@inproceedings{xue-etal-2024-breakthrough,
title = "Breakthrough from Nuance and Inconsistency: Enhancing Multimodal Sarcasm Detection with Context-Aware Self-Attention Fusion and Word Weight Calculation.",
author = "Xue, Hongfei and
Xu, Linyan and
Tong, Yu and
Li, Rui and
Lin, Jiali and
Jiang, Dazhi",
editor = "Calzolari, Nicoletta and
Kan, Min-Yen and
Hoste, Veronique and
Lenci, Alessandro and
Sakti, Sakriani and
Xue, Nianwen",
booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)",
month = may,
year = "2024",
address = "Torino, Italia",
publisher = "ELRA and ICCL",
url = "https://aclanthology.org/2024.lrec-main.224",
pages = "2493--2503",
abstract = "Multimodal sarcasm detection has received considerable attention due to its unique role in social networks. Existing methods often rely on feature concatenation to fuse different modalities or model the inconsistencies among modalities. However, sarcasm is often embodied in local and momentary nuances in a subtle way, which causes difficulty for sarcasm detection. To effectively incorporate these nuances, this paper presents Context-Aware Self-Attention Fusion (CAAF) to integrate local and momentary multimodal information into specific words. Furthermore, due to the instantaneous nature of sarcasm, the connotative meanings of words post-multimodal integration generally deviate from their denotative meanings. Therefore, Word Weight Calculation (WWC) is presented to compute the weight of specific words based on CAAF{'}s fusion nuances, illustrating the inconsistency between connotation and denotation. We evaluate our method on the MUStARD dataset, achieving an accuracy of 76.9 and an F1 score of 76.1, which surpasses the current state-of-the-art IWAN model by 1.7 and 1.6 respectively.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="xue-etal-2024-breakthrough">
<titleInfo>
<title>Breakthrough from Nuance and Inconsistency: Enhancing Multimodal Sarcasm Detection with Context-Aware Self-Attention Fusion and Word Weight Calculation.</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hongfei</namePart>
<namePart type="family">Xue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Linyan</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yu</namePart>
<namePart type="family">Tong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rui</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jiali</namePart>
<namePart type="family">Lin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dazhi</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Veronique</namePart>
<namePart type="family">Hoste</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alessandro</namePart>
<namePart type="family">Lenci</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sakriani</namePart>
<namePart type="family">Sakti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nianwen</namePart>
<namePart type="family">Xue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>ELRA and ICCL</publisher>
<place>
<placeTerm type="text">Torino, Italia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Multimodal sarcasm detection has received considerable attention due to its unique role in social networks. Existing methods often rely on feature concatenation to fuse different modalities or model the inconsistencies among modalities. However, sarcasm is often embodied in local and momentary nuances in a subtle way, which causes difficulty for sarcasm detection. To effectively incorporate these nuances, this paper presents Context-Aware Self-Attention Fusion (CAAF) to integrate local and momentary multimodal information into specific words. Furthermore, due to the instantaneous nature of sarcasm, the connotative meanings of words post-multimodal integration generally deviate from their denotative meanings. Therefore, Word Weight Calculation (WWC) is presented to compute the weight of specific words based on CAAF’s fusion nuances, illustrating the inconsistency between connotation and denotation. We evaluate our method on the MUStARD dataset, achieving an accuracy of 76.9 and an F1 score of 76.1, which surpasses the current state-of-the-art IWAN model by 1.7 and 1.6 respectively.</abstract>
<identifier type="citekey">xue-etal-2024-breakthrough</identifier>
<location>
<url>https://aclanthology.org/2024.lrec-main.224</url>
</location>
<part>
<date>2024-05</date>
<extent unit="page">
<start>2493</start>
<end>2503</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Breakthrough from Nuance and Inconsistency: Enhancing Multimodal Sarcasm Detection with Context-Aware Self-Attention Fusion and Word Weight Calculation.
%A Xue, Hongfei
%A Xu, Linyan
%A Tong, Yu
%A Li, Rui
%A Lin, Jiali
%A Jiang, Dazhi
%Y Calzolari, Nicoletta
%Y Kan, Min-Yen
%Y Hoste, Veronique
%Y Lenci, Alessandro
%Y Sakti, Sakriani
%Y Xue, Nianwen
%S Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
%D 2024
%8 May
%I ELRA and ICCL
%C Torino, Italia
%F xue-etal-2024-breakthrough
%X Multimodal sarcasm detection has received considerable attention due to its unique role in social networks. Existing methods often rely on feature concatenation to fuse different modalities or model the inconsistencies among modalities. However, sarcasm is often embodied in local and momentary nuances in a subtle way, which causes difficulty for sarcasm detection. To effectively incorporate these nuances, this paper presents Context-Aware Self-Attention Fusion (CAAF) to integrate local and momentary multimodal information into specific words. Furthermore, due to the instantaneous nature of sarcasm, the connotative meanings of words post-multimodal integration generally deviate from their denotative meanings. Therefore, Word Weight Calculation (WWC) is presented to compute the weight of specific words based on CAAF’s fusion nuances, illustrating the inconsistency between connotation and denotation. We evaluate our method on the MUStARD dataset, achieving an accuracy of 76.9 and an F1 score of 76.1, which surpasses the current state-of-the-art IWAN model by 1.7 and 1.6 respectively.
%U https://aclanthology.org/2024.lrec-main.224
%P 2493-2503
Markdown (Informal)
[Breakthrough from Nuance and Inconsistency: Enhancing Multimodal Sarcasm Detection with Context-Aware Self-Attention Fusion and Word Weight Calculation.](https://aclanthology.org/2024.lrec-main.224) (Xue et al., LREC-COLING 2024)
ACL