
LREC-COLING 2024, pages 2526–2536
20-25 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

2526

Bring Invariant To Variant: A Contrastive Prompt-based Framework
for Temporal Knowledge Graph Forecasting

Ying Zhang1∗, Xinying Qian1, Yu Zhao1, Baohang Zhou1, Kehui Song1, Xiaojie Yuan1

1College of Computer Science, VCIP, TMCC, TBI Center, Nankai University, China
{yingzhang, yuanxj}@nankai.edu.cn

{qianxinying, zhaoyu, zhoubaohang, songkehui}@dbis.nankai.edu.cn

Abstract
Temporal knowledge graph forecasting aims to reason over known facts to complete the missing links in the future.
Existing methods are highly dependent on the structures of temporal knowledge graphs and commonly utilize
recurrent or graph neural networks for forecasting. However, entities that are infrequently observed or have not been
seen recently face challenges in learning effective knowledge representations due to insufficient structural contexts.
To address the above disadvantages, in this paper, we propose a Contrastive Prompt-based framework with Entity
background information for TKG forecasting, which we named CoPET. Specifically, to bring the time-invariant entity
background information to time-variant structural information, we employ a dual encoder architecture consisting
of a candidate encoder and a query encoder. A contrastive learning framework is used to encourage the query
representation to be closer to the candidate representation. We further propose three kinds of trainable time-variant
prompts aimed at capturing temporal structural information. Experiments on two datasets demonstrate that our
method is effective and stays competitive in inference with limited structural information. Our code is available at
https://github.com/qianxinying/CoPET.

Keywords: temporal knowledge graph forecasting, pre-trained language models, contrastive learning

1. Introduction

Knowledge Graphs(KGs) are structured represen-
tations of knowledge in the form of a triplet (sub-
ject, predicate, object). Various knowledge graphs
have been constructed and widely applied in down-
stream applications, such as recommendation sys-
tems (Guo et al., 2020) and question answer-
ing (Zhang et al., 2018). However, in the real world,
some facts change over time. For example, the
fact (Lionel Messi, member of, FC Barcelona) is
invalid after Messi announced his departure from
FC Barcelona in 2021. Therefore, some KGs store
time-aware facts or events as quadruple (subject,
predicate, object, timestamp), and such KGs are
called temporal knowledge graphs(TKGs).

Since existing TKGs remain incomplete, given a
TKG with timestamps ranging from t0 to tn, TKG
forecasting task(extrapolation) (Jin et al., 2019)
aims at predicting missing entities in future times-
tamps t > tn, which is more challenging and
less-explored than completing the facts in ob-
served timestamps(interpolation) (García-Durán
et al., 2018) between t0 and tn.

To mine the changes in TKGs over time, some
methods (Jin et al., 2019) leverage recurrent neural
networks (RNNs) (Zaremba et al., 2014) or graph
neural networks (GNNs) (Zhou et al., 2020) to ex-
plore the topological relations among entities in
TKGs and the temporal dependencies among facts.
Meanwhile, some methods (Xu et al., 2023) incorpo-
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(a) The count of entities neighbors and MRR results on
WIKI and YAGO datasets of RE-NET.
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(b) An example of far-future prediction with entity back-
ground information.

Figure 1: Two challenges in TKG forecasting task
with limited structural information.

rate pre-trained language models(PLMs), but they
still rely on the temporally adjacent facts to model
the representations. Thus, they face challenges
with limited structural information:

(1) Long-tailed entities prediction is to pre-
dict entities with few neighbors. There are many
long-tailed entities in KGs (Tan et al., 2023) that
have insufficient neighbors. As illustrated in Fig-
ure 1a, on the WIKI dataset, approximately 20.12%

https://github.com/qianxinying/CoPET
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Method Multi-step
Inference

Future
Prediction

Inductive
Prediction

Reasoning Information
time structure text description

BoxTE (Interpolated) ✓ × × ✓ ✓ × ×
Hismatch (GNN-based) × ✓ × ✓ ✓ × ×

PPT (PLM-based) ✓ ✓ ✓ ✓ ✓ ✓ ×
SimKGC (static PLM-based) ✓ × ✓ × × ✓ ✓

CoPET ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Comparison of our model CoPET with other models in terms of their capabilities in multi-step
inference, future prediction, inductive prediction, and information utilized during reasoning.

of entities have no neighbors, and 53.93% have
fewer than 5 neighbors. However, existing mod-
els primarily learn knowledge representations from
historical temporal structures. Consequently, their
performance tends to deteriorate as the number of
neighboring entities decreases. For example, the
traditional structured-based method RE-NET (Jin
et al., 2019) struggles to infer answers when enti-
ties have no neighbors, as shown in Figure 1a.

(2) Far-future prediction is a significant task that
has not received much attention so far. As shown in
Figure 1b, far-future prediction refers to forecasting
events over extended temporal horizons, posing
particular challenges due to the limited structural
information derived from recent subgraphs. More-
over, traditional methods often focus on modeling
the subgraph sequence relevant to the query, which
could result in a gradual decline in reasoning abili-
ties over time (Han et al., 2021).

Hence, it is insufficient for existing methods to
solely incorporate structural information while dis-
regarding the entity background information, par-
ticularly when confronted with the challenges men-
tioned above. For instance, in Figure 1b, predicting
which team Messi would play for in 2023 can be
challenging if we solely rely on historical information.
However, by considering the neighbor information
(Messi resides in Paris in 2023) and leveraging the
background information of the entity (Paris Saint-
Germain Club: a football club in Paris), we can
easily infer the answer. Therefore, we propose to
bring time-invariant entity background information
to time-variant structural information.

In this paper, we introduce CoPET, a Contrastive
Prompt-based framework with Entity background in-
formation for TKG forecasting. Specifically, we treat
the TKG forecasting task as a matching process be-
tween time-variant queries and time-invariant can-
didates. A dual-encoder architecture is employed
to model the two types of embeddings separately.
First, we align the entities with their correspond-
ing Wikidata pages to obtain entity descriptions
and names. Whenever an entity appears, we con-
catenate its name with its description to form the
time-invariant entity background information. We
further introduce three trainable prompts, namely

predicate prompts, time prompts, and neighbor
prompts, to learn temporal structural information in
queries. Considering the repeatability of historical
events, we propose a history-based re-ranking strat-
egy to improve the accuracy. Experiments on two
datasets demonstrate the effectiveness of CoPET.
More experiments prove that CoPET stays compet-
itive in inference with limited structural information.
Overall, our work makes the following contributions:

• To the best of our knowledge, we are the first
to incorporate time-invariant entity background
information for the TKG forecasting task and
address two challenges with limited structural
information in existing methods.

• We propose a contrastive prompt-based frame-
work for the TKG forecasting task, CoPET.
We design templates with time-invariant en-
tity background information and three kinds of
time-variant prompts for TKGs.

• Experiments on two datasets demonstrate that
CoPET is effective and stays competitive with
limited structural information.

2. Related work

2.1. Temporal Knowledge Graph
Reasoning

The interpolation setting of TKG reasoning aims
to complete missing events at past timestamps.
TTransE (Jiang et al., 2016) extends the idea
of TransE (Bordes et al., 2013) by incorporat-
ing temporal order information among facts. TA-
TransE and TA-DistMult (García-Durán et al., 2018)
are also extended versions of TransE and Dist-
Mult (Yang et al., 2014) that incorporate the tempo-
ral embeddings. DE-SimplE (Goel et al., 2020) ap-
plies the general diachronic embedding function to
obtain the entity representation. BoxTE (Messner
et al., 2022) extends from the KGC model BoxE (Ab-
boud et al., 2020) via the relation-specific transfer
matrix. However, these approaches cannot obtain
the representations of the unseen timestamps and
are unsuitable for the TKG forecasting task.
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For the TKG forecasting task, RE-NET (Jin et al.,
2019) applies GRU to transmit information of past
event sequences sequentially and uses GCN as
the aggregator. CyGNet (Zhu et al., 2021) adopts
a copy-generation mechanism to identify repetitive
events. TANGO (Han et al., 2021) employs neural
ordinary differential equations to model the TKGs.
These methods rely on historical structural infor-
mation for reasoning, leading to poor performance
on long-tailed entities. Some recent studies fo-
cus on the single-step inference that utilizes all the
ground truth quadruples in train/valid/test set be-
fore the current timestamp, TITer (Sun et al., 2021)
adopts reinforcement learning and designs a novel
time-shaped reward based on Dirichlet distribution.
Hismatch (Li et al., 2022) applies two structure en-
coders to capture the information contained in the
historical structures of the query and candidate
entities. However, they could not address the far-
future prediction challenge since they rely on closer
ground truth. In contrast, we focus on multi-step
inference, utilizing only the quadruples before the
timestamp of the train set.

2.2. Pre-trained Language Models for
Knowledge Graph Reasoning

Pre-trained Language Models(PLMs), including
BERT (Devlin et al., 2018), GPT (Liu et al., 2021),
are first pre-trained on massive amounts of un-
labeled text corpora and then fine-tuned. They
have been increasingly prevalent in NLP, but lack
domain-specific knowledge (Yao et al., 2019).

Due to their ability to capture context informa-
tion, PLM-based models have been considered
for knowledge graph reasoning in recent years.
KG-BERT (Yao et al., 2019) directly concatenates
subject, predicate, and object from triples as in-
put to PLMs, MTL-KGC (Choi et al., 2021) intro-
duces multi-task learning, and StAR (Wang et al.,
2021) integrates structured knowledge into text en-
coders. These methods are still inferior to structure-
based methods. To improve the performance of the
PLM-based method, SimKGC (Wang et al., 2022a)
and LMKE (Wang et al., 2022b) adopt contrastive
learning, PKGC (Lv et al., 2022) converts each
triple into natural prompt sentences with templates.
CS-PromKG (Chen et al., 2023) employs condi-
tional soft prompts, which are generated by the
embeddings of entities and relations. However,
these methods are only applicable to static settings
or interpolation tasks, and thus cannot be directly
employed in TKG forecasting tasks. SToKE (Gao
et al., 2023) transforms structural and temporal
contexts into a structured event sequence. But it
only focuses on interpolated settings. ECOLA (Han
et al., 2022) is the first to enhance temporal knowl-
edge embedding with temporally textual informa-

tion. Nevertheless, acquiring descriptions for each
quadruple over time is difficult. PPT (Xu et al., 2023)
utilizes the PLMs masked token prediction task to
solve the TKG forecasting task. However, it relies
on temporally adjacent facts information to predict
future facts without considering entity background
information of entities. CoPET, on the other hand,
combines time-invariant entity background informa-
tion and time-variant structural information, effec-
tively tackling both challenges under the condition
of limited structural information. Table 1 gives a
comparison of the most relevant related works.

3. Method

3.1. Preliminaries
Temporal knowledge graph G = {E ,P, T ,Q} is
a directed graph where vertices are a set of en-
tities E , and the edges are a set of predicates
∈ P with timestamps T . The quadruple set Q =
{(s, p, o, t)} ⊆ E × P × E × T represents the time-
variant facts, where s and o are subject entity and
object entity, p is predicate between s and o at
timestamp t.

The TKG forecasting task aims at completing
the missing facts of future times. Given a partic-
ular query (sq, pq, ?, tq) , TKG forecasting model
predicts the object entity with a series of facts
known before tq: {(s, p, o, t)|(s, p, o, t) ∈ Q, t < tq}.
For each quadruple (s, p, o, t), we add its inverse
quadruple (o, p−1, s, t) for subject prediction, where
p−1 represents the inverse predicate of p.

3.2. Overview
Figure 2 shows our proposed framework CoPET, a
Contrastive Prompt-based framework for TKG fore-
casting. We adopt the bi-encoder architecture that
encodes time-variant queries (s, p, ?, t) and candi-
date entities e ∈ E with Query Encoder and Candi-
date Encoder, respectively. The two encoders are
initialized with the same PLMs and do not share pa-
rameters. The score function ϕ(s, p, e, t) calculates
the similarity between query embedding and candi-
date embedding as the plausibility of the quadruple.

In CoPET, we aim to bring time-invariant entity
background information to time-variant knowledge
representations to solve the challenges with lim-
ited structural information. Thus, we first design
the templates for queries and candidates to obtain
the time-invariant entity background information.
Moreover, we transform the temporal structures of
TKGs into trainable time-variant prompts and add
the prompts into query templates. During the train-
ing phase, CoPET utilizes contrastive loss to effi-
ciently distinguish the knowledge representations
in different timestamps. In the inference phase,
CoPET first calculates the matching score between



2529

[CLS] George Jonas: 
Canadian writer [𝑅𝑅𝑅𝑅]1

𝑝𝑝 [𝑁𝑁𝑅𝑅]𝑠𝑠 2016died in[𝑅𝑅𝑅𝑅]2
𝑝𝑝 [𝑇𝑇𝑅𝑅]𝑡𝑡
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Figure 2: The overall architecture of CoPET. Query Encoder takes the query along with time-invariant
entity background information and time-variant prompts as input, and Candidate Encoder takes the
time-invariant information of candidate entities as input. Cosine similarity is used to calculate the score
between the outputs. Based on the history of TKGs, we utilize a re-ranking strategy.

query embedding and candidate embedding. Then,
a history-based re-ranking strategy is adopted to
capture history repeatability.

3.3. Query Encoder
The Query Encoder aims at encoding both the tem-
poral structure information of the query (s, p, ?, t)
and the time-invariant context of subject entity s.
To this end, we propose to transform both informa-
tion into natural language sequences and design
templates to combine them in the input of PLMs.

We first convert the query into natural language
sequences as Tq(s, p, t) ="[CLS][subject:
description][predicate][timestamp]",
where the entity descriptions are concatenated
with the subject name. Take Figure 2 as an
example, the template of the query (George Jonas,
died In, ?, 2016) would be "[CLS] George Jonas:
Canadian writer [SEP] died in [SEP] in 2016.".

We obtain the query embeddings from the pro-
jected hidden state of [CLS] token of query se-
quences as eq = QueryEncoder(Tq(s, p, t)) =
Wqh

[CLS]
q , where Wq ∈ Remb×d projects the hid-

den size of PLMs d to embedding size emb.
Moreover, motivated by the progress of prompt

learning (Lester et al., 2021), we further transform
the temporal structural information in TKGs into
three types of trainable soft prompts and insert the
prompts in the template. The token embeddings of
predicate prompts and time prompts are randomly
initialized, whereas the neighbor prompts are initial-
ized using the mean pooling of sampled relational
neighbor embeddings. We discuss the effect of
templates with varying orders in Section 4.4.4.

Predicate prompts. For each relational pred-
icate p ∈ P, we add three soft prompts into vo-
cabulary as special tokens {[RP]p

i }3i=1. Then we
replace the [SEP] in the template with the three
special tokens following PKGC (Lv et al., 2022).

Time prompts. Similar to predicate prompts,

for each timestamp t ∈ T , we add a special token
[TP]t and insert it between in and [timestamp].

Neighbor prompts. The association between
the subject entity and its relational neighbors usu-
ally implies a possible object entity and better rep-
resents the query. For capturing the neighbor-
ing context in TKGs, we propose neighbor prompt
[NP]s for the subject entity, whose token embed-
ding is replaced by the mean pooling of sampled
neighbor query representations of s as shown in
Equation (1). The neighbor set of s at time t is
Rs = {(p′, o′, t′)|(s, p′, o′, t′) ∈ Q, t′ < t}. It con-
sists of both in and out neighbors of s since we add
the inverse quadruple in TKGs.

e[NP]s =
1

|Rs|
∑

(p′,o′,t′)∈Rs

QueryEncoder(Tq(p
′, o′, t′))

(1)

3.4. Candidate Encoder

Candidate Encoder aims at encoding the candi-
date entities e ∈ E with the time-invariant context.
So even with less structural information, i.e. long-
tailed entity or far-future prediction, CoPET could
still learn entity representations from the entity back-
ground information of the entity.

The template for the candidate entity is
Tc(e) = "[CLS] [entity: description].
[SEP]". We also obtain the candidate em-
beddings from the projected hidden states of
[CLS] token of candidate sequence as ec =
CandidateEncoder(Tc(c)) = Wch

[CLS]
c , where

Wc ∈ Remb×d projects the hidden size of PLMs
d to embedding size emb.

3.5. Training

We utilize InfoNCE loss with additive margin (Chen
et al., 2020; Yang et al., 2019) to train the model
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as shown in Equation (2).

L = − log
e(ϕ(s,p,o,t)−γ)/τ

e(ϕ(s,p,o,t)−γ)/τ +
∑

o′∈No eϕ(s,p,o
′,t)/τ

(2)

ϕ(s, p, o, t) = cos(eq, ec) =
eq · ec

||eq|| × ||ec||
= eq · ec (3)

We adopt cosine similarity similarity as score
function ϕ(s, p, o, t) = cos(eq, ec). Due to the em-
beddings eq and ec are L2 normalized, the cosine
similarity is simplified as the dot product between
them as shown in Equation (3). For efficient train-
ing, we simply apply in-batch negative sampling
strategy and the other candidate entities o′ in batch
besides the ground truth entity o is seen as the neg-
ative set N o of the quadruple. The contrastive loss
with additive margin γ > 0 encourages the model
to maximize the similarity between the query and
the ground truth entity ϕ(s, p, o, t). The temperature
parameter τ adjusts the smoothness of the score
distribution. γ and τ are hyper-parameters.

3.6. Inference
With the query embedding eq and the candidate
embedding ec, the score function ϕ(s, p, o, t) calcu-
lates the similarity between the two embeddings
as the plausibility of the quadruple. We adopt the
cosine similarity as shown in Equation (3). For a
particular query (s, p, ?, t), we calculate the similar-
ity distribution F (s, p, t) ∈ R|E| between the query
and all the entities c ∈ E , and the candidate with the
highest score is regarded as the predicted entity
as shown in Equation (4).

argmax
c

F (s, p, t) = argmax
c

[ϕ(s, p, c, t)], c ∈ E (4)

In terms of inference time complexity, consider-
ing BERT as an example, each query (s, p, ?, t) in
the test set Qtest requires O(2× 2× |Qtest|) BERT
forward passes computations: one for computing
the embeddings of its neighbors, and another for
computing the embeddings of the query itself. In
total, CoPET requires O(4× |Qtest|+O(E)) BERT
forward passes computations.

3.7. History-based Re-ranking
Considering the repeatability of historical events
(Zhu et al., 2021), we propose a re-ranking strategy
based on the history of entities to increase the score
of entities that have appeared before and minimize
the scores of unrelated entities.

Specifically, we build a history vocabulary
H(s, p, t) for each query(s, p, ?, t), which is a |E|-
dimensional multi-hot vector. Each element of
H(s, p, t) is the frequency of the entity e that
(s, p, e, t′) ∈ Q, t′ < t.

For modeling history while preserving the simi-
larity distribution from knowledge representations,

Dataset YAGO11k Wikidata12k
# Train 161,286 539,286
# Valid 19,523 67,538
# Test 20,026 63,110
# Entity 10,623 12,554
# Relation 10 24
Timegap 1 year 1 year

Table 2: The statistical information of datasets for
TKG forecasting task.

instead of enlarging the probability of the seen
entity in H(s, p, t), we decrease the probability of
the unseen entity in history that are less related
to (s, p). We use Ḣ(s, p, t) to convert the unseen
entity frequency in H(s, p, t) into a small negative
number while the seen entity into 0. By adding
the similarity scores F (s, p, t) and Ḣ(s, p, t) to get
F ′(s, p, t) ∈ R|E| as shown in Equation (5), we can
minimize the probability of the unrelated entities
based on their history.

F ′(s, p, t) = F (s, p, t) + Ḣ(s, p, t) (5)

4. Experiments

4.1. Experimental Settings
Datasets. Our model is evaluated on two pub-
lic TKG datasets: Wikidata12k (WIKI) (Leblay and
Chekol, 2018) and YAGO11k (YAGO) (Mahdisoltani
et al., 2014). Both WIKI and YAGO are knowledge
bases that store facts with corresponding times-
tamps. We use subsets of these datasets that have
a time granularity of years. We adopt the same
dataset split strategy as presented in (Jin et al.,
2019) and split the dataset into train/valid/test by
timestamps, resulting in train time < valid time < test
time. To obtain time-invariant entity descriptions
for WIKI and YAGO, we align each entity with its
corresponding Wikidata page and extract the de-
scription section as the entity’s description. Table
2 shows the dataset statistics.

Evaluation Metrics. We utilize standard metrics
in link prediction tasks to evaluate our model: mean
reciprocal rank (MRR) and Hits@k (k∈ {1, 3, 10}).
MRR is the average reciprocal rank of all test triples.
Hits@k calculates the proportion of correct entities
ranked among the top-k. MRR and Hits@k are
reported under the time-aware filtered setting (Han
et al., 2020), which ignores the quadruples occur-
ring at the query time. All metrics are computed
by averaging over two ways: subject prediction
(?, p, o, t) and object prediction (s, p, ?, t).

Hyperparameters. We initialize both encoders
with bert-base-uncased (English). We choose
AdamW (Kingma and Ba, 2014) as our optimizer.
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The learning rate is set as 1e-5. The temperature
value τ is initialized as 0.05, and the additive margin
for InfoNCE loss is 0.02. We sampled the 5 neigh-
bors closest to the query timestamps. Models are
trained with batch size 256 and in 10 epochs.

Baselines. We compare our model with
three types of KG reasoning models, static mod-
els, temporal models under interpolation set-
ting and extrapolation setting, and PLM-based
models. (1) Static models: DistMult (Yang
et al., 2014), TuckER (Balažević et al., 2019),
CompGCN (Vashishth et al., 2019). (2) Tempo-
ral interpolation models: TTransE (Jiang et al.,
2016), TA-DistMult (García-Durán et al., 2018), DE-
SimplE (Goel et al., 2020), TNT-ComplEx (Lacroix
et al., 2020). (3) Temporal extrapolation mod-
els: RE-Net (Jin et al., 2019), CyGNet (Zhu
et al., 2021), TANGO-TuckER (Han et al., 2021).
(4) PLM-based models: SimKGC (Wang et al.,
2022a), CS-PromKG (Chen et al., 2023), ECOLA-
DyERNIE (Han et al., 2022), PPT (Xu et al., 2023).
For SimKGC and CS-PromKG, as they are static
models, we follow the method in Chen et al. (2023),
adding timestamp into its input.

4.2. Main Result
We compare CoPET with baselines in Table 3. We
reuse the baseline results in group (1)-(3) reported
by Han et al. (2021).

(1) Among static methods, CoPET outperforms
all static models, emphasizing the significance of
incorporating temporal information in TKGs.

(2) Interpolation methods such as TTransE, TA-
DistMult, DE-SimplE, and TNT-ComplEx exhibit
lower performance on the two datasets because
they lack the capability to proficiently capture and
reason about future temporal dependencies.

(3) In comparison to extrapolation methods,
CoPET surpasses RE-NET, CyGNet, and TANGO-
TuckER on both datasets. This can be attributed
to the limited structural information available in the
WIKI and YAGO datasets. The relatively small num-
ber of neighbors for entities in these datasets hin-
ders the effectiveness of structural methods. How-
ever, by bringing time-invariant entity background
information, CoPET achieves better results.

Compared with (4) PLM-based methods, CoPET
also outperforms the KGC models SimKGC, CS-
PromKG, and the TKGC models ECOLA-DyERNIE
and PPT on both datasets. For the KGC models
SimKGC and CS-PromKG, just adding timestamps
into their input has already achieved good results,
which shows that PLMs can bring improvement in
TKGC. The superiority of CoPET can be attributed
to its effective utilization of time information. For
the TKGC models ECOLA-DyERNIE and PPT, we
achieve better results than them. These methods
do not consider time-invariant information during

modeling, causing their representations to change
over time. CoPET, on the other hand, combines
time-invariant entity background information and
time-variant structural information and therefore
achieves better results.

4.3. Ablation Study
To further analyze how each component of CoPET
contributes to the final results, we conduct ablation
studies on all datasets under the same settings.
The results are shown in Table 4.

Effect of entities description. We first remove
the description for each entity to investigate the
impact, the result shows a substantial decrease
in performance on both datasets. This suggests
that time-invariant entity description provides cru-
cial background knowledge that significantly en-
hances the reasoning ability of CoPET.

Effect of soft prompts. We replace all the pred-
icate prompts and time prompts with [SEP] token.
After removing prompts, the results significantly de-
creased, indicating that soft prompts can enhance
the learning of knowledge representations.

Effect of neighbor prompts. After removing the
neighbor prompts, the results have also significantly
declined. This demonstrates the importance of
considering temporal structure information in TKGs.

Effect of re-ranking strategy. We utilize a re-
ranking strategy that decreases the probability of
unrelated entities based on the history of their oc-
currences in previous timestamps. The results in-
dicate that the history-based re-ranking strategy
enhances the performance of CoPET. This improve-
ment could be attributed to the historical repeata-
bility across TKGs, which assists in filtering out
unrelated candidates in future timestamps.

4.4. Further Discussion
To further analyze the superior performance of
CoPET compared to other models, we conduct
a series of experiments to gain further insights.

4.4.1. Representations Visualization

To investigate the ability of CoPET to capture and
distinguish entity information of distinct temporal
facts, we visualize the candidate representations
and query representations as shown in Figure 3.

For candidate representations, we visualize the
representations from 5 categories, with 50 entities
randomly selected from each category. The Fig-
ure 3a reveals that entities belonging to the same
category are tightly clustered together, indicating
that the candidate encoder effectively learns high-
quality time-invariant representations.

For query representations, we visualize the repre-
sentations of the subject entity and predicate pairs
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Model WIKI YAGO
MRR ↑ Hits@1 ↑ Hits@3 ↑ Hits@10 ↑ MRR ↑ Hits@1 ↑ Hits@3 ↑ Hits@10 ↑

DistMult (2015) 49.66 46.17 52.81 54.13 54.84 47.39 59.81 68.52
TuckER (2019) 50.01 46.12 53.60 54.86 54.86 47.32 59.63 68.96
CompGCN (2019) 49.88 45.78 52.91 55.58 54.35 46.72 59.26 68.29
TTransE (2016) 29.27 21.67 34.43 42.39 31.19 18.12 40.91 51.21
TA-DistMult (2018) 44.53 39.92 48.73 51.71 54.92 48.15 59.61 66.67
DE-SimplE (2020) 45.43 42.6 47.71 49.55 54.91 51.64 57.30 60.17
TNTComplEx (2020) 45.03 40.04 49.31 52.03 57.98 52.92 61.33 60.69
RE-Net (2021) 49.66 46.88 51.19 53.48 58.02 53.06 61.08 66.29
CyGNet (2021) 33.89 29.06 36.10 41.86 52.07 45.36 56.12 63.77
TANGO-TuckER (2021) 51.60 49.61 52.45 54.87 62.50 58.77 64.73 68.63
SimKGC (2022) 47.28 40.22 51.93 56.70 51.51 43.74 54.45 65.22
CS-PromKG (2023) 34.00 26.43 37.40 46.49 46.49 38.10 52.19 60.88
ECOLA-DyERNIE (2022) 41.22 33.02 45.00 - - - - -
PPT (2023) 53.95 50.05 57.28 60.56 60.42 55.11 64.33 68.70
CoPET 56.32 51.21 58.31 67.70 64.01 59.06 67.65 73.21

Table 3: Performance (in percentage) on WIKI and YAGO. The best results and the second-best ones
are highlighted. We re-implement SimKGC (Wang et al., 2022a) and PPT (Xu et al., 2023) and reuse
results of other baselines in Han et al. (2021).

Model WIKI YAGO
MRR ↑ Hits@1 ↑ Hits@3 ↑ Hits@10 ↑ MRR ↑ Hits@1 ↑ Hits@3 ↑ Hits@10 ↑

CoPET 56.32 51.21 58.31 67.70 64.01 59.06 67.65 73.21
w/o description 49.76 43.29 52.25 57.29 51.38 45.15 53.17 61.09
w/o soft prompts 52.74 45.76 56.14 65.04 52.11 45.79 54.31 64.42
w/o neighbor prompts 51.93 44.03 55.24 65.68 52.50 45.72 55.26 65.65
w/o re-rank 54.75 47.65 58.86 67.28 59.47 53.93 61.71 69.84

Table 4: Ablation experiments results of CoPET. "descriptions" denotes the entity descriptions. "soft
prompts" denotes predicate prompts and time prompts. "re-rank" denotes the re-ranking in Section 3.7

(s, p) at different times. Similarly, we randomly se-
lect 5 pairs at 50 timestamps. The Figure 3b shows
that subject entities and predicate pairs from the
query encoder possess distinct representations at
various timestamps. However, overall, the repre-
sentations are clustered together based on their
semantic information, indicating that CoPET has
the ability to capture both time-invariant and time-
variant information.

4.4.2. Long-tailed Entities Prediction

To evaluate the efficacy of our methods in handling
long-tailed entities, we divide entities into five cat-
egories based on the number of their neighbors.
Figure 4 shows the MRR results of CoPET on each
subset compared to PLM-based methods(PPT,
SimKGC) and structure-based methods(CyGNet
and RE-NET). We also illustrate the count of en-
tities in each subset in the line chart. In terms
of long-tailed entities (categories with fewer than
5 neighbors), CoPET outperforms all other mod-
els. Particularly when entities have 0 neighbors,
structure-based models face challenges in reason-
ing, while CoPET maintains its performance. How-
ever, for popular entities, structure-based methods

generally exhibit superior performance. The suc-
cess of CoPET can be attributed to its utilization
of both time-invariant and time-variant information.
When confronted with limited structural information,
CoPET leverages time-invariant entity background
information to facilitate reasoning, resulting in im-
proved performance on long-tailed entities. On the
other hand, when structural information is available,
CoPET incorporates temporal structural informa-
tion, enabling it to outperform PLM-based methods.

4.4.3. Far-Future Prediction

The reasoning ability of TKG forecasting mod-
els tends to decline over time, while some mod-
els (Li et al., 2022; Sun et al., 2021) can only per-
form single-step reasoning, requiring the feeding
of ground truth data during testing. However, in
some scenarios, it is necessary to predict far-future
facts. Therefore, we regard far-future prediction
as a crucial ability and evaluate the models under
this setting. To analyze the model’s performance
under far-future prediction, we cluster the Hits@10
results based on different timestamps. ∆t denotes
the time interval between the current time and the
last time in the training set.
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(a) Candidate Encoder representations visualization.
We visualize the embeddings from 5 categories, with
50 entities randomly selected from each category.
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(b) Query Encoder representations visualization. We
visualize the embedding of 5 subject entities and predi-
cate pairs (s, p) at 50 time stamps.

Figure 3: Embedding visualizations from Candidate
Encoders and Query Encoder on WIKI dataset with
t-SNE (Van der Maaten and Hinton, 2008).

Figure 5 indicates a downward trend in Hits@10
for all models over time, which is consistent with
our expectations. Although CoPET initially under-
performed compared to CyGNet in both datasets,
its performance eventually surpassed it, and the
declining rate of CoPET is much lower compared
to other models. The excellent performance of
CoPET could be attributed to the incorporation of
time-invariant entity background information in ad-
dition to time-variant structural information. As a
result, when predicting far-future facts without the
support of ground truth data of recent times, CoPET
outperforms all the other methods.

4.4.4. Results of different templates

In this section, we explore the effects of templates
with different soft prompt orders, particularly focus-
ing on the positioning of time information and neigh-
bor prompts. Table 5 shows the MRR results of
different templates. Notably, positioning neighbor
prompts between the subject entity and predicate,
and placing time information at the end, yields the
best results, which is the template used in CoPET.
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(a) Results on YAGO.
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(b) Results on WIKI.

Figure 4: The MRR results of CoPET, PPT,
SimKGC, and CyGNet in different counts of en-
tity neighbors. The line graph displays the number
of quadruples in each category.
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Figure 5: The Hits@10 results of CoPET, PPT,
SimKGC, and CyGNet in different time intervals.

5. Conclusion

In this work, we propose to bring the time-invariant
entity background information to time-variant struc-
tural information and introduce a prompt-based con-
trastive temporal knowledge representation learn-
ing framework with entity background information
named CoPET. To encourage the query represen-
tation to be closer to the candidate representation,
we employ a dual encoder architecture with a con-
trastive learning framework. For time-invariant in-
formation, we obtain entity descriptions by aligning
each entity with Wikidata and concatenating its
description without considering the time. For time-
variant information, we introduce three trainable
time-variant prompts, namely predicate prompts,
time prompts, and neighbor prompts, to learn tem-
poral structural information. Extensive experimen-
tal results reveal that our model outperforms state-
of-the-art baselines and gains better performances
with limited structural information.
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Template MRR
subject [Neighbor] predicate [Time] 59.47
[Time] subject predicate [Neighbor] 58.90
subject predicate [Time] [Neighbor] 58.61
subject predicate [Neighbor] [Time] 58.16
[Time] subject [Neighbor] predicate 57.99

Table 5: Different MRR results of different templates
on YAGO datasets.
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