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Abstract
Medical dialogue generation (MDG) has gained increasing attention due to its substantial practical value. Previous
works typically employ a sequence-to-sequence framework to generate medical responses by modeling dialogue
context as sequential text with annotated medical entities. While these methods have been successful in generating
fluent responses, they fail to provide process explanations of reasoning and require extensive entity annotation. To
address these limitations, we propose the method Bootstrap Prompting for Explicit Reasoning in MDG (BP4ER),
which explicitly model MDG’s multi-step reasoning process and iteratively enhance this reasoning process. We
employ a least-to-most prompting strategy to guide a large language model (LLM) in explicit reasoning, breaking
down MDG into simpler sub-questions. These sub-questions build on answers from previous ones. Additionally,
we also introduce two distinct bootstrapping techniques for prompting, which autonomously correct errors and
facilitate the LLM’s explicit reasoning. This approach eliminates the need for entity annotation and increases the
transparency of the MDG process by explicitly generating the intermediate reasoning chain. Experimental results on
the two public datasets show that BP4ER outperforms state-of-the-art methods across both objective and subjective
evaluation.
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1. Introduction

Medical dialogue systems (MDS) are receiving
significant attention due to the rising demand for
telemedicine (Zhou et al., 2021; henfeng He et al.,
2022), offering accessible medical services such
as health consultations, diagnosis, and prescrip-
tions, to a broader population (Yan et al., 2022; Xia
et al., 2022b). Within MDS, medical dialogue gen-
eration (MDG) plays a crucial role by generating
accurate medical responses based on given dia-
logue histories (Lin et al., 2021; Wei et al., 2018;
Xu et al., 2019a). Typically, MDG involves un-
derstanding the patient’s overall state, making the
next diagnosis decisions in a limited-turn dialogue,
and conducting medical reasoning analysis to gen-
erate responses (Li et al., 2021; Chen et al., 2022).

Previous research on MDG typically adopts a
framework in which dialogue context is modeled
as sequential text (Xu et al., 2023; Liu et al., 2021),
and medical entities are identified and annotated
within this textual context (Liu et al., 2022b; Du
et al., 2019b). Subsequently, response gener-
ation is carried out using sequence-to-sequence
(Seq2Seq) models (Sutskever et al., 2014). These
Seq2Seq methods leverage pre-trained text en-
coders and decoders to generate medical re-
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sponses (Li et al., 2021; Zhao et al., 2022), as
illustrated in Figure 1 (a). Although these meth-
ods have yielded substantial success in generat-
ing coherent and fluent responses in MDG, they
face two key challenges: (1) Lack of process ex-
planation. To help patients or physicians under-
stand why an MDG module generates a response,
interpretability of the medical reasoning process
is indispensable (Li et al., 2021), i.e., information
on patient status and diagnostic decision-making
by physicians. (2) Requirement for large-scale an-
notations. Previous works (Xu et al., 2023; Zhao
et al., 2022) heavily depend on the availability of a
substantial amount of manually labeled data dur-
ing the training phase. However, obtaining such
data is often challenging due to the specialized
medical knowledge required and stringent privacy
considerations.

To address the limitations above, we propose
the Bootstrap Prompting for Explicit Reasoning
method (BP4ER), as illustrated in Figure 1 (b).
Our motivation is to eliminate the need for entity
annotation by treating MDG as a multi-step rea-
soning problem. Specifically, we explicitly break
down MDG into a reasoning chain and sequen-
tially address each intermediate reasoning step,
aligning with its inherent multi-step reasoning pro-
cess. Drawing from the concept of chain-of-
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Figure 1: Paradigm comparison in MDG: prior
works adopt a Seq2Seq framework (a); our model
(b) explicitly incorporates a multi-step reasoning
process and reduces entity annotation.

thought prompting (Wei et al., 2022c), we intro-
duce the least-to-most prompting (LMP) strategy
(Zhou et al., 2023) to guide a large language model
(LLM) (Zhao et al., 2023; Du et al., 2022) towards
explicit reasoning in MDG. We first decompose
the MDG process into a reasoning chain, compris-
ing a series of interrelated sub-questions. Then,
we follow Zelikman et al. (2022) and construct
demonstration prompts for each sub-question and
address them sequentially with answers from re-
solved sub-questions, promoting a coherent rea-
soning process.

Despite LLMs’ impressive language understand-
ing ability in general language modeling (Wang
et al., 2022b; Huang and Chang, 2022; Zhu
et al., 2023), their intermediate reasoning steps
in MDG would be error-prone, reducing over-
all performance (Zhang et al., 2022). To facil-
itate the model’s explicit reasoning ability, we
propose two distinct bootstrapping techniques for
prompting: answer-providing bootstrapping (AP-
Bootstrap) and prompt-revising bootstrapping (PR-
Bootstrap). These techniques allow the model
to autonomously rectify errors without relying on
large-scale annotations. Subsequently, we collect
the accurate reasoning chain to create filtered data
by implementing feedback loops. The model is
then fine-tuned using this filtered data, and the pro-
cess is repeated. This approach yields a signifi-
cant improvement in the model’s performance and
enhances the quality of the generated responses.
Our contributions can be summarized as follows:

• We present a novel explicit reasoning model
for medical dialogue generation (MDG) called
BP4ER. To the best of our knowledge, BP4ER
is the first model to systematically deconstruct
MDG into an intermediate reasoning chain,
which notably enhances the interpretability of
the MDG process.

• BP4ER introduces the least-to-most prompt-
ing strategy to guide LLM for explicit reason-
ing and an iterative approach to bootstrap the
prompting process for augmenting the LLM’s
reasoning capabilities, resulting in coherent
and precise medical dialogue responses.

• We evaluate BP4ER on two public datasets
using both automatic and manual evaluation
metrics. Experimental results demonstrate its
superiority over previous methods.

2. Related Work

2.1. Medical Dialogue Generation
Medical dialogue generation (MDG) has attracted
increasing attention due to its high practical value.
Early attempts at MDG were based on pre-defined
templates to generate natural language (Ferguson
et al., 2009; Wong et al., 2011; Xu et al., 2019b).
However, template-based MDG suffers from the
problem of inflexibility. Recently, Zeng et al. (2020)
took an initial step in neural-based MDG. They
pre-trained several dialogue generation models on
large-scale medical corpora. Liu et al. (2022b)
frame medical dialogue generation as entity pre-
diction and entity-aware response generation. Fur-
thermore, Liu et al. (2021) unifies the dialogue con-
text understanding and entity reasoning through a
heterogeneous graph. Li et al. (2021) consider
medical entities in the utterances as states and
actions and present semi-supervised variation rea-
soning with a patient state tracker and a physician
action network. Zhao et al. (2022) exploit the med-
ical relationship between dialogue context and re-
call pivotal information to produce responses. Xu
et al. (2023) models a medical entity flow and a
dialogue act flow to improve entity selection and
dialogue act prediction.

Although these models achieve comparable per-
formance, they often lack process interpretability
and need substantial annotation.

2.2. Prompt Learning of LLMs
Recent studies (Dong et al., 2023; Jeblick et al.,
2022) have proposed various prompting strategies
to strengthen and generalize the in-context learn-
ing ability of LLMs. One such strategy is chain-
of-thoughts (CoT) prompting, introduced by Wei
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Figure 2: Overview of BP4ER. Medical dialogue is deconstructed into a reasoning chain of sub-questions.
Demonstration prompts guide intermediate reasoning, sequentially querying the LLM. Two bootstrapping
techniques for prompting, AP-Bootstrap and RP-Bootstrap, are introduced to enhance explicit reasoning.

et al. (2022c), which incorporates intermediate rea-
soning steps into LLMs to construct demonstra-
tions between inputs and outputs. While Wei
et al. (2022c) manually constructs CoTs, AutoCoT
(Zhang et al., 2022) utilizes LLMs to automati-
cally generate CoTs, using the prompt sentence
”let’s think step by step.” Additionally, Wang et al.
(2022a) propose iCAP, a context-aware prompter
capable of dynamically adjusting contexts for each
reasoning step. To tackle the challenge of easy-
to-hard generalization, Zhou et al. (2023) propose
a least-to-most prompting (LMP) strategy. Unlike
CoT, which focuses on individual instances, LMP
is task-oriented, breaking down a problem into in-
terrelated sub-questions from a task perspective
and forming a progressive prompt sequence for
LLMs. Moreover, while CoTs are crucial for model
performance, they are not readily available for spe-
cific tasks, and creating them requires significant
time and resources, potentially introducing bias.

Inspired by LMP, we introduce MDG as a multi-
step reasoning problem aimed at explicitly and it-
eratively modeling the reasoning process, mirror-
ing the decision-making process of doctors in real
medical scenarios.

3. Main Method

Problem Formulation. In the context of a dia-
logue comprising T turns, a medical dialogue ses-
sion D is a sequence of utterances, denoted as
D = {P1, R1, P2, R2, ..., PT , RT }. Here, Pt and
Rt (t = 1 . . . T ) refer to utterances from a pa-
tient and responses from a virtual physician, re-
spectively. At the t-th turn, given the dialogue his-
tory H = {P1, R1, ...Rt−1, Pt} as input, the model
aims to generate an intermediate reasoning chain
S = {S1, ..., Sk} and corresponding answers A =
{A1, ..., Ak}, where k is the number of reasoning
steps. Subsequently, the model generates a med-
ical response Rt for the current turn. Figure 2
provides an illustrative overview of our proposed
BP4ER method. In this section, we provide a de-
scription of the multi-step reasoning process for
MDG, as outlined in Section 3.1. Then, we present
the details of the explicit reasoning process in Sec-
tion 3.2, with a specific focus on augmenting the
model’s interpretability. Finally, we introduce two
distinct bootstrapping techniques for prompting to
enhance explicit reasoning in the BP4ER model,
as discussed in Section 3.3.
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3.1. Multi-step Reasoning

In real-world medical scenarios, MDG involves a
multi-step reasoning process that aligns with the
logical framework of medical consultation (Chen
et al., 2022). It consists of three essential steps (Li
et al., 2021): (i) Patient State Tracking: Initially, the
MDG system interacts with the patient to acquire
additional symptoms beyond those self-reported.
Here, the system focuses on comprehensively
tracking and maintaining the patient’s condition
within the dialogue context, including symptoms,
medications, and other relevant information. (ii)
Next Diagnosis Decision-making: Drawing from
the collected patient states and the ongoing con-
versation, the system infers the next diagnosis de-
cision that a physician would make. This step
guides the responses generated by the system,
ensuring a coherent flow in the medical dialogue.
(iii) Medical Response Generation: Utilizing the
identified patient states and the diagnosis decision-
making, the MDG system generates a contextually
relevant and coherent response that aligns with
the ongoing medical dialogue.

3.2. Explicit Reasoning Process

In Section 1, we emphasized the importance of
explicitly demonstrating the multi-step reasoning
process of MDG for better interpretability, rather
than simply generating direct answers. To achieve
this, we employ a few-shot Least-to-Most Prompt-
ing (LMP) strategy (Zhou et al., 2023) to guide
the Large Language Model (LLM) (Zhao et al.,
2023; Du et al., 2022). This strategy breaks down
the complex MDG task into a sequence of interre-
lated sub-questions, inspired by medical diagnos-
tic logic. In this study, we simplify this decomposi-
tion into three specific sub-questions following the
multi-step reasoning process described in Section
3.1, creating an intermediate reasoning chain, de-
noted as S = {S1, S2, S3}:

• S1: What’s the patient’s current state?

• S2: What’s the physician’s next decision?

• S3: What’s the physician’s response?

As depicted in Figure 2, the process of generat-
ing a response from a dialogue history is reframed
as answering two intermediate sub-questions:
”What’s the patient’s current state?” and ”What’s
the physician’s next diagnostic decision?”.

We tackle these sub-questions sequentially,
with each solution building upon previously ob-
tained answers. To facilitate this, we create
question-rational-answer pairs as demonstrations
and construct a demonstration prompt for each

intermediate reasoning step, inspired by (Zelik-
man et al., 2022). This prompt consists of ex-
amples illustrating sub-question resolution, the
dialogue history, a list of previously answered
sub-questions and their corresponding answers (if
any), and the next sub-question to be addressed.

The solving process starts with a few-shot
prompting, providing the LLM with a demonstration
prompt comprising few-shot examples, dialogue
history, and the first sub-question. For example
in Figure 2, the demonstration prompt is ”Exam-
ples: <Few-shot Examples>, Dialogue History H:
P: Hi, I have a vague pain ... P: No medication, no
tests, Sub-question S1: What’s the patient’s cur-
rent state?”. Then, We use the generated answer,
e.g., ”A1: The navel ... examination,” to construct
the next prompt by appending the answer to the
previous prompt followed by the next sub-question
S2: ”What’s the physician’s next diagnostic deci-
sion?”. This process repeats for sub-question S3:
”What’s the physician’s response?”. The final an-
swer (e.g., ”A3: Are the bowel movements nor-
mal?”) for MDG Rt is obtained by adding the gen-
erated answer A2 to the previous prompt. This ap-
proach allows us to address each sub-question se-
quentially, leveraging answers from previously re-
solved sub-questions, resulting in a coherent, step-
by-step reasoning process.

3.3. Bootstrap Prompting
The intermediate reasoning steps in LLMs may
contain errors, affecting reasoning results and
overall performance. To enhance the explicit rea-
soning abilities of LLMs, drawing inspiration from
(Wang et al., 2022a), we improve the quality of
demonstrations through iterative prompting boot-
strapping. During the training phase, the final
step of reasoning benefits from having access to
ground truth responses, ensuring accuracy. How-
ever, intermediate steps lack correct answers, pos-
ing a challenge. To overcome this limitation, we in-
troduce two iterative bootstrapping techniques for
prompting: answer-providing bootstrapping (AP-
Bootstrap) and prompt-revising bootstrapping (PR-
Bootstrap), tailored to different scenarios. AP-
Bootstrap can be seen as a greedy decoding pro-
cess, whereas PR-Bootstrap is based on a sam-
pling approach. These techniques help LLMs to
autonomously rectify errors in demonstrations, re-
ducing the reliance on extensive annotations.

3.3.1. Answer-Providing Bootstrapping

Given a pre-trained LLM M and a dataset of di-
alogue histories H paired with responses R, de-
noted as D = {(Hi, Ri)}ND

i=1, the AP-Bootstrap
approach takes a demonstration prompt as in-
put. This prompt consists of a small example
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set P, defined as P = {Hp
i , Q

p
i , R

p
i }

NP
i=1, where

NP ≪ ND (e.g. NP = 5). Similar to stan-
dard few-shot prompting, this example set is con-
catenated with each dialogue history instance
in D and sub-question Si, resulting in Ĥi =
{Hp

1 , Q
p
1, R

p
1, ..., H

p
NP

, Qp
NP

, Rp
NP

,Hi, Si}. This en-
courages the model to generate a rationale Q̂i for
Hi followed by an answer Ai. If the generated an-
swers Ai are semantically similar to the gold re-
sponse Ri, the reasoning process is considered
credible. Otherwise, our objective is to correct the
reasoning process and obtain available answers
Ai. Finally, the credible and corrected dialogue
data are combined for iterative fine-tuning of the
LLM, enhancing its reasoning capabilities.

To achieve this, we employ cosine similarity, de-
noted as Sim(.), to measure the semantic similar-
ity between the generated answersAi and the gold
response Ri. We utilize this similarity metric to fil-
ter the dialogue data, retaining instances with high
semantic similarity, i.e., Sim(Ai, Ri) > η, where η
is a predefined threshold. For those instances with
low similarity, following (Zelikman et al., 2022), we
provide a model with the gold response, allowing
it to autonomously rectify errors by generating a
reasoning chain similar to the previous explicit rea-
soning process (as described in Section 3.2). By
providing the gold response, the model can rea-
son backward, facilitating the generation of a rea-
soning chain leading to the correct answer. Af-
ter error correction, the dialogue with the revised
reasoning chain is added to the filtered dataset.
Subsequently, we fine-tune the LLM M on this fil-
tered dataset and iteratively bootstrap prompting
M to generate a new reasoning chain with the
newly fine-tuned model until performance reaches
a plateau. Throughout this iterative process, we
consistently fine-tune from the original pre-trained
model M to mitigate overfitting concerns.

The AP-Bootstrap method can be conceptual-
ized as an approximation to an RL-style policy gra-
dient objective. To illustrate this, consider that
M can be interpreted as a discrete latent variable
model pM (R|H) =

∑
Q p(Q|H)p(R|H,Q); in other

words, M first samples a latent rationale Q before
generating the response R. Now, given the indi-
cator reward function fI = I(Sim(A,R) > η), the
total expected reward across the dataset is:

J (M,H,R) =
∑

i
EQ̂i,Ai∼pM (·|Hi)

fI(·)

whose gradient is obtained via the standard log-
derivative trick for policy gradients:

∇J (M,H,R) =
∑

i
EQ̂i,Ai∼pM (·|Hi)

[fI(·) · ∇logpM = (Ai, Q̂i|Hi)]

Note that the indicator function discards the gradi-
ent for dissimilar sampled demonstrations to the
correct response Ri. Thus, the AP-Bootstrap ap-
proximates J by 1) greedily decoding samples of
(Q̂i, Ai) to reduce the variance of this estimate,
and 2) taking multiple gradient steps on the same
data batch, similar to policy gradient algorithms
(Schulman et al., 2017).

3.3.2. Prompt-Revising Bootstrapping

During our experiments, we noticed that au-
tonomous error correction faces challenges when
dealing with complex dialogues, such as doc-
tors continuously questioning patients, cross-
questions between doctors and patients, and am-
biguous descriptions of patient conditions. We
attribute this challenge to the lack of correct
answers in the intermediate steps of the rea-
soning process within MDG. To address this,
we introduce a straightforward yet effective strat-
egy called prompt-revising bootstrapping (PR-
Bootstrap). This strategy capitalizes on the under-
standing that complex reasoning tasks often offer
multiple pathways to arrive at a correct answer, as
discussed in (Stanovich and West, 2000). In con-
trast to AP-Bootstrap, PR-Bootstrap alleviates the
problem of limited diversity inherent in greedy de-
coding, as demonstrated in our experiments.

To implement PR-Bootstrap, we first prompt the
LLM in the format of a demonstration prompt to
yield an initial answer, which is added to the candi-
date answers. We then revise the few-shot exam-
ples in the original demonstration prompt to gen-
erate an alternative rationale, along with its corre-
sponding new answer, which is also included in the
candidate answers. It’s important to note that each
answer within the candidate set is derived from a
distinct rationale. Therefore, if two answers exhibit
significant semantic similarity, they are considered
a consistent answer pair. We measure this simi-
larity using cosine similarity calculations between
the newly generated answer and those in the can-
didate set. Answer pairs surpassing a predefined
threshold θ are considered the most consistent
within the candidate answer set and are added to
the filtered dataset. When no answer pairs meet
the threshold θ, we iterate the prompt revision pro-
cess to explore diverse reasoning paths and gener-
ate alternative answers until reliable answers are
obtained for all provided data.

The iterative bootstrapping approach mirrors the
human experience, where multiple different rea-
soning paths leading to the same answer increase
confidence in its correctness. Finally, similar to the
AP-Bootstrap method, we fine-tune the LLM on the
filtered dataset to enhance its reasoning abilities
by bootstrapping the prompting process.
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4. Experiments

4.1. Datasets
We adopt two publicly available benchmark
datasets, namely MedDG (Liu et al., 2022)
and KaMed (Li et al., 2021), collected from
medical consultation websites1 after anonymiza-
tion. MedDG contains 17K dialogues, focus-
ing on 12 distinct diseases within the gastroen-
terology department. On average, each dia-
logue consists of 9.92 rounds. We divide the
dataset into training/validation/test sets with sizes
of 14,864/2,000/1,000 dialogues, as originally out-
lined in Liu et al. (2022b). KaMed contains over
63K dialogues, covering an extensive range of
over 300 diseases across 13 different medical de-
partments. KaMed exhibits a higher average di-
alogue length compared to MedDG, e.g., 11.62
rounds per dialogue. Following the setting in Xu
et al. (2023), we filtered dialogues with privacy con-
cerns and obtained 29,159/1,532/1,539 dialogues
for the training/validation/test sets. The dataset
presents challenging and diverse scenarios, with
over 300 hospital departments.

4.2. Evaluation metrics
Automatic Evaluation. To evaluate the linguis-
tic quality of the generated responses, we em-
ploy standard word-overlap-based metrics: BLEU
(B@n) (Papineni et al., 2002) and ROUGE (R@n)
(Lin, 2004). These metrics measure lexical qual-
ity by calculating n-gram overlaps between the
generated and accurate responses. Additionally,
we incorporate the DISTINCT (D@n) metric (Li
et al., 2016) for a more comprehensive evaluation.
DISTINCT-n measures response diversity by cal-
culating the proportion of distinct n-grams within
the generated responses, offering a valuable per-
spective on response quality often missed by tra-
ditional BLEU and ROUGE metrics.
Human Evaluation. Aligned with prior studies (Li
et al., 2021; Zhao et al., 2022), we conducted a hu-
man evaluation to assess the quality of responses
in terms of fluency, coherence, and correctness.
Fluency evaluation measures overall smoothness
and naturalness, coherence assesses logical con-
sistency with the dialogue history, and correctness
measures the accuracy of medical knowledge in
the responses. Consistent with Li et al. (2021)
and Zhao et al. (2022), we randomly sampled
100 cases and invited three professional annota-
tors from a thirty-party hospital to perform man-
ual evaluations. Annotators utilized the aforemen-
tioned metrics, rating each response on a scale
from 1 (poor) to 5 (excellent). It’s noteworthy that

1https://www.chunyuyisheng.com/

model names were anonymized to ensure objec-
tivity throughout the evaluation process.

4.3. Implementation Details

In this work, we used ChatGLM-6B2 (Du et al.,
2022) as the foundational LLM for BP4ER.
ChatGLM-6B is equipped with 6 billion parameters
and is optimized with the Adam optimizer (Kingma
and Ba, 2014). We chose this model for its robust
language understanding abilities in Chinese and
its relatively lightweight design compared to other
LLMs. Hyperparameters were selected based on
the best-performing checkpoints during validation,
with a batch size of 32 and a learning rate of
1e-2. For MedDG, we set similarity thresholds
as [0.75, 0.8, 0.65] for its three reasoning steps,
while for KaMed, they were [0.65, 0.75, 0.65]. All
experiments were conducted on a single NVIDIA
GeForce RTX 3090 GPU.

4.4. Baseline models
Our method is compared with the following base-
lines. Seq2Seq (Sutskever et al., 2014) is an
RNN-based sequence-to-sequence model with
an attention mechanism. HRED (Serban et al.,
2016) uses hierarchical encoders to model the
dialogue context from token level and utterance
level compared to Seq2Seq. DialoGPT (Zhang
et al., 2019) and GPT-2 (Radford et al., 2019) are
transformers-based pre-trained language models
widely adopted in tasks of dialogue generation.
VRBot (Li et al., 2021) summarizes patient states
and physician actions into phrases through varia-
tional methods and generate the response. Med-
PIR (Zhao et al., 2022) exploit the medical rela-
tionship between dialogue context and recall piv-
otal information to produce responses in the recall-
enhanced generator. DFMed (Xu et al., 2023)
models the transitions of medical entities and dia-
logue acts with the pre-trained model. ChatGLM-
6B (Du et al., 2022) is a pre-trained language
model with 6 billion parameters, which generates
medical responses directly.

4.5. Automatic Evaluation
Table 1 presents the automatic evaluation results
for the MedDG and KaMed datasets, revealing
several key insights:

(1) BP4ER demonstrates significant improve-
ments, as depicted in Table 1. These results
confirm BP4ER’s efficacy in enhancing response
quality and ensuring greater semantic consistency

2It can be done with any off-the-shelf LLMs, such as
LLaMA (Touvron et al., 2023) and Alpaca (Taori et al.,
2023).

https://www.chunyuyisheng.com/
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Dataset Model B@1 B@2 B@4 R@1 R@2 D@2

MedDG

Seq2Seq (Sutskever et al., 2014) 28.55 22.85 15.45 25.61 11.24 /
HRED (Serban et al., 2016) 31.61 25.22 17.05 24.17 9.79 /
DialoGPT (Zhang et al., 2019) 32.77† 26.93† 17.96† 27.11† 11.34† 79.26†

GPT-2 (Radford et al., 2019) 35.27 28.19 19.16 28.74 13.61 /
VRBot (Li et al., 2021) 29.69 23.9 16.34 24.69 11.23 /
MedPIR (Zhao et al., 2022) 38.72† 27.64† 18.14† 25.72† 10.30† 82.77†

DFMed (Xu et al., 2023) 42.56 33.34 22.53 29.31 14.21 /
ChatGLM-6B (Du et al., 2022) 37.96 24.22 15.37 18.05 10.53 89.81
BP4ER (ours) 44.78 33.80 23.76 41.47 22.47 89.93
Improvement +2.22 +0.46 +1.23 +12.16 +8.26 +0.12

KaMed

Seq2Seq (Sutskever et al., 2014) 23.52 18.56 12.13 23.56 8.67 /
HRED (Serban et al., 2016) 26.75 21.08 16.36 18.71 7.28 /
DialoGPT (Zhang et al., 2019) 30.17† 25.53† 17.09† 24.30† 9.79† 80.27†

GPT-2 (Radford et al., 2019) 33.76 26.58 17.82 26.8 10.59 /
VRBot (Li et al., 2021) 30.04 23.76 16.36 18.71 7.28 /
MedPIR (Zhao et al., 2022) 29.42† 21.60† 16.47† 20.69† 9.27† 83.75†

DFMed (Xu et al., 2023) 40.20 30.97 20.76 28.28 11.54 /
ChatGLM-6B (Du et al., 2022) 38.70 27.19 16.38 33.86 20.21 85.70
BP4ER (ours) 41.89 31.74 20.81 35.76 21.19 86.83
Improvement +1.69 +0.77 +0.05 +1.90 +0.98 +1.07

Table 1: Automatic evaluation (%) on MedDG and KaMed datasets. B@n denotes BLEU-n, R@n
denotes ROUGE-n and D@2 denotes DISTINCT-2. The best values are in boldface and the second best
are underlined. Models marked with † were reproduced by us, while the others were copied from the
original results in (Xu et al., 2023).

with gold standard responses. While ChatGLM-6B
initially exhibits lower BLEU and ROUGE scores
compared to DFMed, integrating explicit reason-
ing and bootstrapping prompting techniques yields
notable enhancements. Specifically, there’s a re-
markable increase of 23.42% in ROUGE-1 and
11.94% in ROUGE-2. This integration not only
boosts performance metrics but also enhances the
transparency of the multi-step reasoning process
in MDG. It renders the reasoning steps more com-
prehensible and interpretable without the need for
extensive annotations. As a result, the model’s
decision-making process becomes more transpar-
ent, facilitating a deeper understanding of the un-
derlying logic behind the generated responses.

(2) The performance enhancement is more pro-
nounced in MedDG compared to KaMed, as in-
dicated in Table 1. This discrepancy can be at-
tributed to the fact that MedDG is focused on a spe-
cific department, i.e., gastroenterology, and con-
tains a relatively small number of diseases, only
12 diseases. In contrast, KaMed covers a more
extensive range of over 300 diseases across 13
different medical departments. The diversity and
complexity inherent in KaMed render it a more
challenging dataset for BP4ER. Additionally, it’s
worth noting that KaMed involves a greater num-
ber of dialogue rounds compared to MedDG, sug-
gesting that the necessity to consider larger con-
textual information contributes to the dialogue’s

complexity. In summary, this observation sug-
gests that BP4ER demonstrates more effective-
ness when confronted with smaller and more fo-
cused datasets like MedDG, and it may encounter
greater challenges when confronted with larger
and more diverse datasets featuring extended di-
alogue rounds, such as KaMed.

(3) In comparison to traditional seq2seq-based
models, LLM-based models demonstrate superior
performance in the ROUGE and DISTINCT-2 met-
rics, while seq2seq-based models perform well on
the BLEU metric. For instance, BP4ER achieves
substantial improvements of 12.16% and 8.26% in
the MedDG dataset when considering the ROUGE
metric. Furthermore, LLM-based models consis-
tently outperform other models in both the MedDG
and KaMed datasets according to the DISTINCT-
2 metric. These findings highlight the strength of
LLM-based models in generating responses that
closely align with the gold standard responses in
terms of recall and content coverage, as indicated
by the ROUGE metric. Additionally, they demon-
strate the ability to produce diverse and distinct re-
sponses, as indicated by the DISTINCT-2 metric.
Conversely, other models may prioritize response
quality based on precision and n-gram matching,
as indicated by their performance in the BLEU
metric. In summary, the results underscore the
strengths of LLM-based models in generating high-
quality responses that capture both the richness
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Fine- Exp. AP- PR- MedDG KaMed
Tune Rea. Boots. Boots. B@1 R@1 D@1 D@2 B@1 R@1 D@1 D@2
✓ ✓ ✓ ✓ 44.78 41.47 91.20 89.93 41.89 35.76 89.10 86.83
✓ ✓ ✓ 42.27 37.64 89.76 88.73 40.69 35.01 87.97 85.94
✓ ✓ 40.75 36.63 90.14 88.90 39.68 34.99 88.47 86.07
✓ 39.41 27.38 88.54 89.81 39.13 33.97 87.34 85.83

Table 2: Ablation studies (%) are carried out on two datasets by individually removing modules PR-
Bootstrap, AP-Bootstrap and explicit reasoning process.

Model Fluency Cohe. Correct.
DialoGPT 3.11 2.56 2.89
MedPIR 3.34 3.07 3.23
BP4ER 4.00 3.50 3.52
Gold 4.32 4.17 4.41

Table 3: Human evaluation (%) results on KaMed.
The maximum score for each indicator is 5.

and diversity in MDG, making them particularly
suitable for tasks requiring comprehensive and di-
verse outputs.

4.6. Ablation Study
To assess the impact of different modules in
BP4ER, we conducted ablation studies on two
datasets by individually removing modules PR-
Bootstrap, AP-Bootstrap, and the explicit reason-
ing process, as outlined in Table 2.

Firstly, we analyzed the effects of PR-Bootstrap
on performance. Comparing the results to BP4ER,
we observed decreases in all metrics upon re-
moving PR-Bootstrap. This suggests that in-
structing the model of its incorrectness by revis-
ing the prompt positively influences model perfor-
mance. Secondly, when removing AP-Bootstrap
from BP4ER, we notice a slight increase in the
DISTINCT-1/2 metric. We hypothesize that this im-
provement may be attributed to the fact that AP-
Bootstrap can be considered as a form of greedy
decoding, which tends to generate repetitive or
monotonous sequences rather than diverse con-
tent. Finally, upon removing the explicit reason-
ing process, we observed a decline in all eval-
uation metrics, with a notably significant drop of
8.3% in the ROUGE metric in the MedDG dataset.
This indicates that the introduction of an explicit
reasoning process enhances the interpretability of
the response generation in the MDG and improves
the semantic similarity between the generated re-
sponse and the ground truth.

Our ablation experiments robustly confirm the
effectiveness of each module on model perfor-
mance. The results indicate that all these modules
contribute positively to our approach, underscor-
ing their importance in achieving superior perfor-
mance in MDG tasks.

4.7. Human Evaluation
In addition to quantitative evaluations, we con-
ducted a human evaluation to assess the re-
sponses generated by different models in terms
of fluency, consistency, and entity correctness.
We randomly sampled 100 instances from the
test set of KaMed, and the corresponding re-
sponses were generated by well-performing mod-
els such as DialoGPT, MedPIR, and BP4ER. To
ensure the fairness of the assessment, the re-
sponses for each sample were shuffled and then
presented to volunteers for evaluation. The fi-
nal statistical results are summarized in Table 3.
Notably, our proposed model BP4ER consistently
outperformed other models across all three man-
ual evaluation indicators. Particularly noteworthy
is BP4ER’s superiority in fluency and coherence,
suggesting that our proposed method significantly
enhances the quality of responses. This improve-
ment can be attributed to the explicit decomposi-
tion of MDG’s multi-step reasoning process and
the iterative bootstrapping on prompting, both of
which contribute to generating more linguistically
fluent and contextually coherent responses, im-
proving the overall user experience in medical dia-
logue scenarios. These findings provide additional
evidence of the effectiveness of BP4ER in improv-
ing the quality of responses in MDG tasks, demon-
strating its superiority over existing models.

4.8. Case Study
We randomly selected dialogue examples from the
KaMed test set and compared the generated re-
sponses from several models in Figure 3.

In case 1, BP4ER follows a multi-step reasoning
procedure: firstly, it summarizes the patient’s cur-
rent state and then infers the next diagnostic action
for the physician, i.e., inquire about the patient’s
medical history. Finally, BP4ER generates a re-
sponse semantically close to the gold response,
both emphasizing ”asking for the specific area of
pain”. In contrast, other models primarily focus on
providing suggestions. This highlights BP4ER’s
ability to produce responses that are more aligned
with the context of the dialogue, achieved through
explicit reasoning in MDG and iterative bootstrap
prompting.
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P: I have morning and evening stomach pain, which eases after 
eating, with normal bowel movements and no nausea.
R: How long? Have any prior stomach issues?
P: Three or four days. No stomach issues, just these two days.
Gold Response: Probably peptic ulcer. You can take Daxi and  
omeprazole .
MedPIR: Stomach indigestion; eat small, frequent meals.
ChatGLM: Gastric ulcer, avoid greasy, spicy foods and 
caffeine.
BP4ER: 
Patient’s State: Stomach pain in the morning and evening, 
eases after eating, normal stools, no nausea, lasts for three or 
four days, no  stomach issues.
Diagnostic Decision: Give diagnostic results and drug advises.
Response: Gastric ulcer, suggest to take anti-inflammatory 
drugs, such as omeprazole.

P: Is the pain on the outer front of the knee rheumatism?
Gold Response: How long? Does it hurt when pressed down?
MePIR: The knee pain can have many causes, not necessarily 
related to rheumatism.
BP4ER: How long has the pain been lasting? How does it pain?

P: What medication or injection for brucellosis? I'm a sheep 
farmer, and I get the disease with no energy and cold. 
R: Hi, have you been diagnosed? How long have you been sick?
P: It has been two or three months since the diagnosis.
Gold Response: Rifampicin 600-900mg/day plus tetracycline 
200mg/day for 6 weeks. Is there any medication? It needs a 
sufficient course of treatment. 
ChatGLM: Brucellosis is an infectious disease caused by 
Brucella, that may require antibiotics to treat.
BP4ER: Have any medicine? Antibiotics are usually used for 
brucellosis, like tetracycline.

Figure 3: A case study on comparative responses
generated from various models, where ”P” repre-
sents patient descriptions and ”R” represents sys-
tem responses.

In case 2, upon receiving the patient’s self-
reported information, BP4ER predicts the next di-
agnostic decision and generates a response to in-
quire about the patient’s drug history. This ratio-
nale closely aligns with medical logic. Conversely,
other models offer advice without a comprehen-
sive understanding of the patient’s medical back-
ground, lacking medical rationale.

In case 3, it is apparent that ChatGLM-6B is lim-
ited to providing only approximate antibiotic drug
recommendations. Conversely, BP4ER exhibits a
more advanced ability by not only inquiring about
the patient’s medication history but also providing
specific recommendations for antibiotic drugs suit-
able for the individual’s condition. Despite this ad-
vanced ability, BP4ER still falls short when com-
pared to the gold standard response, particularly
in accurately determining the appropriate dosage
and duration for medication use. This finding un-
derscores the crucial necessity of integrating ex-
pert medical knowledge into the model to achieve
precision for effective medical decision-making.

5. Conclusion

In this paper, we propose BP4ER, a novel med-
ical dialogue generation (MDG) model. BP4ER
employs a least-to-most prompting strategy to
guide a large language model (LLM) towards ex-
plicit reasoning. This strategy involves breaking
down MDG into a sequence of interrelated sub-
questions, making the process closer to real med-
ical reasoning. Each sub-question is driven by an-
swers obtained from resolving preceding queries.
Furthermore, the model incorporates two iterative
bootstrapping techniques for prompting, enhanc-
ing the LLM’s explicit reasoning ability. Through
the iterative approach, BP4ER autonomously cor-
rects intermediate errors, leading to more precise
and coherent medical responses. These features
collectively enhance the transparency and inter-
pretability of the medical reasoning process while
improving the overall quality of the generated med-
ical dialogue responses. Both automatic and hu-
man evaluations consistently show BP4ER outper-
forming existing state-of-the-art methods.

6. Limitations

Given that the BP4ER relies on large language
models and prompts to direct response generation,
it necessitates greater computational resources to
execute the reasoning chain and bootstrap prompt-
ing prior to generating responses. Another cru-
cial limitation lies in the potential for the model to
generate incorrect or nonsensical responses dur-
ing the reasoning process. This risk arises from
the inherent reliance on the reasoning ability of
LLMs, which possess general knowledge but lack
the specialized medical knowledge for accurate
medical dialogue generation. As a result, there’s
a notable gap between the model’s understanding
of medical concepts. In future work, we hope to ex-
plore the introduction of medical knowledge to fur-
ther enhance the model’s explicit reasoning ability
in the medical domain.
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