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Abstract
In this paper we introduce MUSCLE, a dataset for MUltilingual lexico-Semantic Classification of Links between Entities. The
MUSCLE dataset was designed to train and evaluate Lexical Relation Classification (LRC) systems, and contains 27K pairs
of universal concepts selected from Wikidata, a large and highly multilingual factual Knowledge Graph (KG). Each pair of
concepts includes lexical forms in 25 languages and is labeled with up to five possible lexico-semantic relations between the
concepts: hypernymy, hyponymy, meronymy, holonymy, and antonymy. Inspired by Semantic Map theory, the dataset bridges
lexical and conceptual semantics, is more challenging and robust than previous datasets for LRC, avoids lexical memorization,
is domain-balanced across entities, and enables enrichment and hierarchical information retrieval. To establish baseline
results for further research, we also evaluate the dataset in LRC under a minimal prompting setting, providing a comparison
to datasets such as K&H+N, BLESS, CogALexV, EVALution and ROOT9 for English, and CogALexVI in its multilingual setting.
Keywords: Lexical Multilingual Dataset, Lexical Relation Classification, Semantic Maps, Conceptual Grounding

1. Introduction

Lexico-semantic relations are abstract semantic and
lexical construals negotiated between speakers that
help structure how we group meanings and approach
the world (Murphy, 2003). Such relations are the
basis of fundamental linguistic resources such as
WordNets (Miller, 1995): they help organize the lexicon
and how we linguistically encode the world. The main
lexico-semantic relations are 1) synonymy, which
links similar meanings (and is used to create WordNet
nodes called synsets); 2) antonymy, which links con-
trasting meanings; 3) hyponymy/hypernymy, which
establishes hierarchy; and 4) meronymy/holonymy,
which represents part-whole relations.

The automatic classification of such lexico-semantic
relations, known as computational Lexical Relation
Classification (LRC), has received continuous attention
due to its impact on several NLP tasks (Necsulescu
et al., 2015) and key lexical resources such as Word-
Nets. Methods used have ranged from path-based
methods (Hearst, 1992) to distributional methods using
Pre-Trained Language Models (PTLMs), the current
SoTA (Pitarch Ballesteros et al., 2023).

Despite this progress, LRC is still challenging be-
cause lexico-semantic relations are neither fully univer-
sal nor static, but rather malleable and adaptable to par-
ticular contexts, and not even humans sometimes agree
on how to annotate them (Stevenson and Merlo, 2022).
For example, boy and man can be antonyms when the
‘age’ feature is relevant, but synonyms when it is not.
Furthermore, while PTLMs’ underlying semantics are
distributional, they lack conceptual grounding, making
them too reliant on the co-occurrence of lexical entries
in texts. And, while this does not mean they do not
have deeper conceptual semantic knowledge, it does
not ensure it either. To deal with this limitation, in this
work, we adopt the notion of Semantic Maps as defined
by François (2008), which, starting from lexicalizations,
provide a method for delimiting concepts by finding their

commonalities in different languages to uncover seman-
tic patterns universal to human perception and cognition.
This makes it possible to surpass distributional seman-
tics (available in Language Models), establishing some
other referent to the target meaning by finding what
remains common to all multilingual verbalizations. With
this approach we intend to go a step further towards
Conceptual Grounding (Silberer and Lapata, 2012)
where they claim meaning comes not only from word’s
distributional properties, but also from the personal
experience and interaction with the world of the peo-
ple using them. Defining concepts by grouping lexical
forms in different languages was already implemented
by datasets such as CLICS3 (Rzymski et al., 2020).
Yet, to the best of our knowledge, Semantic Maps have
not been applied to LRC, a gap we fill with our dataset.

The main contribution of this paper is the develop-
ment of MUSCLE1, a Dataset for MUltilingual Semantic
Classification of Links between Entities, aimed at
bridging the lexico-semantic gap in Language Models
by applying Semantic Maps. MUSCLE has a number
of added benefits in contrast to previous datasets for
LRC, namely:

1. Multilinguality: Research regarding LRC has
mainly focused on developing monolingual studies
and datasets, particularly for English (Baroni and
Lenci, 2011a; Necsulescu et al., 2015; Santus
et al., 2016b, 2015, 2016a). Fewer proposals,
such as CogALexVI (Xiang et al., 2020) and
its refinement CogALex 2.0 (Lang et al., 2021),
have taken a multilingual approach using English,
German, Mandarin Chinese, and Italian in test
data. We further extend the multilinguality up to
25 languages in our current proposal.

2. Avoidance of lexical memorization: When

1The MUSCLE dataset and the code to re-
produce the experiments are available at https:
//github.com/sid-unizar/MUSCLE.

https://github.com/sid-unizar/MUSCLE
https://github.com/sid-unizar/MUSCLE
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duplicated tokens appear in the training and
test sets, the model used to solve the LRC task
might be prone to memorizing that such repeated
tokens should always be assigned to the same
relation (Levy et al., 2015). Providing a dataset
that allows conceptual grounding in fine-tuning
mitigates this issue and enables checking it.

3. Semantic domain analysis and avoidance
of semantic memorization: Similarly to lexical
memorization, but at the semantic level, words2

belonging to the same conceptual domain should
not be always assigned to the same relation.
Keeping the concepts underlying the lexical forms
in different languages within the dataset makes
it possible to check for semantic memorization
issues and to perform deeper semantic analyses,
including hierarchical information analyses and
community detection and distribution analyses.

The concepts, relations, and lexical entries from
the MUSCLE dataset were selected from Wiki-
data (Vrandečić and Krötzsch, 2014), a large and
highly multilingual factual Knowledge Graph (KG). This
is a novel data source for LRC, in contrast to previous
LRC datasets which were all created using the same
data sources, mainly WordNets (Miller, 1995) and
ConceptNet (Liu and Singh, 2004). Using Wikidata, we
aim at enhancing generalizability and bias identification.
MUSCLE consists of over 27K concepts with lexical
forms in 25 languages.

The paper is structured as follows. First, we present
the background and related work in Section 2. Then,
we define the requirements and detail the design of the
MUSCLE dataset in Section 3, analysing its semantic
distribution in Section 4. We describe the different
configurations of the dataset in Section 5 and evaluate
them in Section 6. Finally, we discuss the outcomes
and future work in Section 7.

2. Background and Related Work
Similar sets of words tend to be used in similar contexts.
This enables Distributional Semantic Models (DSM)
to embed words in continuous vector spaces and
use them to predict the most likely word for a given
context (Boleda, 2019). However, just describing words
by the co-occurrence of lexical forms is not enough:
conceptual grounding of such words is also needed
to fully describe their meaning.

Although LRC benefits from both lexical forms
and conceptual groundings of words (Storjohann,
2015), previously used datasets (e.g. BLESS (Baroni
and Lenci, 2011a), EVALution (Santus et al., 2015),
CogALex-V (Santus et al., 2016a), ROOT9 (Santus
et al., 2016b), CogALex-VI (Xiang et al., 2020), Co-
gALex 2.0 (Lang et al., 2021)) have de facto omitted this
information, providing just lexical entries (i.e., with no ad-
ditional conceptual grounding) to evaluate Distributional

2We are using ’word’ in a non restrictive way along the pa-
per, including compound words and multi-word expressions.

Figure 1: Semantic map for RIGHT

Models on LRC. To fill this gap, our proposal takes inspi-
ration from Semantic Map theory (Haspelmath, 2003),
and particularly from its application to lexical items by
(François, 2008), to propose a dataset that can take
into account both lexical and semantic levels for LRC.

In the structuralist approach to semantics, meaning
is defined through negation. That is, meaning is
defined by explicitly defining what it is not, and
consequently implicitly stating what the concept does
cover. François (2008) takes this idea and uses
cross-lingual comparison to delimit what a concept is
by finding the semantic commonalities between words
that to some extent verbalize3 the same concept.

In previous datasets for LRC, only relations between
lexical forms were provided (e.g., right and left as
antonyms). Although these lexical forms were retrieved
from sources such as WordNets (Miller, 1995) and
ConceptNet (Liu and Singh, 2004), which assign a
language-independent identifier to the target sense
of a given word (e.g., bn:00067808n for the “relative
direction" sense of the word ‘right’), these identifiers
were not included in the datasets. Nor would it be
sufficient to feed a Language Model (LM) with these
identifiers, since the LM would inevitably learn a new,
separate embedding to encode each of them. Further-
more, while WordNets are based on synonym clusters,
and by doing so they are intrinsically additive, our
definition of concepts is quite the opposite as we use
cross-lingual comparison not to cluster, but rather, distill
the core attributes shared among all 25 languages.

The derived research question for this is: How can
we conceptually ground the model just through pol-
ysemous words such as ‘right’? The MUSCLE dataset
main building blocks are concepts (e.g., ‘right’ as a
“relative direction", Wikidata’s Q14565199), including
lexical forms for each concept in 25 languages (e.g.,
‘right’, ‘derecha’, ‘droite’, . . . ), which sets MUSCLE
apart from previous datasets for LRC. By fine tuning a
model with several lexical forms at once for the same
concept, the model has the opportunity to resolve the
ambiguities of each particular form and learn the con-
cept based on shared semantics. Figure 1 illustrates
how comparison of WikiData concepts and labels can
be used to decouple universal properties underlying
concepts in MUSCLE, following Semantic Maps theory.

Previous datasets for LRC were all created using the
same data sources, mainly WordNets (Miller, 1995),

3In linguistics (François, 2008), lexification is sometimes
used to name what we call here verbalization, lexical form,
or label of a term in KG terminology.
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ConceptNet (Liu and Singh, 2004), and McRae’s
Norms (McRae et al., 2005). Such LRC datasets are
typically modified versions of previous ones, which
increases the possibility of unseen bias propagating
from one dataset to another. For instance, EVALution
was built on BLESS and expanded it by adding new
relations and domain data, then subsampled and
stemmed in CogALex-V, and again expanded in
ROOT9. This was subsequently enriched with other
languages in CogALex-VI and partially curated in
CogALex 2.0. By contributing with a new dataset
based on a different data source, we help to check
the generalizability of LRC models.

MUSCLE, a large multilingual dataset that provides
lexico-semantic relations in 25 languages, represents
a step towards addressing these limitations. In the cre-
ation of the dataset, we checked for many relevant pos-
sible issues, including those mentioned in previous LRC
research as prototypicality (Santus et al., 2015) and lex-
ical memorization (Levy et al., 2015), as well as under-
researched issues that we identified as relevant for
LRC, such as domain bias, directionality, and semantic
memorization. Moreover, from a linguistic point of view,
adopting an underlying KG as source for our data, MUS-
CLE can help bridge the gap between paradigmatic
and syntagmatic sense definitions (i.e., structuralist and
post-structuralist approaches) (Storjohann, 2015) by
allowing to extend the relations between lexemes with
the surrounding context of each of them in the KG.

3. Dataset Design

In this section we detail the methodology followed
to build the MUSCLE dataset, from the design
requirements to the selection and extraction of data.

3.1. Dataset Requirements

To avoid the main limitations found in existing datasets,
we set specific requirements for our own. In particular,
MUSCLE must: (R1) cover as many areas of knowl-
edge as possible; (R2) cover several lexico-semantic
relation types; (R3) cover multiple natural languages;
(R4) consist of subject–relation–object tuples where
the relation can encode directional information (i.e., be
asymmetric), so subject and object will not necessarily
be interchangeable; (R5) define one natural language
label for each subject, each relation, and each object
appearing in the dataset for each of the languages
considered; (R6) have a size at least comparable to
those of previous studies; (R7) implement strategies
to help avoid over-fitting and lexical memorization;
(R8) finally, include Linked Open Data identifiers to
establish unambiguous semantics and enable the
enrichment of the dataset with external sources.

In the following, we detail how these requirements
guided the development of the MUSCLE dataset.

3.2. Data Source and Extraction
We used Wikidata (wikidata.org), Wikimedia’s
peer-produced Knowledge Graph, as a data source.4

Structure. Most of Wikidata’s content is organized in
Items, each of which represents an entity in the world.
Every Wikidata Item has a concept URI, optional
labels in up to 566 possible languages (June 2023) to
name the entity, and any number of statements about
it. A statement connects two Items, the subject and
the object (the object can also be a literal), via one
Wikidata Property, which provides the semantics of
the relation. Using Wikidata as a source allows us to
easily meet requirements R1-R4 and R8.

The entities represented by an Item are further
classified into classes (categories or collections of
individuals with common characteristics) and instances
(individuals, concrete entities with characteristics that
make them distinct from other concrete entities). We
considered Items with subclass of (P279) statements
as classes and those with instance of (P31) statements
as instances. Note that there can be Items that are
instances and classes at the same time. The MUSCLE
dataset only includes classes, which usually have com-
mon names (e.g., human, city, painting, . . . ), leaving
aside instances, which usually have proper names
(e.g., Douglas Adams, New York City, Mona Lisa, . . . ).

Data Quality. Wikidata implements various quality
systems combining different strategies, including a
system of Property constraints to ensure high data
quality, a machine learning system to label potentially
harmful contributions called ORES5, collaborative data
models integrating Shape Expressions (ShEx) called
Wikidata Schemas (Samuel, 2021), and manual review
and correction processes typical of peer-production
sites. Overall, contributions to Wikidata tend to align
with information needs (Abián et al., 2022), achieving
a quality level that has proven appropriate in a wide
variety of scenarios, from Wikipedia infoboxes and
Google KG applications to answers from virtual
assistants such as Apple’s Siri and Amazon’s Alexa.

In addition, we followed some strategies to ensure
the quality of the MUSCLE dataset:

1. We only considered truthy statements, those that
had “the best non-deprecated rank" for each
Property and subject Item.6

4We generated and used a Wikidata dump available at
https://wdumps.toolforge.org/dump/3194.

5see https://www.wikidata.org/wiki/
Wikidata:ORES

6Wikidata allows multiple data values (objects) for each
subject-property pair, each value with one of three possible
ranks: the default “normal” rank, the "preferred" rank (for
the best and most current values), or the "deprecated" rank
(for known errors or outdated information). By selecting
only "truthy" statements, we opt for data values with the
best non-deprecated rank for each subject-property pair,
prioritizing "preferred" rank if available, or defaulting to
"normal" rank otherwise. This approach helps filter out

http://www.wikidata.org/entity/P279
http://www.wikidata.org/entity/P31
https://wdumps.toolforge.org/dump/3194
https://www.wikidata.org/wiki/Wikidata:ORES
https://www.wikidata.org/wiki/Wikidata:ORES
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2. We only considered classes whose content was
expected to be more polished and agreed upon
among more participants. We trivially achieved
this by considering only the classes with labels
defined in all the languages chosen for MUSCLE.
Apart from assuring the quality of the data, this
step fulfilled requirement R3.

3. We determined the type of lexico-semantic relation
represented by each Property by aggregating
expert judgments, fulfilling requirement R2.

4. We validated the quality of the MUSCLE dataset
with the experiments described in Sections 4
and 6.

3.3. Property Selection
We included only Properties that: 1) had at least
4000 uses in Wikidata, 2) were used to state properties
of a class, and 3) clearly represented one of the
following types of lexico-semantic relations between
a subject and an object: antonym of, meronym of,
holonym of, hyponym of, hypernym of. Table 1 shows
the nine selected Wikidata Properties. The selection
was manually carried out by a team of five experts,
consisting of linguists and knowledge engineers. They
adhered to the definitions of the semantic relations
outlined in (Storjohann, 2015). The selection process
involved iterative discussions about a starting set of
700 Wikidata Properties7 to establish clear mappings
to Storjohann’s categories. This process enabled the
identification of a set of prototypical Properties while
avoiding potentially controversial or spurious usages
by prioritizing community adoption and consensus.

Despite being a limitation, we intentionally excluded
synonymy from the MUSCLE dataset. Synonymy is
considered one of the most complex and heteroge-
neous relations (Baroni and Lenci, 2011b), as it requires
an understanding of the context of the target entities.
Previous LRC datasets such as BLESS (Baroni and
Lenci, 2011a) also avoid using synonyms due to their
inherent complexity (they had difficulties in even finding
convincing pairs for 200 concrete concepts). Note that,
while there exist datasets that have kept this relation
(such as EVALution), they have done so due to the
nature of the sources they use: EVALution is created by
filtering and combining ConceptNet 5.0 and WordNet
4.0, where the synonymy relation (accurate or not) is
already established. Note, however, that such relation
is not based at conceptual level, but rather at lexico-
semantic level. Instead, as our approach is inspired
by Semantic Maps, we build on the comparison and
contraposition of verbalizations in different languages to
define concepts by opposition (not having the synonymy
relationship available by construction). Here, the nature
of our dataset is crucial and shows that, from this point of
view, it is complementary to previous existing datasets.

lower-quality data. https://www.mediawiki.org/
?oldid=5841902#Truthy_statements

7Those with more than 4000 uses, shared among 25
languages, not specific to Wikimedia and not deprecated.

Moreover, the lexical relation does not align
completely with the conceptual/logical notion of
equivalence: logical equivalence is crisp, with both
concepts needing to be completely the same, while
synonymy can be argued to be gradual; thus, the
alignment is far from trivial. In Wikidata, there are two
different main properties to state the equivalence of two
concepts: exactMatch (P2888) and said to be the same
as (P460). The former one establishes links to other
external datasets, which would be out of the scope of
our requirements. The latter one is too noisy to extract
synonyms, as each pair of related concepts would
require manual validation. So, to ensure the quality
of the dataset, the potential extraction of synonyms
from Wikidata Items will be considered in future work.

Random Relation Generation. In order to include
noisy relations between the terms and make the
semantic classification more challenging, we exploit the
nature of the graph to add relations between entities
that are not related either lexically or semantically.
We do this by adding random relations that are not
actually present in the graph between concepts in the
dataset, as well as mixing the orientation of the relation.
We keep a proportion of random relations similar to
previous datasets for the sake of comparison.

3.4. Language Selection
We selected the 40 most prevalent languages by
word count in the dataset mix used to train GPT-38,
from which we finally selected the 25 ones which
had labels for all the concepts in the dataset, meeting
requirements R3 and R5. The selected languages are
(in alphabetical order of their ISO 639-1 codes): Arabic
(ar), Catalan (ca), Czech (cs), Danish (da), German
(de), English (en), Spanish (es), Farsi (fa), Finnish (fi),
French (fr), Hebrew (he), Hungarian (hu), Indonesian
(id), Italian (it), Japanese (ja), Korean (ko), Dutch (nl),
Polish (pl), Portuguese (pt), Russian (ru), Serbian (sr),
Swedish (sv), Turkish (tr), Ukrainian (uk), and Chinese
(zh).

4. Dataset Analysis
To detect different possible biases in our dataset, first,
we analyzed the semantic domain of the included con-
cepts (via community detection and taxonomy analysis)
and, then, we sought for biases in the raw data using
the Learning to Split approach (Bao and Barzilay, 2022).

Community Detection. Working with a knowledge
graph as a starting point allows us to use community
detection to analyze the semantic components of
the dataset. This, in turn, allowed us to build a
semantics-guided split-oriented to avoid semantic
bias, as we will see in following sections. To analyze

8https://github.com/openai/gpt-3/blob/
master/dataset_statistics/languages_by_
word_count.csv

https://www.mediawiki.org/?oldid=5841902#Truthy_statements
https://www.mediawiki.org/?oldid=5841902#Truthy_statements
http://www.wikidata.org/entity/P2888
http://www.wikidata.org/entity/P460
http://www.wikidata.org/entity/P460
https://github.com/openai/gpt-3/blob/master/dataset_statistics/languages_by_word_count.csv
https://github.com/openai/gpt-3/blob/master/dataset_statistics/languages_by_word_count.csv
https://github.com/openai/gpt-3/blob/master/dataset_statistics/languages_by_word_count.csv
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relation type Wikidata Property # uses in
Wikidata

# uses in
MUSCLE semantic definition

antonym of opposite of (P461) 27 320 296 symmetric
hyponym of
(reversed, hypernym of) subclass of (P279) 3 404 282 5 328 transitive, asymmetric

holonym of

has part(s) (P527) 2 144 459 1 360 transitive,
inverse of part of (P361)

made from material (P186) 1 494 634 243

has part(s) of the class (P2670) 41 989 76 asymmetric,
subproperty of has part(s) (P527)

contains (P4330) 9 761 4

meronym of
part of (P361) 4 742 639 875 transitive, asymmetric,

inverse of has part(s) (P527)
part of the series (P179) 909 163 4 subproperty of part of (P361)
anatomical location (P927) 4 420 4 subproperty of part of (P361)

Table 1: Wikidata Properties present in MUSCLE, along with their total uses in Wikidata (30 March 2023) and
the types of lexico-semantic relations they represent.

the semantic communities in the dataset, we applied
four different graph community detection algorithms9:
weakly/strongly connected components (WCC/SCC),
label propagation (LP), and the Louvain community
detection method (Blondel et al., 2008). The graphs
considered included the lexico-semantic relations (we
excluded the random relation as it is just a random
distractor). For all the algorithms, we ran two different
setups: 1) a local configuration, taking into account
only the concepts and relations included in the dataset;
and 2) a global one, which uses all Wikidata classes
to calculate the communities.

The first three algorithms (WCC, SCC, and LP) lead
to very large components and did not provide insight
into the structure of the KG. However, Louvain com-
munities in the global configuration were smaller and
exhibited a semantic cohesion that the others did not.
Table 2 contains some of the detected communities and
their domains (we include the complete communities
in the repository dataset as well for further analysis).
While the components were not semantically pure (i.e.,
some included concepts that could be considered as
noise or being part of another subcommunity, e.g., Pol-
itics, Linguistics, or Literature are present in the biggest
component), we could see that the smaller the com-
ponent, the higher the semantic cohesion it exhibited.
This enabled us to use these communities as a starting
point to build a split aimed at avoiding semantic/domain
memorization, as we will see in Section 5.

Hierarchical Information. Taking advantage of the
KG nature of our data source, we also studied the
semantic clustering achieved via the common ancestors
of the concepts in the dataset. To do so, for each
concept in our dataset, we gathered all its hierarchical
parents that were not part of the dataset up to a depth of
two (i.e., parent and grandparent concepts belonging to
Wikidata but not to MUSCLE). Then, we calculated how
many concepts in the dataset were descendants of such
concepts to obtain the size of the semantic clusters.

9We used Neo4j’s Graph DataScience (GDS) implemen-
tations of the algorithms.

domain size concept labels
Politics political party, plutocracy, technoc-

racy, kleptocracy, oligarchy, . . .
Linguistics 168 lang. family, proto-language, con-

structed lang., dialect, idiolect, . . .
Literature . . . creative work, written work, literary

work, book series, letter, . . .
Physics 107 physical quantity, potential energy,

velocity, density, energy, . . .
Occupations 86 writer, violinist, singer-songwriter,

anthropologist, carpenter, . . .
. . . . . . . . .

Music 38 indie rock, song, world music,
alternative rock, popular music, . . .

Medicine 27 dentistry, surgery, radiography,
cardiology, endocrinology, . . .

. . . . . . . . .
Disorders 10 autism, aphasia, tinnitus, intellec-

tual disability, bulimia nervosa, . . .
Noble titles 5 nobility, baron, princess, baronet,

noble title
. . . . . . . . .

Table 2: Sample of Louvain-detected communities,
along with the number of concepts in each.

Table 3 shows a sample of the broadest concepts.
The differences in the concepts that were gathered
assured the coverage of a broad range of domains.
However, note that the semantic analysis of the
domains was carried out only to discover possible
memorization problems; there is room for further
detailed analysis to characterize the semantics in the
dataset in a finer-grained way. This is currently left
as future work as the current analysis allowed us to
perform the required splits in an informed way.

http://www.wikidata.org/entity/P461
http://www.wikidata.org/entity/P279
http://www.wikidata.org/entity/P527
http://www.wikidata.org/entity/P361
http://www.wikidata.org/entity/P186
http://www.wikidata.org/entity/P2670
http://www.wikidata.org/entity/P527
http://www.wikidata.org/entity/P4330
http://www.wikidata.org/entity/P361
http://www.wikidata.org/entity/P527
http://www.wikidata.org/entity/P179
http://www.wikidata.org/entity/P361
http://www.wikidata.org/entity/P927
http://www.wikidata.org/entity/P361
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concept label distance # descendants
artificial entity 2 711

matter 2 252
human activity 2 107

. . . . . . . . .
mathematical concept 1 155
religion or world view 1 89

health problem 1 88
human language 1 61

music 1 54
. . . . . . . . .

Table 3: Sample of semantic groups detected via
subclass of (P279), along with their distance (number of
hops) and size in concepts within the MUSCLE dataset.

Bias Detection. For bias detection, we used the
Learning to Split approach (Bao and Barzilay, 2022),
which finds the dataset split that is most difficult to
generalize. In such a split, prototypical elements are
learned in the training split, while outlier elements are
in the test split, making them more difficult to classify
properly. Poor classification performance with such a
split would point to a bias in the generalizability of the
dataset. Some biases that we expected in the MUS-
CLE dataset were semantic bias (if all the elements of
a semantic domain, e.g. sports, were predicted to have
a particular semantic category) and morphological
bias (if, for example, relations with words beginning
with in-, which can be the prefix often used to produce
antonyms, were always predicted as antonymic, even
in cases like inherit. Yet, after inspecting the splits
produced by the Learning to Split algorithm, we did
not find any pattern that pointed to a particular bias.

5. Dataset Configurations

After the analysis presented in the previous section, we
decided to provide two different train/test dataset splits,
which will be used in the evaluation of the dataset itself:

• Random split (RanS): We performed a stratified
random split (i.e., keeping the ratios of the different
relations in the train/test sets) following a 50/50
train/test ratio10.

• Semantic split (SemS): We split the dataset by
semantic domains represented by the Louvain
communities identified in our previous analyses.
We added each community to a split and then
discarded relations between splits through random
exploration to semantically isolate the splits.

Table 4 shows the numbers of concepts and
relations for each split. Note that, for SemS, there are
no concepts shared between the train and test datasets.
As MUSCLE covers 25 languages, the total numbers
of different pairs are 343,825/343,850 for RanS and
190,400/196,025 for SemS, meeting requirement R6.

10Given the final size of the dataset, we consider that the
training split can be further split to get a dev dataset.

Moreover, as we will see in Section 6.2, the SemS split
meets requirement R7.

RanS SemS
train test train test

concepts split 6459 6464 3399 3414
total 7231 6813

relations

ant 148 148 145 123
holo 841 842 470 691
mero 473 472 340 354
hyper 1332 1332 955 952
hypo 1332 1332 993 888

random 9627 9628 4713 4833
total 13753 13754 7616 7841

Table 4: Numbers of concepts and relations in
MUSCLE’s train and test splits for RanS and SemS.

6. Dataset Evaluation

To gain further insight into the MUSCLE dataset,
we designed and performed a set of experiments to
answer the following research questions:

Q1 What performance is obtained by current methods
when compared to other datasets for LRC?
(Section 6.1)

Q2 Do the current dataset splits avoid the risks of
lexical memorization? (Section 6.2)

Q3 Does including the directionality of the lexico-
semantic relations in the dataset impact the
performance of current methods? (Section 6.3)

Q4 Can the latest LLMs already perform these LRC
tasks? (Section 6.4)

6.1. Comparison to Similar LRC Datasets
As a baseline, we adopted the minimal prompting
approach proposed by Pitarch et al. (2023), the current
SoTA for LRC using Pretrained Language Models
(PLMs) and very simple prompts. As PLMs, we used
RoBERTa (Liu et al., 2019) for English and XLM-
R (Conneau et al., 2020) for multilingual experiments.

We ran two experimental setups: training with all
the data in all the languages, and separating each
language before training. In this experiment, we
used three languages (namely, English, German, and
Chinese) to compare the results with CogALex-VI (Kar-
makar and McCrae, 2020), the only previously existing
multilingual dataset. We wanted to test how multilingual
models benefit from witnessing the same relation in
different languages in these datasets. Besides, as in
CogALex-VI, since random pairs were added to the
training set to increase the difficulty of the classification
task, we excluded them when reporting the results.

Table 5 shows the results of both experiments (*-all
refers to the results obtained for a particular language

http://www.wikidata.org/entity/P279
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dataset lang ant holo mero hyper hypo macro avg
not random

weighted avg
not random

MUSCLE
RanS

all 0.721 0.718 0.618 0.782 0.772 0.722 0.745
en-all 0.738 0.729 0.623 0.789 0.773 0.731 0.751
de-all 0.711 0.707 0.618 0.770 0.766 0.715 0.736
zh-all 0.713 0.717 0.612 0.787 0.778 0.721 0.747

en 0.734 0.720 0.631 0.789 0.784 0.731 0.753
de 0.678 0.697 0.608 0.774 0.771 0.706 0.735
zh 0.717 0.716 0.618 0.787 0.784 0.724 0.750

MUSCLE
SemS

all 0.645 0.573 0.504 0.743 0.714 0.636 0.663
en-all 0.677 0.610 0.519 0.746 0.728 0.656 0.680
de-all 0.641 0.566 0.493 0.737 0.699 0.627 0.654
zh-all 0.617 0.541 0.499 0.747 0.715 0.624 0.656

en 0.404 0.515 0.277 0.713 0.698 0.521 0.599
de 0.534 0.467 0.484 0.729 0.675 0.578 0.616
zh 0.606 0.519 0.490 0.744 0.717 0.615 0.649

lang ant hypo syn

CogALex
VI / 2.0

all 0.727 / 0.788 0.605 / 0.676 0.584 / 0.667 0.639 / 0.711 0.641 / 0.713
en-all 0.673 / 0.757 0.553 / 0.661 0.532 / 0.642 0.586 / 0.687 0.590 / 0.690
de-all 0.679 / 0.735 0.548 / 0.607 0.508 / 0.594 0.578 / 0.645 0.579 / 0.646
zh-all 0.940 / 0.956 0.847 / 0.863 0.852 / 0.874 0.880 / 0.898 0.882 / 0.900

en 0.698 / 0.736 0.538 / 0.626 0.543 / 0.643 0.593 / 0.669 0.597 / 0.671
de - / - - / - - / - - / - - / -
zh 0.909 / 0.909 0.805 / 0.805 0.792 / 0.792 0.836 / 0.836 0.839 / 0.839

Table 5: F1 score for MUSCLE, CogALex-VI and CogALex2.0. XLM-R fine-tuned in two setups: all languages
against all languages, and each language on their own (English-en, German-de, and Chinese-zh). The results
exclude the random relation. XLM-R trained only in German with CogALex-VI and CogALex2.0 did not converge.

having fine-tuned the model with all the languages)1112.
We can see that, using minimal prompting approach
to fine-tune the model for LRC, the results are overall
better on MUSCLE dataset than on CogALexVI 2.0
(focusing on the ’all’ row where all languages are used
for train and test, and the rightmost column, which
reports the weighted average). However, we have
to bear in mind that synonyms in CogaLexVI 2.0 are
the most challenging category, while this category
is not included in MUSCLE. Comparing the different
languages separately, Pitarch et al. (2023) obtain
similar results for both datasets except for Chinese,
for which they obtain better results on CogALexVI.

We can see the effect of using all the languages
compared to using just one in the training (*-all vs *),
improving especially in SemS, CogALex-VI, and
CogALex2.0 (where using only German does not even
converge). These datasets pose a similar level of
difficulty even though MUSCLE requires distinguishing

11The results for MUSCLE RansS and SemS trained with
all languages and split by language can be consulted in
AppendixB

12For the experiments conducted, we fine-tuned the large
version of the RoBERTa and XLM-R language models using
the Huggingface transformers library (Wolf et al., 2020) and
the following setup: batch size of 32; AdamW optimizer with
a learning rate, weight decay and warm-up ratio equal to
2e-5, 0.01, 0.01, respectively; and the models were trained
during 6 epochs. Each experiment was run twice and the
mean of the macro F1-score and the weighted F1-score by
the support of the labels, without considering the random
label, are reported. Training was performed on a Linux
server with two A10 24GB GPUs. Overall, we consumed
around 50 hours of GPU usage.

the direction of the asymmetric relations. RanS shows
more stable results regarding the training language.
When comparing RanS and SemS results, we
hypothesize that, apart from the training size, domain
knowledge also plays a role in semantic classification,
making SemS a more challenging dataset (similar to
CogALex-VI and CogALex2.0, but without the pitfalls
already analyzed and extending its multilinguality).
Answering Q1, the performance is similar to the most
challenging datasets and, as MUSCLE includes the
direction of the relations, it makes LRC even more
challenging (as shown in Section 6.3).

6.2. Checking for Memorization
Lexical memorization in LRC (Levy et al., 2015) occurs
when some words systematically appear in a relation,
predisposing a supervised model to learn that such
particular words are signals of that relation, instead
of learning the semantic relation between the source
and target words. To measure the risk of memoriza-
tion13, we distinguish three types of tokens in a train/test
dataset: 1) indicators, tokens in a source (target) word
that mostly appear participating in the same relation in
both train and test datasets; 2) distractors, tokens in a
source (target) word that mostly appear participating in
one relation in the train dataset, and in a different one in
the test dataset; and 3) independent elements, tokens
in the test dataset that are not in the train dataset. Their
characterization can be parameterized by a threshold
value β, establishing a minimum participation propor-

13We refer the interested reader to Appendix A.1 for the
formal definition of all the metrics.
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tion. For example, the token ‘ham’ is an indicator (dis-
tractor) among the source words for a threshold value
β=0.7, if there exists a relation label l such that ‘ham’ is
participating in l 70% or more of its appearances among
the source words of the train dataset, and the same
(different) condition for ‘ham’ is met in the test dataset.

These elements allow us to define three risk metrics:
1) Risk of indicators (Rins), the maximum proportion,
between the source and target words, of word pairs
in the test dataset containing only indicators; 2) Risk
of distractors(Rdis), similar to the risk of indicators but
containing only distractors; and 3) Risk of independent
observations (Rind), the proportion of word pairs in
the test dataset composed of independent tokens.
Our hypothesis is that the more indicators and the
fewer distractors and independent elements a dataset
contains, the greater the lexical memorization risk.

To validate it statistically, we calculated the risk val-
ues for 7 LRC datasets and gathered their results for at
least 3 models (F1-scores) as presented in the literature.
Table 6 shows these values using the multilingual-
BERT pre-tokenizer and β=0.7. For example, the first
row in Table 6 reads as follows: for the K&H+N dataset,
75.0% of the observations in the test set contain only
indicators, 0.8% contain only distractors, and 20.4%
are composed of words that are not in the training set.

dataset lang Rins Rdis Rind F1
K&H+N

en

75.0 0.8 20.4 0.98
BLESS 65.2 1.5 20.1 0.93
ROOT09 31.2 13.3 16.5 0.88
EVALution 28.3 8.7 4.8 0.67
CogALexV 1.0 5.9 36.2 0.56

CogALexVI
en 2.6 25.3 23.2 0.60
zh 13.7 12.8 12.1 0.90
de 2.3 30.5 33.5 0.63

CogALex 2.0 en 3.3 21.1 30.3 0.79
de 3.6 25.7 39.2 0.68

MUSCLE
RanS

all 3.0 2.8 6.8 0.72
en 3.1 2.7 6.5 0.73
de 3.9 3.4 8.5 0.71
zh 1.1 1.0 1.6 0.72

MUSCLE
SemS

all 0.2 2.3 91.9 0.64
en 0.2 2.6 93.3 0.64
de 0.1 0.9 99.5 0.63
zh 0.2 5.0 45.1 0.62

Table 6: Metrics for the risk of lexical memorization
(β=0.7) for the selected datasets and their reported
F1 scores. MUSCLE results are obtained with the
same setup as *-all configuration in Section 6.1.

The greater the lexical memorization risk of a dataset,
the easier and better results would be expected with
that dataset. To quantify this risk, we fitted a simple
linear model of each risk measure against the collected
results. Regarding the indicator risk Rins, we observed
a strong positive correlation with the results, with a pos-
itive Pearson correlation coefficient of 0.74. Regarding
Rdis and Rindp, the correlation was slightly lighter but
negative, with a negative Pearson correlation coefficient
of−0.46 and−0.36, respectively, confirming the intuition

that the more distractors and independent elements,
the harder it is for a model to obtain better results. The
p-values for all calculated regression coefficients were
lower than 0.05, supporting our hypothesis statistically.

In Table 6, we also find the risk metrics (β=0.7) for
MUSCLE RanS and SemS for the full dataset and the
English, German, and Chinese languages14. While
MUSCLE RanS has a similar indicator risk (Rind) to that
of the CogALex datasets family (the most difficult ones
so far), it has fewer distractors and independent values.
Regarding MUSCLE SemS, we found a low indicator
risk and a high level of independent words, making it in
fact the most challenging dataset, as we will see in the
next sections. Thus, we can affirmatively answer Q2.

6.3. Impact of Directionality
As other datasets for LRC do not include the direction of
asymmetric relations (hyper-/hypo-, holo-/meronyms),
to answer Q3, we analyzed the impact of not informing
about the direction of the relations in MUSCLE by
flattening such relations into non-directed ones.

Table 7 shows the results for the two versions of
SemS (with/without considering the directions of the
relations), using all languages for training and testing.
We focused on SemS, since the previous experiments
showed that it was more challenging and, given the
hierarchical structure of the data source, domain
transfer could interfere with the results, especially
regarding holo- and meronymy relations (as shown
in Table 5 - all rows).

Flattening the direction of the relations makes
the task easier (higher values for mero-/holo- and
hypo-/hypernymy relations). In turn, the classification
of antonyms gets slightly affected, possibly because
the model has less information about the structural
differences (the direction seems to help discriminating
among the five relations, even though it is more difficult
to classify them). Thus, we can affirmatively answer Q3.

6.4. Can LLMs Already Perform the Task?
Given the recent developments with Large Language
Models (LLMs), we evaluated the performance that
ChatGPT (Brown et al., 2020) (on its version 3.5-turbo-
0613) achieved with the MUSCLE dataset to answer
question Q4. We used English as language and, as
prompt, lists of subject-object pairs with blanks in the
middle preceded by the following zero-shot instruction
(up to ten pairs were submitted to ChatGPT per query):

Fill in the blank of each item with one of the following
options: "hyponym of", "hyperonym of", "meronym of",
"holonym of", "antonym of", or "unrelated to":

"dog" __ "animal".
Table 8 shows the results achieved with this prompt

and those obtained with minimal prompting using
RoBERTa, for comparison’s sake. While ChatGPT
performs quite well for antonyms, it fails with directional
relations, at least in this zero-shot training scenario.

14We include in Appendix A.2 the metrics for all languages
using different tokenizers.
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dataset lang ant holo mero hyper hypo macro avg
not random

weighted avg
not random

MUSCLE
SemS all

0.587 0.496 0.449 0.682 0.666 0.576 0.603
ant mero/holo hypo/hyper – –

0.545 0.504 0.727 0.592 0.642

Table 7: F1 score for MUSCLE SemS. Model trained and tested using all languages. The results exclude the
random relation. Results when flattening the asymmetric relations in the lower row.

model training ant holo mero hyper hypo macro avg
not rand

weighted avg
not random

MUSCLE
SemS

RoBERTa fine-tunning 0.715 0.615 0.689 0.776 0.761 0.578 0.709
ChatGPT zero-shot 0.626 0.160 0.175 0.383 0.466 0.362 0.342

Table 8: F1 score for monolingual experiments in English to compare to LLMs.

The F1 scores for the "unrelated to" category were
0.918 for RoBERTa and 0.912 for ChatGPT, which
rules out this category as the source of ChatGPT’s
poor results. Thus, answering Q4, we can foresee
that some prompt-tuning and further research must
be done to adapt LLMs to the out-of-context LRC task.

7. Conclusions and Future Work

In this work, after identifying some limitations in
existing datasets for computational Lexical Relation
Classification (LRC), we have proposed a novel dataset
aiming to solve these shortcomings and foster the
research in the field by bridging lexical and conceptual
semantics in Language Models.

The MUSCLE dataset exploits a well-known
KG, providing a solid semantic grounding and a
crowdsourced-curated multilingual representation in
25 languages. Moreover, we have analyzed the data
from different angles to avoid lexical and semantic
biases, providing two different splits that present several
difficulties. Last but not least, the dataset distinguishes
the asymmetry of the lexico-semantic relations.

As future work, we will consider extending the
dataset to other NLP tasks by exploiting the linked
nature of Wikidata. For example, we will follow and
search for further lexico-semantic information, including
OntoLex-LEMON data (McCrae et al., 2017).
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Limitations

Prototypicallity: Providing concepts with lexical
forms available in 25 languages constrains the
inclusion of concepts with lexical forms in only a few

languages, which can lead to lexical and cultural
gaps. Our dataset includes prototypical concepts and
excludes long-tail concepts.

Completeness of relations: We have mapped
nine Wikidata Properties as semantic relations to their
lexical counterparts. The chosen semantic relations
are the most prominent ones, but we are aware that
more semantic relations could be mapped to the five
lexical relations, so we will assess and possibly include
them in future versions.

Synonyms: As mentioned in the body of the paper,
we have discarded the synonym relation due to
the misalignment between the notions of synonymy
and the conceptual equivalence, and the noise we
witnessed in the most similar Wikidata Property, said
to be the same as (P460). We acknowledge that is
a limitation of the current dataset, but the difficulty of
defining such a relation properly hinders the possible
quality of the data extracted from Wikidata. We will
study the possibility of extending MUSCLE using
Linguistic Linked Open Data to cover synonymy.

Quality of translations: We must acknowledge pos-
sible limitations in the language translations, as we
have not been able to completely assess their quality.
Those translations in the languages that the authors
read and speak (English, French, Spanish, German)
seem to be correct, but the authors do not master all
25 languages covered. Finding people for all remaining
languages is a very difficult task that was out of our
possibilities. Anyway, it should be considered that the
quality of our dataset is proportional to the quality of
Wikidata: If Wikidata is well annotated, so our dataset is

Multilingual usage: The MUSCLE dataset is
intended to be used in a multilingual setting, as it is
where Semantic Map theory can be applied. However,
its multilingual orientation also provides benefits in
comparison to previous datasets for LRC, including the
analysis and control of memorization, semantic domain
distribution, generalizability, and relation directionality.

http://www.wikidata.org/entity/P460
http://www.wikidata.org/entity/P460
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A. Lexical Memorization Risk Metrics

Lexical memorization (Levy et al., 2015) in LRC (Levy
et al., 2015) appears when there are words that occur
systematically in a relation, enabling a supervised
model to learn that some particular words are signals

of a particular relation, instead of learning the character-
istics of the semantic relation itself. Thus, for example,
for words that represent broad categories such as
animal, a model can learn that when animal
appears as target word, then a hyponymy relation
occurs no matter what the source word is. In fact, not
only words can be memorized, but also punctuation
marks or any other type of strings. For instance,
if we have samples such as (object-oriented
programming, programming, hyponym) or
(white-collar worker,employee,hyponym),
the model could learn that ‘-’ is an indicator of the
hyponym relation. Moreover, since language models
such as BERT, RoBERTa or the family of the GPT
models, work based on a pre-trained tokenizer, these
models can memorize that the apparition of a specific
token is an indicator of a relation.

Thus, we can talk about a more general problem
than lexical memorization, this is, token memorization,
and we propose metrics to measure the exposure of
a dataset to the risk of detecting it. Note that when
tokens are directly words, then we would be dealing
with lexical memorization.

One simple way to detect token memorization is
would be to test the model with a dataset that has no to-
kens in common between train and test splits. However,
this strategy is very restrictive: on the one hand, since
the tokenizers of the current language models split
texts into a moderate small set of tokens, it could be
difficult to find train/test splits without tokens in common;
and, on the other hand, this strategy prevents checking
whether the model can learn different relations between
two same words from those seen during training.

A.1. Formal Definition
Given a dataset split into train/test, we want to measure
if the test split is good enough to detect the token
memorization that can occurs while training a model
using such train split.

Formally, we consider that a dataset D={Dr,De}
is composed of two sets, Dr and De, named train and
test sets, respectively. A train or test setDi is a finite set
of triples (observations), Di={(s,t,l) |s,t∈Σ∗, l∈L}
where s and t are strings over an alphabet Σ and
L={1,...,K} is a set of integer labels. The strings s
and t are called source and target strings, respectively.
We denote by Di

Src and Di
Tgt the set of all source and

target strings inDi. For sake of simplicity in notation, we
also denote by Di=Di

Src∪Di
Tgt. A tokenizer tok is a

function that splits any string w into substrings called to-
kens, tok(w)=(s1,...,sm). By an abuse of the notation,
we also consider that tok(w) is the set of the tokens com-
posing w. For a set M of strings, tok(M) denotes the
set of all tokens in strings ofM , tok(M)=∪w∈Mtok(w).
Given a train or test set Di and a string w∈tok(Di

Src),
we denote by pSrci

w ∈ [0,1]K to the distribution vector
containing the observed proportions in tok(Di

Src) of
the string w participating in the j-th relation (j∈L, the
set of possible relation labels), corresponding to the j-th
positions of the vector. Similarly, we denote by p

Tgti
w
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the distribution when we consider that w∈tok(Di
Tgt).

p
Di

Src
w , pDi

Tgt
w are the source and target label distribu-

tions of the string w in Di. Then, we can define:

Definition 1 A string w is said to be a β-source
indicator, β ∈ [0,1], for the dataset D= {Dr,De}, if it
holds the following conditions:{

max(p
Dr

Src
w )>β ∧ max(p

De
Src

w )>β

argmax(p
Dr

Src
w )=argmax(p

De
Src

w )
(1)

Definition 2 A string w is said to be a β-source
distractor, if it holds the following conditions:{

max(p
Dr

Src
w )>β ∧ max(p

De
Src

w )>β

argmax(p
Dr

Src
w )≠argmax(p

De
Src

w )
(2)

We define a β-target indicator and distractor in the
same way as the previous definitions but using the Tgt
sets. Finally, we have:

Definition 3 A string w is independent if:
w∈tok(De)\tok(Dr)

We can extend these definitions to the observations
(s,t,l) included in the dataset as follows:

Definition 4 Given a dataset D = {Dr, De}, an
observation in the test dataset (s,t,l)∈De is said to
be a β-source indicator observation if for all w∈tok(s),
w is a β-source indicator.

Analogously, we define a β-target indicator, β-source
distractor, β-target distractor, and an independent
observation. We will denote by β-pSrcins , β-pTgt

ins , β-pSrcdis ,
β-pTgt

dis , pDind, the percentage of observations in
the test set that are β-source indicators, β-target
indicators, β-source distractors, β-target distractors,
and independent observations, respectively.

Finally, we define three metrics to measure the risk
of token memorization of a dataset.

Definition 5 Given a dataset D = {Dr, De}, a
tokenizer tok, β ∈ [0,1] and the previous definitions,
we define the risk of indicators, distractors and
independent observations, respectively, as:

• Rins=max(β-pSrcins ,β-pTgt
ins )

• Rdis=max(β-pSrcdis ,β-pTgt
dis )

• Rind=pind

A.2. Risk Metrics for MUSCLE

In this subsection, we include all the risk values ob-
tained for MUSCLE RanS and SemS splits considering
all the different languages covered. We present the
results for three different tokenizers: multilingual-BERT
pre-tokenizer (Table 9), XML-R (Table 10), and GPT-3.5
tokenizers (Table 11).

MUSCLE RanS MUSCLE SemS
Lang. Rins Rdis Rind Rins Rdis Rind

all 3.0 2.8 6.8 0.2 2.3 91.9
ar 2.9 2.6 6.5 0.3 3.1 92.9
ca 3.2 2.6 6.9 0.3 2.4 93.4
cs 3.6 3.2 7.9 0.0 1.9 98.0
da 3.5 3.3 8.3 0.2 1.1 99.3
de 3.9 3.4 8.5 0.1 0.9 99.5
en 3.1 2.7 6.5 0.2 2.6 93.3
es 3.0 2.9 6.9 0.3 2.1 94.0
fa 3.1 2.5 6.7 0.1 2.2 94.0
fi 3.7 3.3 8.5 0.2 0.9 99.2
fr 3.1 2.7 6.9 0.4 2.5 93.9
he 3.3 2.9 7.0 0.1 2.8 95.1
hu 3.4 3.1 8.1 0.1 1.3 98.7
id 2.5 2.4 6.3 0.2 2.7 91.8
it 3.0 2.7 7.1 0.3 1.7 94.2
ja 1.7 1.7 4.7 0.3 3.6 71.3
ko 3.5 3.1 8.0 0.2 1.7 97.8
nl 3.5 3.2 8.4 0.1 1.1 98.7
pl 3.2 3.0 7.9 0.1 1.6 97.7
pt 3.1 2.8 7.0 0.2 2.2 93.7
ru 3.4 3.1 7.9 0.1 2.3 97.9
sr 3.6 3.1 7.8 0.1 2.3 98.1
sv 3.6 3.2 8.5 0.3 1.6 99.4
tr 3.4 2.7 7.1 0.2 2.7 96.0
uk 3.5 3.1 7.7 0.2 1.8 98.1
zh 1.1 1.0 1.6 0.2 5.0 45.1

Table 9: Risk metrics for MUSCLE RanS and SemS
using multilingual-BERT pre-tokenizer and β=0.7.

MUSCLE RanS MUSCLE SemS
Lang. Rins Rdis Rind Rins Rdis Rind

all 1.7 1.5 2.0 0.2 7.1 53.9
ar 2.5 1.1 2.1 0.2 6.6 52.9
ca 2.5 1.9 4.2 0.3 5.3 78.6
cs 3.2 2.1 4.7 0.3 5.7 84.4
da 2.7 2.2 5.1 0.2 5.7 87.2
de 3.3 1.9 4.3 0.2 6.7 83.2
en 2.5 2.0 4.5 0.2 4.5 84.3
es 2.9 2.1 4.6 0.3 5.3 82.1
fa 1.6 1.1 1.7 0.2 10.0 50.1
fi 2.6 2.0 4.4 0.2 6.1 81.3
fr 2.2 1.9 4.1 0.4 5.5 78.9
he 1.7 0.9 1.3 0.4 6.8 36.5
hu 2.2 2.2 4.0 0.2 8.4 77.1
id 2.4 2.4 4.5 0.3 5.5 84.2
it 2.2 2.1 4.6 0.2 5.0 81.5
ja 2.4 1.0 1.7 0.2 8.4 46.3
ko 0.8 0.7 1.3 0.2 5.2 32.5
nl 2.7 2.0 4.8 0.1 5.1 84.3
pl 2.5 1.9 4.5 0.1 5.8 80.6
pt 2.8 1.9 4.6 0.3 5.6 82.3
ru 3.2 2.1 3.7 0.3 6.9 77.7
sr 2.3 1.7 3.5 0.2 6.5 75.9
sv 2.4 2.2 4.8 0.2 6.8 83.5
tr 3.0 2.1 4.2 0.2 6.5 80.4
uk 2.7 1.8 3.1 0.3 8.7 72.1
zh 2.0 1.6 2.9 0.2 5.3 69.4

Table 10: Risk metrics for MUSCLE RanS and SemS
using XLM-R tokenizer and β=0.7.
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MUSCLE RanS MUSCLE SemS
Lang. Rins Rdis Rind Rins Rdis Rind

all 0.7 0.7 1.0 0.1 3.1 26.0
ar 0.0 0.0 0.0 0.0 0.1 0.4
ca 2.4 1.6 3.5 0.4 5.1 71.2
cs 1.3 1.6 3.3 0.1 5.3 64.4
da 2.6 1.9 4.4 0.2 5.1 76.7
de 2.7 1.7 3.6 0.1 7.7 74.7
en 3.0 2.6 5.6 0.2 3.1 91.5
es 2.6 1.5 3.5 0.3 5.0 72.7
fa 0.0 0.0 0.0 0.0 0.0 0.7
fi 2.1 1.5 3.0 0.1 5.2 62.4
fr 2.3 1.9 4.1 0.2 6.3 74.5
he 0.0 0.1 0.1 0.0 0.0 2.2
hu 1.2 1.4 2.8 0.1 6.2 55.6
id 2.0 1.6 3.1 0.2 5.9 66.5
it 2.3 1.4 3.5 0.4 5.9 67.9
ja 0.8 0.2 0.3 0.1 1.6 8.7
ko 0.0 0.1 0.0 0.0 0.5 3.4
nl 1.4 1.9 4.1 0.2 6.7 76.8
pl 1.4 1.3 3.0 0.1 7.1 60.9
pt 2.3 1.5 3.6 0.3 6.3 70.5
ru 0.1 0.1 0.4 0.0 0.8 8.2
sr 0.1 0.3 0.8 0.0 1.2 12.2
sv 2.1 1.9 3.9 0.1 5.8 71.2
tr 1.9 1.2 3.0 0.2 7.5 59.7
uk 0.1 0.2 0.3 0.0 1.9 7.7
zh 0.1 0.1 0.3 0.1 1.9 9.2

Table 11: Risk metrics for MUSCLE RanS and SemS
using GPT-3.5 tokenizer and β=0.7.

B. Complete Experiments
We include the results of all the values obtained for
the experiments presented in Section 6.1 with all the
languages for MUSCLE splits. Tables 12 and 13
contain the values for the adopted minimal prompting
approach (Pitarch Ballesteros et al., 2023), training
with all the languages and aggregating the results for
each of them.
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MUSCLE
RanS

lang ant holo mero hyper hypo macro avg
not random

weighted avg
not random

all 0.700 0.701 0.574 0.750 0.738 0.693 0.714
ar 0.687 0.658 0.528 0.720 0.696 0.658 0.676
ca 0.700 0.706 0.572 0.737 0.730 0.689 0.709
cs 0.697 0.707 0.581 0.756 0.734 0.695 0.717
da 0.707 0.707 0.580 0.764 0.751 0.702 0.725
de 0.705 0.712 0.590 0.758 0.759 0.705 0.728
en 0.727 0.726 0.593 0.781 0.759 0.717 0.739
es 0.700 0.699 0.583 0.760 0.738 0.696 0.718
fa 0.703 0.681 0.547 0.727 0.708 0.673 0.690
fi 0.683 0.700 0.585 0.749 0.744 0.692 0.716
fr 0.722 0.709 0.576 0.757 0.744 0.701 0.721
he 0.647 0.678 0.544 0.719 0.703 0.658 0.683
hu 0.735 0.699 0.586 0.757 0.749 0.705 0.722
id 0.660 0.703 0.580 0.752 0.753 0.690 0.719
it 0.726 0.709 0.580 0.756 0.742 0.702 0.721
ja 0.697 0.707 0.573 0.741 0.729 0.689 0.709
ko 0.649 0.681 0.541 0.723 0.723 0.663 0.691
nl 0.716 0.704 0.593 0.766 0.749 0.706 0.726
pl 0.716 0.704 0.588 0.752 0.741 0.700 0.719
pt 0.705 0.706 0.584 0.760 0.746 0.700 0.722
ru 0.732 0.706 0.588 0.759 0.746 0.706 0.724
sr 0.712 0.700 0.571 0.741 0.724 0.690 0.707
sv 0.683 0.718 0.578 0.761 0.750 0.698 0.725
tr 0.660 0.690 0.545 0.740 0.729 0.673 0.701
uk 0.728 0.701 0.568 0.757 0.750 0.701 0.721
zh 0.697 0.712 0.589 0.764 0.758 0.704 0.729

Table 12: F1 score for MUSCLE RanS using the minimal prompting approach.

MUSCLE
SemS

lang ant holo mero hyper hypo macro avg
not random

weighted avg
not random

all 0.587 0.496 0.449 0.682 0.666 0.576 0.603
ar 0.500 0.465 0.413 0.623 0.597 0.519 0.549
ca 0.486 0.481 0.440 0.646 0.650 0.541 0.579
cs 0.570 0.504 0.450 0.696 0.684 0.581 0.614
da 0.601 0.457 0.449 0.693 0.682 0.576 0.603
de 0.600 0.523 0.449 0.710 0.682 0.593 0.624
en 0.627 0.531 0.474 0.731 0.710 0.615 0.644
es 0.644 0.485 0.471 0.689 0.682 0.594 0.612
fa 0.544 0.518 0.459 0.648 0.639 0.562 0.589
fi 0.616 0.458 0.421 0.670 0.665 0.566 0.588
fr 0.596 0.499 0.464 0.684 0.664 0.581 0.606
he 0.533 0.448 0.431 0.652 0.616 0.536 0.564
hu 0.557 0.498 0.458 0.704 0.677 0.579 0.614
id 0.583 0.512 0.472 0.691 0.692 0.590 0.620
it 0.605 0.488 0.449 0.661 0.665 0.573 0.595
ja 0.622 0.537 0.455 0.689 0.652 0.591 0.613
ko 0.523 0.528 0.425 0.657 0.628 0.552 0.586
nl 0.606 0.506 0.434 0.698 0.660 0.581 0.608
pl 0.609 0.505 0.461 0.681 0.681 0.588 0.612
pt 0.608 0.471 0.465 0.666 0.660 0.574 0.594
ru 0.612 0.544 0.473 0.707 0.695 0.606 0.635
sr 0.631 0.437 0.428 0.679 0.649 0.565 0.583
sv 0.581 0.457 0.452 0.688 0.679 0.571 0.600
tr 0.565 0.449 0.389 0.648 0.642 0.539 0.567
uk 0.626 0.513 0.455 0.698 0.672 0.593 0.616
zh 0.620 0.566 0.494 0.728 0.720 0.626 0.656

Table 13: F1 score for MUSCLE SemS using the minimal prompting approach.
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