating steps. For this
baseline, we prompt models using the following
input: "NL intents:\n + p_str + \n + Answer:\n",
where p_str represents the raw text of NL intents.

Self-guided: In this baseline, as illustrated in
Equation 1, the code LLM initially generates steps
and subsequently generates code based on both
the steps and the NL intents. It is noteworthy that
we can employ casual language modeling to gen-
erate steps and code at the implementation level.
Specifically, we use the same prompt in non-steps
but the label in this baseline is the concatenation of
steps and code, with "\n Below is the code\n" as a
separator. As shown in Figure 2, the separator can

https://github.com/galbya/CodeStepsEval
https://github.com/galbya/CodeStepsEval

2300

Basic level Challenge level Advanced level Total/Avg

Train

Problems 468 2,795 6,216 9,479
Avg NL Length 223 262 298 284

Avg Code Length 44 76 174 138
Avg Solutions 5.3 5.0 4.3 4.5

Avg Steps 5.8 5.9 5.7 5.7
Avg Steps Length 58 67 69 68
Avg Test Cases 1.4 1.6 1.7 1.6

Test

Problems 300 350 350 1,000
Avg NL Length 199 256 270 237

Avg Code Length 41 72 164 82
Avg Solutions 4.5 4.9 4.3 4.6

Avg Steps 5.5 5.6 5.6 5.6
Avg Steps Length 56 66 65 62
Avg Test Cases 21.2 17.3 12.2 17.6

Table 1: Detailed statistics of CodeStepsEval.

MBXP HumanEval HumanEval-X APPS CodeStepsEval
#Problems 848* 164 164* 10,000 1,0479*

Source HW HW HW Competitions Competitions
Intent Length 39.2 61.7 61.3 319.4 236.8
Code Length 29.2 24.3 21.1 62.2 82.6
Test Cases 3.1 7.7 7.7 20.0 17.6

Thought Steps No No No No Yes
Programming Language C++ Python C++ Python C++

Table 2: Comparison of existing code generation datasets. Source: HW(Hand-written) or Competi-
tion(Programming competition website). * denotes the number of instances in C++ programming language

function as a specific indicator when we need to ex-
tract the steps. This means that models must learn
to generate the separator between steps and code
during the training process. In our experiments,
we find that fine-tuned models are able to do this
without difficulty.

Self-guided-KE: Given that code LLMs are ded-
icated to code understanding and generation, their
capability for step generation may be limited. We
propose a knowledge-enhanced self-guided base-
line, denoted as "self-guided-KE". At this baseline,
we use the GPT-3.5-turbo model for generating
the enhanced steps. During testing, we integrate
the enhanced steps into the self-guided prompt for
code generation.

4.1. Models
For each baseline, we conducted the experimental
evaluation on various existing code LLMs:

CodeGen(Nijkamp et al., 2022): a family of code
LLMs available in different parameter sizes (350M,
2.7B, 6.1B, and 16.1B). Models are trained using
a combination of NL and code data collected from
THEPILE (Gao et al., 2020)). We use the multi-
lingual version with parameter sizes of 350M and
2.7B as baseline models, both of them are addi-
tionally trained on the BIGQUERY7, which contains

7https://cloud.google.com/bigquery/public-data

code under an open-source license in multiple pro-
gramming languages.

Starcoderbase (Fried et al., 2022): an ensem-
ble of models with parameter sizes ranging from 1B
to 7B. It is trained on 80+ programming languages
from The Stack(Kocetkov et al., 2022), utilizing the
fill-in-the-middle objective. For our experiments,
we utilize the Starcoderbase model with 1B param-
eters.

5. Experiments

5.1. Fine-tuning
We perform fine-tuning for each baseline on the
CodeStepsEval training set with both problem text
and problem format(described in Section 4). Dur-
ing fine-tuning, We adopt the cross-entropy loss as
the training loss. Note that the prompt text is ex-
cluded from the training loss. For CodeGen-350M,
we fine-tuned all parameters in the model. For
Starcoderbase-1B and CodeGen-2.7B, due to the
limitation of computation resources, we resorted
to parameter-efficient fine-tuning approaches that
only fine-tune a small number of model parameters
while freezing most parameters of the pre-trained
LMs. Specifically, we adopt the LoRA approach
(Hu et al., 2021) on the query, key, and value ma-
trices with a rank of 8. This results in fine-tuning
the Starcoderbase-1B model with 3.47M param-

2301

Algorithm 1 The computation procedure of SWS and F1
1: Input: Ground truth steps s = {s1, s2, ..., sM}

predicted steps s
′
= {s′

1, s
′

2, ..., s
′

N}, threshold α
2: Define j = 1, sim_sum = 0, correct = 0
3: for i=1,2,...,M do
4: While j <= N do
5: Calculate the similarity sim between si and s

′

j

6: If sim >=α
7: j = j+1
8: sim_sum += sim
9: correct += 1; break
10: j = j+1
11: end While
12: end for

// SWS computation
13: SWS = sim_sum/M

// F1 computation
14: precision = correct / N ; recall = correct/M

15: F1 = 2 ∗ precision∗recall
precision+recall

eters and the CodeGen-2.7B model with 1.64M
parameters, respectively.

5.2. Metrics
We evaluate steps from two dimensions: the over-
all perspective and the local perspective. For the
overall perspective evaluation, we employ auto-
mated metrics BLEU@k, Rouge-L@k, and Sim-
ilarity@k. These metrics consider steps as a whole
and measure the character or semantic similarity
between reference and predicted steps. BLEU@k
is defined as the highest BLEU-4 score among
k sampled steps, while Rouge-L@k and Similar-
ity@k are similarly defined as the highest Rouge-
L scores and Similarity scores among k sampled
steps. We compute the Similarity score using
sentence-transformers8. For the assessment from
a local perspective, we involve the designed step-
wise Similarity (SWS) metric and the F1 metric.
Given the reference steps s = {s1, s2, ..., sM}, and
the generated steps s

′
= {s′

1, s
′

2, ..., s
′

N}, SWS cal-
culates the similarity between each reference sub-
step and each predicted substep. Sub-steps are
deemed identical if their similarity surpasses a pre-
defined threshold α. We compute the sum of sim-
ilarities for all identical sub-steps and utilize the
average Similarity as the value of SWS. In Algo-
rithm 1, we summarize the computation procedure
for SWS and the F1 metric.

To evaluate the code, we rely on CodeBLEU@k
and Pass@k(Kulal et al., 2019). CodeBLEU(Ren
et al., 2020) is an automatic match-based metric
specifically designed for code generation tasks. It
is based on BLEU(Papineni et al., 2002) but con-
siders syntactic and semantic matches based on
the code structure and n-gram match. Pass@k is
an execution-based metric for measuring the exact
functional correctness of generated code, where k

8https://www.sbert.net/

code samples are generated for each problem. A
problem is considered solved if any sample passes
all the unit tests. Since this computation of Pass@k
can have high variance, we follow (Chen et al.,
2021) and use the unbiased version of Pass@k as
the estimator:

Pass@k = Eproblems[1−
(
n−c
k

)(
n
k

)] (2)

where k ≤ n is the number of samples and c ≤ n is
the number of codes that pass all test cases. 1−
(n−c

k)
(nk)

is the estimated Pass@k for a single problem.
E is the expectation of Pass@k over all problems.

5.3. Settings
For training, we truncate the problem(the concate-
nation of prompt and program) up to 2048 tokens.
We adopt AdamW(Loshchilov and Hutter, 2019)
with a learning rate of 2e-5 and weight decay of
0.01 to update the model parameters for 5 epochs.
The batch size is set to 4, 2, and 2 for CodeGen-
350M, Starcoderbase-1B, and CodeGen-2.7B, re-
spectively. For testing, the α in the SWS metric
is set to 0.8. We compute the average pass@k
with n=20 and k=1, 5, 10. Following (Chen et al.,
2021), we use a temperature of 0.2 for pass@1 and
pass@5, and a temperature of 0.8 for pass@10.
We adopt nucleus sampling (Holtzman et al., 2019)
with a top-p value of 0.95 for all program evalua-
tions in this work. We use the Nvidia 3090 GPU
and Nvidia Tesla P100 GPU for fine-tuning and
inference, respectively.

5.4. Results
Main Results We present the main results for all
baselines in Table 3. We find that the performance
of the self-guided models is inferior to that of the
non-step models. In the case of the CodeGen-
2.7B model, the self-guided approach yields lower
results on the pass@1 metric compared to the non-
step approach. We hypothesize that these results
may arise because code LLMs like CodeGen are
primarily tailored for code generation, potentially
resulting in limited proficiency in generating steps.
Consequently, the poor quality of generated steps
may lead the model to produce erroneous code.

In addition, we observe that the performance of
self-guided-KE models surpasses the self-guided
models by a large margin. When compared to
self-guided CodeGen-350M, the self-guided-KE
CodeGen-350M shows over ten times improve-
ments in SWS@10 and F1@10 scores, respec-
tively. Regarding the code evaluation metrics,
Pass@5 and CodeBLEU@5, the self-guided-KE
Starcoderbase-1B model outperforms the self-
guided Starcoderbase-1B model by 141% and

https://www.sbert.net/

2302

Setting Model Steps evaluation Code evaluation
BL@10 RG@10 Sim@10 SWS@10 F1@10 Pass@1 Pass@5 Pass@10 CB@1 CB@5 CB@10

Non-Steps
CodeGen-350M - - - - - 1.81 5.56 8.08 22.89 26.98 28.53

Starcoderbase-1B - - - - - 4.73 11.53 14.88 28.21 33.15 34.86
CodeGen-2.7B - - - - - 2.12 5.79 8.59 22.96 26.96 28.35

Self-guided
CodeGen-350M 8.37 31.83 0.64 5.16 5.77 1.01 4.11 6.87 22.81 28.91 30.94

Starcoderbase-1B 8.25 31.83 0.65 7.21 8.32 1.32 5.15 8.33 24.44 30.51 32.58
CodeGen-2.7B 6.57 29.77 0.61 5.58 5.85 1.07 4.17 6.88 23.70 29.90 32.03

self-guided
-KE

CodeGen-350M 57.42 71.29 0.91 58.76 63.41 2.79 7.88 11.29 27.06 33.81 35.98
Starcoderbase-1B 57.75 71.33 0.91 59.40 63.75 5.30 12.40 17.30 28.97 35.08 37.44

CodeGen-2.7B 56.81 70.63 0.89 58.13 62.96 2.38 7.70 11.41 26.68 32.82 35.06

Table 3: Main results on the test set. BL, RG, Sim, and CB denote BLEU-4, Rouge-L, Similarity, and
CodeBLEU, respectively

Setting Model Failed Type(%)
SynE SemE Timeout RE

Non-Steps
CodeGen-350M 13.09 72.55 0.55 1.07

Starcoderbase-1B 17.31 63.59 0.89 2.00
CodeGen-2.7B 15.87 70.74 0.45 1.07

Self-guided
CodeGen-350M 32.22 54.77 2.70 3.22

Starcoderbase-1B 27.30 57.88 2.04 3.57
CodeGen-2.7B 31.75 54.53 3.81 3.44

Self-guided-KE
CodeGen-350M 39.34 44.92 2.81 3.30

Starcoderbase-1B 31.57 49.34 2.36 3.76
CodeGen-2.7B 36.32 47.69 3.11 4.04

Table 4: Failed type percentage on failed programs
in the test set. SynE(Syntax Error): generated code
fails to compile (e.g., missing semicolons or lacking
braces). SemE(Semantic Error): the code gener-
ated by the model can compile but does not align
with the expected output of the test cases. Time-
out: the program’s run time exceeds the predefined
limit. RE(Runtime Error): the program is able to
compile without errors but encounters errors during
execution, such as out of bounds of an array.

14.9%. Moreover, we find that with the substan-
tial enhancement in step quality, self-guided-KE
models consistently outperform non-steps mod-
els in terms of code evaluation. Considering the
Pass@10 and CodeBLEU@10 scores, the self-
guided-KE Starcoderbase-1B model exhibits a
16.2% and 7.6% improvement over the self-guided
Starcoderbase-1B model. This indicates that high-
quality steps play a pivotal role in enhancing the
model’s ability to address programming problems.
Furthermore, this implies that the primary reason
for the diminished effectiveness of self-guided mod-
els lies in the low quality of their generation steps
as poor-quality steps predicted by models can lead
to misguided guidance. It also highlights the impor-
tance of the model’s capability to predict correct
steps in the steps-guided code generation task.

Failed Program Analysis To explore how
steps improve the model’s performance, we con-
ducted a qualitative failed type analysis on gen-
erated codes that failed to pass test cases. The
results are given in Table 4. We observe that
with the guidance of steps, the steps-related
models(self-guided and self-guided-KE) show a
significant reduction in semantic error, while lead-
ing to an increase in syntax errors(non-steps
CodeGen-350M vs self-guided CodeGen-350M,

non-steps Starcoderbase-1B vs self-guided-KE
Starcoderbase-1B) and a slight rise in timeout
and runtime errors. Furthermore, we also find
that with higher-quality steps provided, self-guided-
KE models exhibit a further reduction in semantic
errors(Self-guided CodeGen-2.7B vs Self-guided-
KE CodeGen-2.7B). As a result, we can conclude
that steps contribute to enhancing the semantic
correctness of syntactically correct code while hav-
ing a negative impact on generating syntactically
correct codes. We hypothesize that this might be
due to the model’s overemphasis on the guidance
of steps while leading to a neglect of syntax in the
code implementation.

Comparing different difficulty To explore the
performance of the model at different difficulty lev-
els, we report the steps and code evaluation re-
sults of all baselines across three difficulty levels.
As shown in Table 5, with the increase in diffi-
culty, the model’s performance across three base-
lines gradually decreases, highlighting the substan-
tial challenges that remain in current models for
tackling complex programming problems. Addi-
tionally, We observe that the self-guided-KE Star-
coderbase model exhibited a 196% improvement in
Pas@5 performance compared to the self-guided
Starcoderbase model at the basic level of difficulty.
However, the improvement was only 94% and 3.5%
at the challenging level and advanced level, respec-
tively. This suggests that the enhancement gains by
the self-guided-KE model are evident in addressing
basic-level programming problems. As the com-
plexity of the problems increases, the importance of
correct code implementation becomes increasingly
prominent.

Effect of the α As shown in Algorithm 1, the α in
SWS metric is an important hyper-parameter that
controls the threshold for step similarity. we vary α
from 0.6 to 0.9 with an increment of 0.1 and inspect
the performance of the self-guided Starcoderbase-
1B model across various SWS@5 intervals. The
larger α indicates that we are stricter in determining
whether two steps are aligned. Tabel 7 shows the
results. we can find that at higher α, SWS@5 at
higher intervals is more robust to imply the higher
performance of code. For instance, at alpha=0.6,

2303

Setting Models Basic level Challenging level Advanced level
SWS@5 F1@5 P@5 CB@5 SWS@5 F1@5 P@5 CB@5 SWS@5 F1@5 P@5 CB@5

Non-Steps
CodeGen-350M - - 8.03 33.51 - - 3.73 26.05 - - 4.14 17.88

Starcoderbase-1B - - 21.73 41.14 - - 6.40 31.73 - - 2.41 22.37
CodeGen-2.7B - - 7.15 34.92 - - 5.93 25.88 - - 3.44 15.79

Self-guided
CodeGen-350M 4.65 5.77 5.12 34.80 5.10 6.38 3.29 28.12 4.96 5.64 3.63 20.59

Starcoderbase-1B 5.79 6.60 7.18 36.97 5.61 6.97 3.86 29.86 4.84 5.39 3.70 21.09
CodeGen-2.7B 4.74 6.11 5.90 36.83 3.12 3.61 3.06 29.03 3.64 4.02 2.96 20.08

Self-guided-KE
CodeGen-350M 59.17 62.34 12.66 40.96 57.41 61.09 4.11 32.79 54.89 59.42 4.30 23.83

Starcoderbase-1B 60.18 63.10 21.27 42.71 57.95 61.54 7.53 34.21 54.73 58.73 3.83 24.13
CodeGen-2.7B 58.79 61.83 12.71 39.90 56.70 60.84 3.98 32.05 53.95 58.54 3.72 22.62

Table 5: Comparing different difficulty.

Setting Basic level Challenging level Advanced level
Alignment Correctness False Positive Alignment Correctness False Positive Alignment Correctness False Positive

Self-guided 1.5 3.62 0.2 1.42 3.62 0 0.8 4.4 0
Self-guided-KE 3.25 3.92 0.5 2.45 3.95 0 3.75 4.6 0

Table 6: Human evaluation results from sampled 30 problems with different difficulty levels. Alignment
and Correctness denote the average score across problems.

Setting SWS@5 Basic level Challenging level Advanced level
P@5 CB@5 P@5 CB@5 P@5 CB@5

α = 0.6

0.0-0.2 7.65 37.10 3.56 29.05 3.59 20.65
0.2-0.4 5.97 36.65 3.75 32.01 4.62 22.93
0.4-0.6 10.44 35.96 13.42 33.16 0.0 25.05
0.6-0.8 0.0 37.72 0.0 33.16 - -
0.8-1.0 - - - - - -

α = 0.7

0.0-0.2 7.19 37.19 3.61 29.31 3.91 20.73
0.2-0.4 8.26 35.27 4.68 32.72 2.40 23.68
0.4-0.6 0.0 35.31 14.91 38.52 0.0 24.10
0.6-0.8 0.0 47.18 - - - -
0.8-1.0 - - - - - -

α = 0.8

0.0-0.2 7.15 36.90 3.71 29.49 3.75 20.89
0.2-0.4 8.05 37.50 4.12 34.45 2.98 24.40
0.4-0.6 0.0 51.68 0.0 44.56 - -
0.6-0.8 - - - - - -
0.8-1.0 - - - - - -

α = 0.9

0.0-0.2 7.01 36.85 3.71 29.69 3.67 20.93
0.2-0.4 12.25 40.77 7.89 34.55 4.47 25.12
0.4-0.6 - - - - - -
0.6-0.8 - - - - - -
0.8-1.0 - - - - - -

Table 7: Effect of α. - signifies the lack of samples
falling within this interval, and as a consequence,
there are no associated results.

the model’s Pass@5 within the 0.2-0.4 range is
inferior to that in the 0.0-0.2 range. In contrast, at
alpha=0.9, SWS@5 demonstrates a strong correla-
tion with the quality of the generated code. Opting
for a higher alpha value enables a more robust as-
sessment of the correlation between steps quality
and code quality.

6. Human evaluation

In this section, we conduct a human evaluation
to assess the generated steps and code on the
Starcoderbase-1B model of self-guided and self-
guided-KE baselines. Specifically, for each base-
line, we select a total of 30 problems from the test
set, covering basic level (10 problems), challeng-
ing level (10 problems), and advanced level (10
problems). We introduce two criteria to assess the
generated steps and codes:

• Alignment: Steps comprise precise and abun-
dant information to guide the generation of

correct code.

• Correctness: The generated code is accurate
to pass all annotated test cases and handling
boundary test cases properly.

Then, four undergraduate students majoring in soft-
ware engineering with C++ programming compe-
tition experience are recruited to score generated
steps and codes from two criteria. Each criterion
is scored from a minimum of 0 to a maximum of 5
points. For each programming problem, we calcu-
late the Alignment and Correctness score based
on the average of all student’s scores.

The evaluation results are shown in Table 6. First,
we observe that, compared to the self-guided base-
line, the self-guide-KE baseline showed a signifi-
cant improvement in the Alignment criteria but a
slight improvement in the Correctness criteria. This
indicates that the self-guided-KE baseline gener-
ated partially correct steps but lacked comprehen-
sive guidance for generating correct code. Second,
we find that as the difficulty level increased, both
baselines enhanced in the Correct criteria. This
suggests that simple problems are more prone to
generating false positive codes.

7. Conclusion

In this paper, we introduced the steps-guided code
generation task to model the behavior of construct-
ing thought steps and implementing code in solv-
ing complex programming problems and have cu-
rated CodeStepsEval, a code generation dataset
with thought steps. Experimental results and in-
depth analysis demonstrate the effectiveness of
thought steps and the challenge of this task. We
hope that the CodeStepsEval dataset can serve
as an important resource for assessing a model’s
comprehensive programming ability (Thought steps
construction and code implementation) in complex
programming problems.

2304

8. Acknowledgements

This work was supported by the National Nat-
ural Science Foundation of China (62076100),
Fundamental Research Funds for the Central
Universities, SCUT (x2rjD2230080), the Sci-
ence and Technology Planning Project of Guang-
dong Province (2020B0101100002), Guangdong
Provincial Fund for Basic and Applied Basic
Research - Regional Joint Fund Project (Key
Project) (23201910250000318,308155351064),
CAAI-Huawei MindSpore Open Fund, CCF-Zhipu
AI Large Model Fund.

9. References

Rajas Agashe, Srinivasan Iyer, and Luke Zettle-
moyer. 2019. JuICe: A large scale distantly su-
pervised dataset for open domain context-based
code generation. In Proceedings of the 2019
Conference on Empirical Methods in Natural
Language Processing and the 9th International
Joint Conference on Natural Language Process-
ing, pages 5436–5446. Association for Compu-
tational Linguistics.

Ben Athiwaratkun, Sanjay Krishna Gouda, Zijian
Wang, Xiaopeng Li, Yuchen Tian, Ming Tan,
Wasi Uddin Ahmad, Shiqi Wang, Qing Sun,
Mingyue Shang, et al. 2022. Multi-lingual evalua-
tion of code generation models. In The Eleventh
International Conference on Learning Represen-
tations.

Jacob Austin, Augustus Odena, Maxwell Nye,
Maarten Bosma, Henryk Michalewski, David Do-
han, Ellen Jiang, Carrie Cai, Michael Terry, Quoc
Le, et al. 2021. Program synthesis with large lan-
guage models. arXiv preprint arXiv:2108.07732.

Sidney Black, Stella Biderman, Eric Hallahan,
Quentin Anthony, Leo Gao, Laurence Golding,
Horace He, Connor Leahy, Kyle McDonell, Ja-
son Phang, et al. 2022. Gpt-neox-20b: An open-
source autoregressive language model. In Pro-
ceedings of BigScience Episode# 5–Workshop
on Challenges & Perspectives in Creating Large
Language Models, pages 95–136.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sas-
try, Amanda Askell, et al. 2020. Language mod-
els are few-shot learners. Advances in neural
information processing systems, 33:1877–1901.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared

Kaplan, Harri Edwards, Yuri Burda, Nicholas
Joseph, Greg Brockman, et al. 2021. Evaluating
large language models trained on code. arXiv
preprint arXiv:2107.03374.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training
of deep bidirectional transformers for language
understanding. In Proceedings of the 2019 Con-
ference of the North American Chapter of the
Association for Computational Linguistics: Hu-
man Language Technologies, pages 4171–4186,
Minneapolis, Minnesota. Association for Compu-
tational Linguistics.

Edsger Wybe Dijkstra, Edsger Wybe Dijkstra, Eds-
ger Wybe Dijkstra, and Edsger Wybe Dijkstra.
1976. A discipline of programming. prentice-hall
Englewood Cliffs.

Li Dong and Mirella Lapata. 2016. Language to
logical form with neural attention. In Proceedings
of the 54th Annual Meeting of the Association for
Computational Linguistics, pages 33–43, Berlin,
Germany. Association for Computational Linguis-
tics.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan,
Xiaocheng Feng, Ming Gong, Linjun Shou, Bing
Qin, Ting Liu, Daxin Jiang, and Ming Zhou. 2020.
CodeBERT: A pre-trained model for program-
ming and natural languages. In Findings of the
Association for Computational Linguistics, pages
1536–1547. Association for Computational Lin-
guistics.

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida
Wang, Eric Wallace, Freda Shi, Ruiqi Zhong,
Scott Yih, Luke Zettlemoyer, and Mike Lewis.
2022. Incoder: A generative model for code infill-
ing and synthesis. In The Eleventh International
Conference on Learning Representations.

Leo Gao, Stella Biderman, Sid Black, Laurence
Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa Nabeshima,
et al. 2020. The pile: An 800gb dataset of di-
verse text for language modeling. arXiv preprint
arXiv:2101.00027.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng,
Duyu Tang, LIU Shujie, Long Zhou, Nan Duan,
Alexey Svyatkovskiy, Shengyu Fu, et al. 2020.
Graphcodebert: Pre-training code representa-
tions with data flow. In International Conference
on Learning Representations.

Dan Hendrycks, Steven Basart, Saurav Kadavath,
Mantas Mazeika, Akul Arora, Ethan Guo, Collin
Burns, Samir Puranik, Horace He, Dawn Song,
et al. 2021a. Measuring coding challenge com-
petence with apps. In Thirty-fifth Conference on

https://aclanthology.org/D19-1546
https://aclanthology.org/D19-1546
https://aclanthology.org/D19-1546
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/P16-1004
https://doi.org/10.18653/v1/P16-1004
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139

2305

Neural Information Processing Systems Datasets
and Benchmarks Track.

Dan Hendrycks, Steven Basart, Saurav Kadavath,
Mantas Mazeika, Akul Arora, Ethan Guo, Collin
Burns, Samir Puranik, Horace He, Dawn Song,
et al. 2021b. Measuring coding challenge com-
petence with apps. In Thirty-fifth Conference on
Neural Information Processing Systems Datasets
and Benchmarks Track (Round 2).

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes,
and Yejin Choi. 2019. The curious case of neural
text degeneration. In International Conference
on Learning Representations.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu,
Yuanzhi Li, Shean Wang, Lu Wang, Weizhu
Chen, et al. 2021. Lora: Low-rank adaptation of
large language models. In International Confer-
ence on Learning Representations.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung,
and Luke Zettlemoyer. 2018. Mapping language
to code in programmatic context. In Proceedings
of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 1643–
1652, Brussels, Belgium. Association for Com-
putational Linguistics.

Xue Jiang, Yihong Dong, Lecheng Wang, Qiwei
Shang, and Ge Li. 2023. Self-planning code
generation with large language model. arXiv
preprint arXiv:2303.06689.

Denis Kocetkov, Raymond Li, LI Jia, Chenghao
Mou, Yacine Jernite, Margaret Mitchell, Car-
los Muñoz Ferrandis, Sean Hughes, Thomas
Wolf, Dzmitry Bahdanau, et al. 2022. The stack:
3 tb of permissively licensed source code. Trans-
actions on Machine Learning Research.

Sumith Kulal, Panupong Pasupat, Kartik Chandra,
Mina Lee, Oded Padon, Alex Aiken, and Percy S
Liang. 2019. Spoc: Search-based pseudocode
to code. Advances in Neural Information Pro-
cessing Systems, 32.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi
Zhang, Ruiqi Zhong, Luke Zettlemoyer, Wen-tau
Yih, Daniel Fried, Sida Wang, and Tao Yu. 2023.
Ds-1000: A natural and reliable benchmark for
data science code generation. In International
Conference on Machine Learning, pages 18319–
18345. PMLR.

Hung Le, Yue Wang, Akhilesh Deepak Gotmare,
Silvio Savarese, and Steven Chu Hong Hoi. 2022.
Coderl: Mastering code generation through pre-
trained models and deep reinforcement learning.
Advances in Neural Information Processing Sys-
tems, 35:21314–21328.

Xin-Ye Li, Jiang-Tian Xue, Zheng Xie, and Ming
Li. 2023. Think outside the code: Brainstorming
boosts large language models in code genera-
tion. arXiv preprint arXiv:2305.10679.

Yujia Li, David Choi, Junyoung Chung, Nate
Kushman, Julian Schrittwieser, Rémi Leblond,
Tom Eccles, James Keeling, Felix Gimeno,
Agustin Dal Lago, et al. 2022. Competition-
level code generation with alphacode. Science,
378(6624):1092–1097.

Wang Ling, Phil Blunsom, Edward Grefenstette,
Karl Moritz Hermann, Tomáš Kočiský, Fumin
Wang, and Andrew Senior. 2016. Latent predic-
tor networks for code generation. In Proceedings
of the 54th Annual Meeting of the Association
for Computational Linguistics, pages 599–609,
Berlin, Germany. Association for Computational
Linguistics.

Ilya Loshchilov and Frank Hutter. 2019. Decou-
pled weight decay regularization. In International
Conference on Learning Representations.

Erik Nijkamp, Hiroaki Hayashi, Caiming Xiong, Sil-
vio Savarese, and Yingbo Zhou. 2023. Code-
gen2: Lessons for training llms on program-
ming and natural languages. arXiv preprint
arXiv:2305.02309.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu,
Huan Wang, Yingbo Zhou, Silvio Savarese, and
Caiming Xiong. 2022. Codegen: An open large
language model for code with multi-turn program
synthesis. In The Eleventh International Confer-
ence on Learning Representations.

Yusuke Oda, Hiroyuki Fudaba, Graham Neubig,
Hideaki Hata, Sakriani Sakti, Tomoki Toda, and
Satoshi Nakamura. 2015. Learning to generate
pseudo-code from source code using statistical
machine translation. In 2015 30th IEEE/ACM
International Conference on Automated Software
Engineering, pages 574–584.

Kishore Papineni, Salim Roukos, Todd Ward, and
Wei-Jing Zhu. 2002. Bleu: a method for auto-
matic evaluation of machine translation. In Pro-
ceedings of the 40th annual meeting of the As-
sociation for Computational Linguistics, pages
311–318.

Alec Radford, Jeffrey Wu, Rewon Child, David
Luan, Dario Amodei, Ilya Sutskever, et al. 2019.
Language models are unsupervised multitask
learners. OpenAI blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts,
Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J Liu. 2020. Explor-
ing the limits of transfer learning with a unified

https://doi.org/10.18653/v1/D18-1192
https://doi.org/10.18653/v1/D18-1192
https://doi.org/10.18653/v1/P16-1057
https://doi.org/10.18653/v1/P16-1057

2306

text-to-text transformer. The Journal of Machine
Learning Research, 21(1):5485–5551.

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie
Liu, Duyu Tang, Neel Sundaresan, Ming Zhou,
Ambrosio Blanco, and Shuai Ma. 2020. Code-
bleu: a method for automatic evaluation of code
synthesis. arXiv preprint arXiv:2009.10297.

Zeyu Sun, Qihao Zhu, Lili Mou, Yingfei Xiong, Ge Li,
and Lu Zhang. 2019. A grammar-based struc-
tural cnn decoder for code generation. In Pro-
ceedings of the AAAI conference on artificial in-
telligence, volume 33, pages 7055–7062.

Yue Wang, Hung Le, Akhilesh Deepak Gotmare,
Nghi DQ Bui, Junnan Li, and Steven CH Hoi.
2023. Codet5+: Open code large language mod-
els for code understanding and generation. arXiv
preprint arXiv:2305.07922.

Yue Wang, Weishi Wang, Shafiq Joty, and
Steven C.H. Hoi. 2021. CodeT5: Identifier-aware
unified pre-trained encoder-decoder models for
code understanding and generation. In Proceed-
ings of the Conference on Empirical Methods
in Natural Language Processing, pages 8696–
8708, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Bolin Wei, Ge Li, Xin Xia, Zhiyi Fu, and Zhi Jin.
2019. Code generation as a dual task of code
summarization. Advances in neural information
processing systems, 32.

Jason Wei, Xuezhi Wang, Dale Schuurmans,
Maarten Bosma, Fei Xia, Ed H Chi, Quoc V
Le, Denny Zhou, et al. 2023. Chain-of-thought
prompting elicits reasoning in large language
models. In Advances in Neural Information Pro-
cessing Systems.

Chunyang Xiao, Marc Dymetman, and Claire Gar-
dent. 2016. Sequence-based structured predic-
tion for semantic parsing. In Proceedings of the
54th Annual Meeting of the Association for Com-
putational Linguistics, pages 1341–1350, Berlin,
Germany. Association for Computational Linguis-
tics.

Frank F Xu, Zhengbao Jiang, Pengcheng Yin, Bog-
dan Vasilescu, and Graham Neubig. 2020. Incor-
porating external knowledge through pre-training
for natural language to code generation. In Pro-
ceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, pages
6045–6052.

Pengcheng Yin, Bowen Deng, Edgar Chen, Bog-
dan Vasilescu, and Graham Neubig. 2018. Learn-
ing to mine aligned code and natural language
pairs from stack overflow. In Proceedings of the

15th International Conference on Mining Soft-
ware Repositories, pages 476–486.

Pengcheng Yin and Graham Neubig. 2017. A syn-
tactic neural model for general-purpose code
generation. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics, pages 440–450, Vancouver, Canada.
Association for Computational Linguistics.

Pengcheng Yin and Graham Neubig. 2018.
TRANX: A transition-based neural abstract syn-
tax parser for semantic parsing and code gener-
ation. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Process-
ing: System Demonstrations, pages 7–12, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Pengcheng Yin and Graham Neubig. 2019. Rerank-
ing for neural semantic parsing. In Proceedings
of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 4553–4559,
Florence, Italy. Association for Computational
Linguistics.

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong,
Shan Wang, Yufei Xue, Zihan Wang, Lei Shen,
Andi Wang, Yang Li, et al. 2023. Codegeex:
A pre-trained model for code generation with
multilingual evaluations on humaneval-x. arXiv
preprint arXiv:2303.17568.

https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/P16-1127
https://doi.org/10.18653/v1/P16-1127
https://doi.org/10.18653/v1/P17-1041
https://doi.org/10.18653/v1/P17-1041
https://doi.org/10.18653/v1/P17-1041
https://doi.org/10.18653/v1/D18-2002
https://doi.org/10.18653/v1/D18-2002
https://doi.org/10.18653/v1/D18-2002
https://doi.org/10.18653/v1/P19-1447
https://doi.org/10.18653/v1/P19-1447

	Introduction
	Related works
	The CodeStepsEval Dataset
	Task definition
	Dataset Creation
	Dataset Statistics

	Baselines
	Models

	Experiments
	Fine-tuning
	Metrics
	Settings
	Results

	Human evaluation
	Conclusion
	Acknowledgements
	References

