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Abstract
All state-of-the-art coreference resolution (CR) models involve finetuning a pretrained language model. Whether the
superior performance of one CR model over another is due to the choice of language model or other factors, such
as the task-specific architecture, is difficult or impossible to determine due to lack of a standardized experimental
setup. To resolve this ambiguity, we systematically evaluate five CR models and control for certain design decisions
including the pretrained language model used by each. When controlling for language model size, encoder-based
CR models outperform more recent decoder-based models in terms of both accuracy and inference speed.
Surprisingly, among encoder-based CR models, more recent models are not always more accurate, and the
oldest CR model that we test generalizes the best to out-of-domain textual genres. We conclude that controlling
for the choice of language model reduces most, but not all, of the increase in F1 score reported in the past five years.
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1. Introduction
Coreference resolution (CR) is the task of cluster-
ing spans of text in a discourse that refer to the
same entity or event (Hobbs, 1978, 1979).

All state-of-the-art CR models incorporate su-
pervised finetuning of a pretrained language
model. See Poesio et al. (2023) for a comprehen-
sive survey. We study the question:

To what extent are recent improvements in CR due
to use of a more powerful language model as op-
posed to other design decisions?

To answer this question, we evaluate existing CR
models, controlling for the language model used
in each. We find that at comparable language
model sizes, encoder-based CR models outper-
form decoder-based models in terms of accuracy,
inference speed, and memory usage.

This finding holds when we scale encoder-
based models to sizes larger than existing work.
For instance, when scaled to 1.5B parameters
the encoder-based LingMess model (Otmazgin
et al., 2023) achieves 82.5 CoNLL F1 score on
the CoNLL-2012 Shared Task test set. This is the
same score as the decoder-based ASP model at
11B parameters (Liu et al., 2022).

When we control for additional factors, such as
the search space of supervised training epochs,
we find that the oldest model tested, C2F (Lee
et al., 2018), performs competitively with all other
encoder-based models. Furthermore, C2F gener-
alizes better to out-of-domain textual genres than
all models of comparable size.

Based on our results, we conclude that con-
trolling for the choice of language model reduces

*Equal contribution.

most, but not all, of the increase in F1 score re-
ported in the past five years. Many improvements
in CR model accuracy in may therefore be at-
tributable to use of a stronger language model as
opposed to other design decisions. This finding
suggests that future proposals intended to improve
CR accuracy should carefully consider possible
causes in order to better understand to what extent
improvements are attributable to proposed archi-
tectural changes.

The five CR models that we test in our experi-
ments are: 1) C2F; 2) S2E (Kirstain et al., 2021);
3) WLC (Dobrovolskii, 2021); 4) LingMess; and,
5) Link-Append (Bohnet et al., 2023). See §3.1
for model details. We focus our evaluation on
English-language, document-level, nominal-entity
coreference resolution as formulated in OntoNotes
(Hovy et al., 2006). We additionally test general-
ization to the GAP (Webster et al., 2018) and On-
toGUM (Zhu et al., 2021b) corpora. See §3.3 for
dataset details.

The main contributions of this work are: 1) We
reimplement five state-of-the-art CR models, re-
producing the original, published results. 2) We
show that more recent CR models are not always
more accurate when we control for the choice of
language model and the hyperparameter search
space. 3)We scale up encoder-based CR models
to 1.5B parameters and find that they outperform
decoder-based models of comparable size.

2. Related Work
Existing work has presented controlled compar-
isons of published models, notably in the case
of language model pretraining (Melis et al., 2018;
Nityasya et al., 2023). While similar in motivation
to our work, we focus specifically on CR, with em-
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phasis on the choice of language model.
Previous work has attempted to better under-

stand state-of-the-art CR models based on tar-
geted error analyses (Stoyanov et al., 2009; Lu
and Ng, 2020) and model generalization across
datasets (Toshniwal et al., 2021; Žabokrtský et al.,
2022; Porada et al., 2023); however, limited work
has systematically evaluated existing model de-
sign. Martschat and Strube (2015) performed a
comprehensive evaluation of CR models, evalu-
ating pre-neural architectures. More recent work
has focused on analyzing particular steps in CR
model architecture design (Toshniwal et al., 2020;
Xu and Choi, 2020; Lai et al., 2022).

Many existing CR models include ablations al-
lowing for pairwise comparison between certain
models (Dobrovolskii, 2021; Liu et al., 2022); how-
ever, our study provides novel insights in that we
train all models with the same competitive lan-
guage model, where possible. Our results reveal
the accuracy of C2F to be underestimated in ex-
isting comparisons.

3. Methods
In this section, we introduce details of each model,
the factors that we control for, and the datasets
used for evaluation.

3.1. Models
We focus our evaluation on four encoder-based
models and one decoder-based model, all of
which reported state-of-the-art accuracy at their
respective time of publication.

3.1.1. Encoder-based Models
C2F The C2F (Coarse-to-Fine) model (Lee et al.,
2018) is an extension of the earlier E2E (Lee et al.,
2017). E2E functions by encoding spans of text as
contextualized vectors, and then pairwise scoring
these vector representations using a task-specific
head. C2F extends E2E with an intermediate bi-
linear scoring function that filters down the number
of spans considered. Lee et al. (2018) also pro-
posed higher-order inference (HOI) and originally
evaluated both E2E+C2F and E2E+C2F+HOI. We
specifically consider only E2E+C2F, which we re-
fer to as the C2F model, because HOI is known
to marginally affect performance (Xu and Choi,
2020). While the original C2F proposal did not
finetune the language model encoder, we follow
the hyperparameters of Joshi et al. (2019), which
was the first work to do so.

S2E The S2E (Start-to-End) model (Kirstain
et al., 2021) is based on C2F with the main dis-
tinction that span representations are created us-
ing only the embeddings of the first and last to-
ken in the span. By contrast, span representations

Model Language Model Prior Ours

C2F BERT-large 76.9 77.1
S2E Longformer-large 80.3 80.4
WLC RoBERTa-large 81.0 81.0
LingMess Longformer-large 81.4 81.4
Link-Append mT5-XXL 83.3 83.3

Table 1: Test set performance on OntoNotes
(CoNLL-2012) as reported in prior work (“prior”)
and for our reimplementation of the model (“ours”).
For each model, we use the best configuration of
the respective prior work.

in C2F are a weighted sum of all token embed-
dings. S2E was motivated as requiring less mem-
ory while maintaining accuracy.

WLC TheWLCmodel (Word-Level Coreference;
Dobrovolskii, 2021) is also based on C2F. In WLC,
individual tokens are scored as candidate men-
tions, each representing the headword of some
span. WLC was motivated as being faster than
C2F while also more accurate when using a
RoBERTa language model (Liu et al., 2019).

LingMess Otmazgin et al. (2023) proposed
LingMess as a direct extension of S2E by in-
creasing the number of task-specific, span-scoring
heads. LingMess significantly improved accuracy
when using a Longformer language model (Belt-
agy et al., 2020) as the encoder.

3.1.2. Decoder-based Models
Two competitive decoder-based CR models have
been proposed in the literature: ASP (Liu et al.,
2022) and Link-Append. Of these we evaluate
Link-Append, which reported a higher F1 score on
OntoNotes, although we compare against ASP us-
ing published numbers where possible.

Link-Append Bohnet et al. (2023) proposed
Link-Append, a method to finetune a language
model for CR purely as a sequence generation
task. For each sentence in the input document,
a language model is trained to output a string of
all coreferring mentions in the sentence. When
used to finetune the 13B parameter mT5 language
model (Xue et al., 2021), Link-Append demon-
strated state-of-the-art accuracy.

3.1.3. Implementation
We reimplement all models using Hugging Face’s
Transformers library (Wolf et al., 2020) follow-
ing each model’s original hyperparameters.* This
standardized setting allows for comparison of em-
pirical inference speed and memory usage. Ad-
ditionally, we can easily control for factors such

*Our code is available at https://github.com/
ianporada/coref-reeval

https://github.com/ianporada/coref-reeval
https://github.com/ianporada/coref-reeval
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as the language model used, whereas existing im-
plementations often require manually-run prepro-
cessing steps. We base our reimplementation on
the original model code when available.

We verify our reimplementation of each model
by comparing against the model accuracy for the
best published configurations (Table 1). As we do
not have the resources to train the Link-Append
model at the original 13 billion parameter size, we
verify our processing steps by running inference
on the released model weights. We also clarify
preprocessing details with the original authors.

3.2. Considered Factors
Our evaluation tests whether improved accuracy
of a CRmodel is due to the proposedmodel design
versus other factors. The main factor that we con-
sider is the language model used in the initializa-
tion of each CR model. More recent models have
also made changes to hyperparameters, such as
the number of supervised training epochs, which
may be responsible for improvements in perfor-
mance. To control for these factors, we evaluate
all models when tuned over the same hyperparam-
eter space, a superset of existing search spaces.

3.2.1. Language Model
Encoder For encoder-based CR models, we
train all models using the same competitive lan-
guage model encoder, DeBERTa (He et al., 2021),
at base and large sizes. We choose DeBERTa due
to its competitive performance on the SuperGLUE
benchmark (Wang et al., 2019).
Encoder v.s. Decoder We do not directly com-
pare encoder versus decoder-based CR mod-
els using the exact same language model be-
cause these classes of CR models in turn rely
on language models of different architectures. In-
stead, we control for language model size. We
train the best performing encoder-based model,
LingMess, using DeBERTa encoders ranging from
138M to 1.5B parameters. We then compare
against Link-Append and ASP decoder-based CR
models trained with languagemodels ranging from
300M to 13B parameters.

3.2.2. Hyperparameter Search Space
Finetuning Epochs More recent models have
been trained for longer: while Joshi et al. (2019)
trained C2F for 20 epochs, LingMess has been
trained for 129 epochs, and the 100k steps used to
train Link-Append amounts to around 160 epochs.
To control for this change as a cause of im-
proved accuracy, we search over training epochs
in {25, 50, 125} for each model.
Task-specific Head Size Post-C2F, encoder-
based CR models use a larger hidden-layer size
for task-specific heads (ffnn_size). To control for

DeBERTa-base (138M)

Method ON OG GAP Mem. Time

C2F 77.3 63.5 77.4 6.2 71.6
S2E 78.6 63.8 78.9 1.3 20.9
WLC 79.1 64.1 78.7 1.4 25.9
LingMess 79.5 64.3 79.4 1.7 54.7

DeBERTa-large (405M)

Method ON OG GAP Mem. Time

C2F 80.8 66.9 79.1 8.7 129.3
S2E 80.5 65.9 79.9 2.7 45.3
WLC 81.0 66.2 79.1 2.8 47.4
LingMess 81.7 66.4 79.4 3.1 81.6

Table 2: Dev. set performance using a DeBERTa
encoder of the given size. ON and OG are evalu-
ated by CoNLL F1 score, GAP by F1 score. Mem.
is max memory at batch size of one (GB), and time
is inference speed in ms/doc at max batch size,
both calculated w.r.t. inference on ON using a sin-
gle 80GB A100 GPU.

the possible impact of this increase, we search
over ffnn_size ∈ {1024, 2048, 3072, 4096} for ev-
ery encoder-based model. This search space in-
cludes all sizes used by existing models.

Input Size At training time, C2F reduces the
length of documents to a small, fixed number
of sentences in order to reduce memory usage,
whereas other models do not have this constraint.
We remove this constraint by training C2F on the
maximum document length that fits into memory.

3.3. Datasets
OntoNotes (ON) As in existing work, we train
and evaluate all models on the coreference an-
notations in the English-language portion of the
OntoNotes 5.0 dataset (Weischedel et al., 2013).
We specifically use the CoNLL-2012 Shared Task
v4 dataset splits (Pradhan et al., 2012). For evalu-
ation, we use the official CoNLL-2012 scorer. The
train/validation/test splits are 1940/343/348 docu-
ment parts, respectively.

OntoGUM (OG) We additionally consider gen-
eralization to out-of-domain genres by evaluat-
ing models on the OntoGUM (OG) dataset (Zhu
et al., 2021b). OG is composed of the corefer-
ence annotations in the English-language GUM
corpus (Zeldes, 2017) transformed heurstically to
followOntoNotes annotation guidelines (Zhu et al.,
2021a). When evaluating on OG, we always eval-
uate on all 213 documents in the dataset.

GAP Finally, we evaluate models on the 2000-
example validation set of the GAP dataset (Web-
ster et al., 2018) as a targeted evaluation of
pronominal anaphora. GAP consists of pronouns
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Model LM Size ON OG GAP Mem. Time

C2F

DeBERTaL

452M 81.2† 66.9 78.1 8.7 129.3
S2E 465M 80.5 65.9† 79.9 2.7 45.3
WLC 664M 81.1† 65.8† 78.8 2.8 47.4
LingMess 561M 81.7 66.4 79.4 3.1 81.6

Link-Append mT5B 582M 66.2 45.8 63.3 5.9 5.2e4
mT5L 1.23B 66.5 45.5 64.9 12.3 1.4e5

Table 3: Dev. set accuracy when controlling for all factors. ON and OG are evaluated by CoNLL F1
score, GAP by F1 score. Mem. is the max memory usage for inference at batch size one (GB), and time
is inference speed (ms/doc) at max batch size, both w.r.t. ON inference using a single 80 GB A100 GPU.
F1 scores without † are statistically significantly different from all other scores based on a permutation
test with α = 0.1 and 10k permutations following Chinchor (1995).

in English Wikipedia annotated for coreference
with respect to two preceding noun phrases. We
score models using the official scorer.

4. Experiments
We now present results controlling for language
model size and hyperparameter search space.
We find that controlling for these factors consider-
ably narrows the gap in accuracy betweenmodels.
More Recent Encoder-based Models Are Not
Always More Accurate First, we test all CR
models in their original configuration, with the min-
imal change that we use a DeBERTa encoder (Ta-
ble 2). When using DeBERTa-large, the difference
in CoNLL F1 on OntoNotes between all models
reduces to less than 1 point absolute, and older
models (C2F and S2E) are most accurate out-of-
domain. Every encoder-based model also per-
forms at or better than its best reported configu-
ration in the literature.

We also control for the hyperparameter search
space by comparing all models in their best hyper-
parameter configuration in Table 3. In this case,
the difference in performance between the oldest
C2F and most recent LingMess encoder models
reduces to 0.5 points absolute on OntoNotes. For
all models in Table 3, full precision, recall, and test
set results are available in our project’s GitHub
repository, as are human-readable model predic-
tions in CoNLL format.
Encoder-based Models Are More Accurate
than Decoder-based Models at Comparable
Sizes Table 3 shows the accuracy and inference
time results for all encoder-based models versus
Link-Append trained at approximately the same
size. At this size, encoder-based models are sub-
stantially both more accurate and faster than Link-
Append.

Accuracy of models trained over a range
of sizes are shown in Figure 1. Up to the
largest LingMess model trained, 1.5B parameters,
LingMess outperforms decoder-based methods.

108 109 1010
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Figure 1: OntoNotes (ON) test set CoNLL F1
score for CR models trained with language mod-
els at multiple scales. Link-Append is trained with
mT5, ASP with Flan-T5, and LingMess with De-
BERTa. ASP scores, as well as the two largest
Link-Append model scores, were reported by the
respective authors. Bohnet (2023) also noted
that Link-Append has an unexpected, apparently
“emergent”, scaling.

4.1. Discussion
Our results may be surprising because CR mod-
els more recent than C2F, such as WLC and
S2E, are often reported to be more accurate than
C2F when comparisons are presented (Chai and
Strube, 2022; Liu et al., 2022; Bohnet et al., 2023);
yet, we found the opposite to be true when con-
trolling for the choice of language model. We sug-
gest that future work explicitly considers these fac-
tors when presenting comparisons of CR architec-
tures.

In some cases, less accurate models are sub-
stantially more memory or time efficient (Table 3).
While these dimensions have been considered in
previous work (Kirstain et al., 2021), even these
efficient models have been motivated by their raw
accuracy. To this end, we suggest more holistic
evaluations of coreference beyond a single accu-
racy number, especially considering the fact that
high OntoNotes F1 does not necessarily translate
to good out-of-domain performance.

In our controlled comparison, the WLC model
is never Pareto-optimal based on accuracy, run-
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Figure 2: An example model output on the OntoNotes development set. “Gold” spans denote the ground-
truth annotations, and “pred” spans denote predictions by the Link-Append mT5-XXL model.

time, and memory usage. All other encoder-based
models are optimal in at least one of these three
dimensions.

5. Conclusion
We reevaluate existing CR models, controlling for
factors such as the choice of language model
and number of training epochs. Among encoder-
based models, the relative performance gap on
OntoNotes narrows to 0.5 absolute CoNLL F1
score, and the oldest model tested (C2F) gen-
eralizes the best to out-of-domain textual gen-
res. At all scales tested—up to 1.5B parameters—
encoder-based CR models outperform decoder-
based models of comparable model size; notably,
LingMess trained with a 1.5B DeBERTa encoder
has the same accuracy as decoder-based models
over seven times larger in size.
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