@inproceedings{younsi-etal-2024-beyond,
title = "Beyond Words: Decoding Facial Expression Dynamics in Motivational Interviewing",
author = "Younsi, Nezih and
Pelachaud, Catherine and
Chaby, Laurence",
editor = "Calzolari, Nicoletta and
Kan, Min-Yen and
Hoste, Veronique and
Lenci, Alessandro and
Sakti, Sakriani and
Xue, Nianwen",
booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)",
month = may,
year = "2024",
address = "Torino, Italia",
publisher = "ELRA and ICCL",
url = "https://aclanthology.org/2024.lrec-main.211",
pages = "2365--2374",
abstract = "Authors : Nezih Younsi, Catherine Pelachaud, Laurence Chaby Title : Beyond Words: Decoding Facial Expression Dynamics in Motivational Interviewing Abstract : This paper focuses on studying the facial expressions of both client and therapist in the context of Motivational Interviewing (MI). The annotation system Motivational Interview Skill Code MISC defines three types of talk, namely sustain, change, and neutral for the client and information, question, or reflection for the therapist. Most studies on MI look at the verbal modality. Our research aims to understand the variation and dynamics of facial expressions of both interlocutors over a counseling session. We apply a sequence mining algorithm to identify categories of facial expressions for each type. Using co-occurrence analysis, we derive the correlation between the facial expressions and the different types of talk, as well as the interplay between interlocutors{'} expressions.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="younsi-etal-2024-beyond">
<titleInfo>
<title>Beyond Words: Decoding Facial Expression Dynamics in Motivational Interviewing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nezih</namePart>
<namePart type="family">Younsi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Catherine</namePart>
<namePart type="family">Pelachaud</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Laurence</namePart>
<namePart type="family">Chaby</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Veronique</namePart>
<namePart type="family">Hoste</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alessandro</namePart>
<namePart type="family">Lenci</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sakriani</namePart>
<namePart type="family">Sakti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nianwen</namePart>
<namePart type="family">Xue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>ELRA and ICCL</publisher>
<place>
<placeTerm type="text">Torino, Italia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Authors : Nezih Younsi, Catherine Pelachaud, Laurence Chaby Title : Beyond Words: Decoding Facial Expression Dynamics in Motivational Interviewing Abstract : This paper focuses on studying the facial expressions of both client and therapist in the context of Motivational Interviewing (MI). The annotation system Motivational Interview Skill Code MISC defines three types of talk, namely sustain, change, and neutral for the client and information, question, or reflection for the therapist. Most studies on MI look at the verbal modality. Our research aims to understand the variation and dynamics of facial expressions of both interlocutors over a counseling session. We apply a sequence mining algorithm to identify categories of facial expressions for each type. Using co-occurrence analysis, we derive the correlation between the facial expressions and the different types of talk, as well as the interplay between interlocutors’ expressions.</abstract>
<identifier type="citekey">younsi-etal-2024-beyond</identifier>
<location>
<url>https://aclanthology.org/2024.lrec-main.211</url>
</location>
<part>
<date>2024-05</date>
<extent unit="page">
<start>2365</start>
<end>2374</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Beyond Words: Decoding Facial Expression Dynamics in Motivational Interviewing
%A Younsi, Nezih
%A Pelachaud, Catherine
%A Chaby, Laurence
%Y Calzolari, Nicoletta
%Y Kan, Min-Yen
%Y Hoste, Veronique
%Y Lenci, Alessandro
%Y Sakti, Sakriani
%Y Xue, Nianwen
%S Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
%D 2024
%8 May
%I ELRA and ICCL
%C Torino, Italia
%F younsi-etal-2024-beyond
%X Authors : Nezih Younsi, Catherine Pelachaud, Laurence Chaby Title : Beyond Words: Decoding Facial Expression Dynamics in Motivational Interviewing Abstract : This paper focuses on studying the facial expressions of both client and therapist in the context of Motivational Interviewing (MI). The annotation system Motivational Interview Skill Code MISC defines three types of talk, namely sustain, change, and neutral for the client and information, question, or reflection for the therapist. Most studies on MI look at the verbal modality. Our research aims to understand the variation and dynamics of facial expressions of both interlocutors over a counseling session. We apply a sequence mining algorithm to identify categories of facial expressions for each type. Using co-occurrence analysis, we derive the correlation between the facial expressions and the different types of talk, as well as the interplay between interlocutors’ expressions.
%U https://aclanthology.org/2024.lrec-main.211
%P 2365-2374
Markdown (Informal)
[Beyond Words: Decoding Facial Expression Dynamics in Motivational Interviewing](https://aclanthology.org/2024.lrec-main.211) (Younsi et al., LREC-COLING 2024)
ACL