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Abstract
We present CAMELMORPH MSA, the largest open-source Modern Standard Arabic morphological analyzer and
generator. CAMELMORPH MSA has over 100K lemmas, and includes rarely modeled morphological features of
Modern Standard Arabic with Classical Arabic origins. CAMELMORPH MSA can produce ∼1.45B analyses and
∼535M unique diacritizations, almost an order of magnitude larger than SAMA (Maamouri et al., 2010c), in addition
to having ∼36% less OOV rate than SAMA on a 10B word corpus. Furthermore, CAMELMORPH MSA fills the
gaps of many lemma paradigms by modeling linguistic phenomena consistently. CAMELMORPH MSA seamlessly
integrates with the Camel Tools Python toolkit (Obeid et al., 2020), ensuring ease of use and accessibility.
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1. Introduction & Motivation

Arabic presents many challenges to natural lan-
guage processing (NLP), ranging from its hybrid
templatic and concatenative morphology, rich col-
lections of inflectional features, to numerous allo-
morphs, highly ambiguous orthography, and dialec-
tal variants. Over the last four decades, many
approaches have been explored in developing
Arabic morphological analyzers and generators
(Beesley et al., 1989; Kiraz, 1994; Buckwalter,
2004; Smrž, 2007b; Maamouri et al., 2010c; Boud-
chiche et al., 2017; Taji et al., 2018; Habash et al.,
2022). These tools continue to show value for Ara-
bic NLP when paired with state-of-the-art neural
models on tasks such as morphological tagging
(Zalmout and Habash, 2017; Inoue et al., 2022),
sentiment analysis (Baly et al., 2017), controlled
text rewriting (Alhafni et al., 2022), and grammati-
cal error correction (Alhafni et al., 2023). Develop-
ing such tools is neither cheap nor easy, and many
of them are either not open-source, not freely avail-
able, or incomplete.

In this paper, we present CAMELMORPH MSA, a
part of the CAMELMORPH Project,1 which is a large
effort to develop morphological analyzers and gen-
erators under a common framework for a number
of Arabic variants: Modern Standard Arabic (MSA)
Qå�ªË@ új�

	
¯, Classical Arabic (CA) �

H@Q
�
�Ë @ új�

	
¯ and

Arabic Dialects (DA) �
éJ
K. QªË@

�
HAj. êÊË @. CAMELMORPH

MSA builds on learned lessons and available tools
to create the largest to date open-source Arabic
morphological analyzer and generator in terms

1http://morph.camel-lab.com.

of morphological coverage. As part of develop-
ing CAMELMORPH MSA, we extend the CAMEL-
MORPH framework introduced by Habash et al.
(2022), making improvements to its design and
implementation. We also expand upon the lexical
and morphological resources reported in Habash
et al. (2022) and Khairallah et al. (2024), to include
missing parts-of-speech (POS) and rarely modeled
MSA and CA morphological features. The result
is a very large analyzer with over 100K lemmas,
producing ∼1.45B analyses for ∼535M diacritiza-
tions, almost an order of magnitude larger than
SAMA (Maamouri et al., 2010c). We make all our
resources, code, guidelines, and documentation
publicly available.1

2. Related Work

This work builds on a long history of morpholog-
ical analysis and generation tools (Al-Sughaiyer
and Al-Kharashi, 2004; Habash, 2010; Alothman
and Alsalman, 2020; Tachicart et al., 2022). Al-
tantawy et al. (2011) categorize these systems on
a spectrum reflecting their morphological repre-
sentation modeling approaches. At one end, the
representations are characterized by abstraction
and a greater reliance on a templatic-affixational
perspective of morphology (Beesley et al., 1989;
Kiraz, 1994; Beesley, 1996; Habash and Rambow,
2006; Smrž, 2007a; Boudchiche et al., 2017), while
at the other end, they adopt a more derivation-
inflectional driven and surfacy approach (Buckwal-
ter, 2004; Maamouri et al., 2010c; Taji et al., 2018).
The former tends to rely on multi-tiered representa-

http://morph.camel-lab.com
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Figure 1: A high-level diagram of the CAMELMORPH framework used to develop CAMELMORPH MSA.

tions that map lexical to surface forms, generally in
the form of a finite-state transducer through com-
plex rules and can either model at the morpheme
(Beesley, 1996) or lexeme level (Smrž, 2007a).
The latter tends to follow a more lexicon and stem-
based approach where morphotactic rules are built
directly into the lexicon and inherently models at
the morpheme and features level, without including
roots and patterns into the rules. The most widely
used of these models rely on the Buckwalter six-
table approach (Buckwalter, 2004), which entails a
lexicon of morphemes and compatibility tables.

This paper builds on the CAMELMORPH frame-
work (Habash et al., 2022), which is aligned
with the stem-based methodologies, but lever-
ages morphotactic allomorphy modeling via inter-
allomorphic compatibility rules and uses a lexicon
that is comparatively easy to modify and extend.
We consult and expand on many resources (Buck-
walter, 2004; Maamouri et al., 2010c; Taji et al.,
2018; Habash et al., 2022; Khairallah et al., 2024).

3. The CAMELMORPH Framework

Overview CAMELMORPH MSA is developed
within the CAMELMORPH framework, which relies
on a two-step process to perform morphological
analysis and generation (Figure 1) (Habash et al.,
2022). The first step requires designing morpho-
logical specifications (CAMELMORPH Specs) de-
scribing the language’s grammar and lexicon in a
manner which is annotator friendly, which are then
converted via an offline process powered by its
DB Maker algorithm into a morphological database
(CAMELMORPH DB) in the six-table style of the
Buckwalter Arabic Morphological Analyzer (BAMA)
DBs (Buckwalter, 2004; Maamouri et al., 2010c;
Taji et al., 2018). The created DBs can be used
by any compatible analysis and generation engine,
e.g., Camel Tools (Obeid et al., 2020).

The morphological specifications can be divided
into (a) open-class Lexicon (lemmas and stems),

(b) closed-class Morph (affixes and clitics) and
(c) Order specifications. Lexicon and Morph
consist of allomorphs organized into morphemes.
And Order sequences specify the positions of all
morpheme classes in a word. The lexicon is a
large repository that contains stems, their asso-
ciated lemmas, and other features. Associated
with each allomorph is a set of hand-crafted condi-
tions, which control the allomorph selection of spe-
cific morphemes. The offline DB Maker process
makes heavy use of these conditions to determine
proper combinations and compatibility among the
allomorphs in a word. Finally, the framework ac-
commodates the use of ortho-phonological rewrite
regex rules (such as sun-letter handling or epenthe-
sis) as part of the specifications to be used by the
analysis and generation engines (Post Regex).
See Habash et al. (2022) for more details.

Framework Extensions As part of the effort
presented here, we introduced two extensions to
CAMELMORPH (highlighted in Figure 1).

First is Category Factorization. Each com-
plex morpheme (Prefix, Stem, and Suffix) in the
database is given a category which controls what
other complex morphemes it can pair up with dur-
ing analysis and generation. These categories are
generated by the DB Maker using condition and
morpheme class information, and are very strongly-
typed, and thus, very redundant. Our extension
maps all compiled categories with the same depen-
dencies to each other. This improves the speed of
analysis by reducing the number of categories and
compatibility combinations.

Second is Specification Scripts. We extend
the original CAMELMORPH framework to accept
scripts that preprocess specifications before feed-
ing them to the DB Maker. This feature is useful
when specifications can be created automatically
using an algorithm which does not require human
intervention (see more details in §4).

Next, we present the CAMELMORPH MSA DB
we created using this framework.
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رَمَى سَفیِر
أَ لِ وَ فَ

رَم (ماضي) سَفیِر عَلَيْ

َ◌ي
تَ َ◌اتِ

هُ ھِم ھَا

وَلِ أَ فَ

رَمَيْ سَفیِر عَلَيْ
تَھُ َ◌اتِھِم  ھَا

أرََمَیْتَھُ وَلسَِفیِرَاتِھِم فَعَلَیْھا

عَلَى
... ، وَ، فَ،  ، بِ، ... ، فَ،  ال،  ، أَ، ... وَ، 

يَ، تَ، ...
◌َ

، رْم (مضارع)، رْم (أمر) ، سُفَرَا ، عَلاَمَ،... عَلَى، 

، ِ◌ي، ... َ◌ى، ∅،  ؤ، ء، ئ، ∅، ...
، نَا، َ◌ت، ... تُ،  ،َ◌ةُ،...  ،◌ٌ ،◌ِ ،◌َ

، هِ، ھُم، ھِم، ... ... ، هُ، هِ، ھُم،  ...  ، هُ، هِ، ھُم، 

، وَيَ، ... وَ، فَ، ، للِ، ... ،وَ، وَال،  ، أَ، أوََ، ... وَ، 

... ، رَمَى،  ، سُفَراؤ، ... ، عَلاَمَ،... عَلَى، 
، هِ،... تَ،  ،َ◌كِ، ... َ◌اتُ،  ...  ، هُ، هِ، ھُم،

Count Count Count
Lemma 1 1 1

Proclitics 30 19 9
Prefixes 13 N/A N/A
Pre-Buffers 1 N/A N/A
Stems 3 2 4

Post-Buffers 11 5 0
Suffixes 100 79 0
Enclitics 18 19 13 ,
Conditions 25 6
Order Seqs. 69 21 2

DB

Prefixes 3,129 199 14

Stems 10 4 4
Suffixes 972 243 14

Compatibility
Combinations 2,687 394 14

Word Forms
(unique analyses) 42,588 Word: 12,942 Word: 224 Word:

Features: Features: Features: 

M
or

ph
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y 

Sp
ec

ifi
ca

tio
ns

C
om

pl
ex

Verb Example Noun Example Particle Example

25

ramaý safiyr ςalaý

Âa wa li fa

ram (perfect) safiyr ςalay.
ay

ta aAti
hu him haA

#ay FP enc0
verbal orders nominal orders particle orders

Âa wali fa

ramay. ςalay.
tahu aAtihim haA

Stem-Suffix Prefix-Stem Prefix Suffix Stem-Suffix Prefix-Stem Prefix Suffix Stem-Suffix Prefix-Stem Prefix Suffix

Âaramay.tahu walisafiyraAtihim faςalay.hA 

 'throw'  'embassador'  'on, upon'

wa, fa, , ... Al, , fa, , bi, ... wa, , Âa, ...

ya, ta,...

a

, r.m (imperfect/command)  (base), sufaraA (broken plural) ςalaý, , ςalaAma,...
aý, ∅, , iy, ... ŵ, ', ŷ, ∅, ...

tu, , naA, at, ... a, i, ũ, aħu, , ...

, hi, hum, him ... hu, hi, hum,  ... hu, hi, hum,  ...
(defective),... (+At suffix),...  (presence of object clitic)

wa, fa, , waya,
... wa, waAl, , lil, ... wa, , >a, >awa, ...

ramaý, , ... , sufarAŵ, ... ςalaý, , ςalaAma,...
ta, , hi, ... aAtu, , aki,... hu, hi, hum,  ...

, , , , , , 

  `did you throw it?'            `and for their ambassadors'            `so, upon it'

 

safiyr

 
         

  

 verb  perfective active 2nd
person masculine singular interrogative
3rd person ms direct object

noun feminine plural genitive
construct 3rd person mp possessive
conjunction  preposition

prep 3rd person fs pron
conjunction

, , , 
, , , ,

, , , ,
, ,

,

, ,

Table 1: Examples of the various specifications needed for morphological modeling. The colored items
participate in forming the full word in the last row. HSB Arabic transliteration (Habash et al., 2007).

4. CAMELMORPH MSA

Logistics The CAMELMORPH Project team com-
prises five computational linguists, all Arabic native
speakers, who participated in the design and an-
notation of CAMELMORPH MSA. This multi-year
effort was reported on incrementally in Habash
et al. (2022) and Khairallah et al. (2024). We make
in-depth technical guidelines publicly available.1

Morphological Specifications We classify the
elements specified in CAMELMORPH MSA Specs
into: essential and supplementary .

Essential elements are core components for
morphological modeling in the CAMELMORPH
approach. They include: (a) Order specifi-
cations, (b) morpheme class which specifies
the order sequence a morpheme can be paired
with, (c) lemma, (d) stem and morph form, (e)
functional/form-based morphological features,
and (f) required and set conditions.

Supplementary elements are additional depen-
dent information which we added to match the ex-
pected performance of other systems, and in some
cases we make use of them to automatically ex-
tend the essential elements. They include: (a) root,
abstract pattern, and concrete pattern (concrete
patterns are used for interdigitation purposes, as
opposed to the abstract patterns which abstract
away over groups of concrete patterns), (b) tran-
scription, provided in CAPHI format (Habash et al.,
2018), (c) tokenization and segmentation, pro-
vided in the D3 and ATB schemes (Habash, 2010),
(d) English gloss, and finally, (e) lemma and
lemma+POS likelihood (log-probability). See Ap-
pendix A.

Development Process As part of the develop-
ment of CAMELMORPH MSA, we employed a vari-
ety of techniques, spanning from manual to auto-
mated approaches, to extract, build, correct, and
quality check the CAMELMORPH MSA Specs.

We manually specified all affixes and clitics, and
their sequence orders, as well as the morphologi-
cal conditions needed to model MSA, with an eye
towards future modeling of dialectal Arabic.

The work on the Lexicon started with automat-
ically extracting lemmas, their stems, and their
features from publicly available resources, such
as CALIMAStar (Taji et al., 2018), which extends
on SAMA (Maamouri et al., 2010) (henceforth,
SAMA/CALIMA). We also extracted a large collec-
tion of names of people, places, and organizations
from Wikidata. In an extensive process, we manu-
ally modified all lexical entries to fit within our mor-
phological conditions and targeted full paradigms.
Furthermore, all the English glosses, roots, and
patterns were manually checked and their gaps
remedied.

We use specification scripts to automate the ad-
dition of three elements. First, we automatically
added CAPHI transcriptions into the compiled DB
by conversion from stem and morph forms. Sec-
ond, we automatically extended the verb lexicon
by adding passive voice verb stems which are sys-
tematically derivable from their active voice coun-
terparts. Finally, to extract likelihood information,
we use the training portion of the Penn Arabic Tree-
bank (PATB-Train, see §5 for details). We synchro-
nized the data with our DB to identify the closest
best match as there is a considerable mismatch in
the spelling of our lemmas and the PATB’s.
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Camel Morph MSA Specs Camel Morph MSA DB SAMA/CALIMA DB

Lemmas (Stems) Lemmas (Stems)

Prefix Morphs (Allom.) DBPrefix Sequences
Suffix Morphs (Allom.) DBSuffix Sequences
Stem Buffers Compatibility Entries

Unique Condition Terms Unique Diacritized Forms (no Annex)
Morph Order Sequences Unique Analyses (no Annex)

Unique Analyses w/o Clitics (no Annex)

(a) 105,102 (140,612) 105,102 (154,573) 42,218 (71,466) (c)
9,333 (38,156) 9,333 (47,540) 9,279 (26,343)

33,267 (39,837) 33,267 (44,414) 32,701 (44,742)
230 (347) 230 (347) 238 (381)

62,272 (62,272) 62,272 (62,272)

(b) 60 (65) 14,726 4,640 (d)
205 (406) 12,724 1,191
111 15,044 979
88 535,186,314 (242,824,398) 70,250,488 (e)

122 1,447,312,125 (630,731,386) 227,471,211
8,070,764 (3,214,695) 1,514,577

Verbs Verbs
Nominals Nominals

Others Others
Proper Nouns - Annex

Table 2: Statistics comparing CAMELMORPH MSA Specs and DB with the SAMA/CALIMA DB.

Quality Checking Given the size of this project
and its many moving parts, we regularly quality
checked our specifications using a number of tech-
niques that isolate specific phenomena while freez-
ing some elements such as the lemmas or POS.
Specifically, we worked on debugging the morpho-
tactics of the affixes and clitics, lemma paradigm
completeness, and stem subparadigm correct-
ness. We regularly made use of the Camel Tools
generation engine (Obeid et al., 2020) to validate
the analysis and generation processes; and we
used different clustering techniques to group re-
lated phenomena into size-manageable sets for our
annotators to debug. The process usually involved
the assigned annotator marking wrong outputs and
discussing them with the rest of the team to make
the needed changes. All markings of wrong and
correct outputs are banked so they can be used in
later automatic progress evaluation.

Examples In Table 1, we show three lemma ex-
amples that summarize most of the framework’s
components. In the Morphology Specifications
rows, we see the morpheme classes in order (as
per our Order sequences). The counts pertain to
the number of specifications (per specified unit)
that participate in the number of unique analyses
that can be generated for that specific lemma (last
row in Table 1). After the specifications are con-
verted by the DB Maker to DB entries, note how a
relatively small amount of allomorphs is mapped
into a large number of complex morphemes (in
the DB Section). In particular, the buffers, which
are small segments meant to complete other mor-
phemes under different conditions (Habash et al.,
2022), together with the passive voice scripts men-
tioned earlier, reduce the total number of stems
that annotators have to manage at the specifica-
tions level: 10 generated from 3 specified for the
verb and 4 generated from 2 specified for the noun.
Finally, constrained by the compatibility combina-
tions, the complex morphemes can combine into a
very large number of analyses.

Statistics Table 2 compares the statistics of our
specifications (CAMELMORPH MSA Specs) and
their associated DB (CAMELMORPH MSA DB),
with those of the SAMA/CALIMA DB (Maamouri
et al., 2010; Taji et al., 2018). We first note the 10%
increase in the number of stems between CAMEL-
MORPH MSA Specs and CAMELMORPH MSA DB.
This shows that the CAMELMORPH MSA Specs
are able to compactly represent stems, denoting
a more annotator-friendly morphological modeling,
and is attributed to the buffer system which shifts
the modeling weight to Morph from Lexicon (see
§3). This can also be seen at the prefix/suffix, con-
dition, and order levels where a small number of
specifications (CAMELMORPH MSA Specs) leads
to a large number of sequences (CAMELMORPH
MSA DB) as seen in Table 2 (b) and (d).

We also note that the number of lemmas/stems
for CAMELMORPH MSA DB is about 2.3 times
greater than for SAMA/CALIMA DB. This is due
to two main reasons: (a) the gaps of verbal
paradigms we filled by adding command and pas-
sive voice stems, most of which were absent in
SAMA/CALIMA; and (b) the 62K (mostly undi-
acritized) Wikidata entries, which we identify as
Proper Nouns - Annex in Table 2.

Finally, the number of analyses that CAMEL-
MORPH MSA DB can generate is almost 9 times
greater than for SAMA/CALIMA DB, and this is
reflected by the greater number of compatibility
combinations, and complex prefixes/suffixes/stems.
The number of unique analyses when clitics are not
considered is about 8.1M for CAMELMORPH MSA
DB (or 3.2M without Proper Nouns - Annex) ver-
sus 1.5M for SAMA/CALIMA DB. This shows that
despite the high inflation that clitics may cause, our
generative power is still superior (with and without
Proper Noun - Annex). This large increase when
including clitics is due to the modeling of various
less frequent CA morphemes in MSA that are ei-
ther not modeled completely or simply not modeled
at all in SAMA/CALIMA DB, e.g., the interrogative
proclitic, the energetic moods for verbs, and the
indirect object pronominal clitics.
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5. Experimental Results

In this section, we conduct experiments to evaluate
the speed, coverage, and accuracy of CAMEL-
MORPH MSA against CALIMAStar (Taji et al.,
2018), an extended version of SAMA (Maamouri
et al., 2010c) (henceforth, SAMA/CALIMA). Both
DBs are accessed through the Camel Tools analy-
sis/generation engines (Obeid et al., 2020).

Datasets We report using three datasets. First is
MSA-CB, a set of 11.4M word types corresponding
to 9.9B tokens from a large corpus used to pretrain
the CAMeLBERT-MSA model (Inoue et al., 2021).
Second is CA-CB, a set of 2.4M word types corre-
sponding to 0.7B tokens from the CAMeLBERT-CA
model (Inoue et al., 2021). Both MSA-CB and
CA-CB were selected to contain Arabic characters
only. And finally, PATB-Train, the training portion of
the PATB parts 1v4.1, 2v3.1 and 3v3.2 (Maamouri
et al., 2004,Maamouri et al., 2010a,b, 2011) follow-
ing Diab et al. (2013)’s splits.

Speed Currently, it takes about 45 minutes2 to
generate our DB as part of the offline DB Maker
process. We also conducted controlled experi-
ments measuring the effect of factorization (see §3)
on online speed and found it to make analysis 10%
faster. This is due to the fact that the number of
categories and compatibility entries is reduced by
more than 5.6 times in the factorized version.

We measure the online analysis speed of
CAMELMORPH MSA DB and SAMA/CALIMA DB
(in CPU time) over MSA-CB and CA-CB. Results in
Table 3 show that CAMELMORPH MSA is between
2.4 and 2.9 times slower than SAMA/CALIMA.

Coverage We compare the out-of-vocabulary
(OOV) rate of CAMELMORPH MSA DB and
SAMA/CALIMA DB over MSA-CB and CA-
CB. Results are in Table 3. Compared to
SAMA/CALIMA, CAMELMORPH MSA consistently
reduces OOV by 10% (types) and 36% (tokens)
for MSA, and by 20% (types) and 38% (tokens)
for CA. Manual examination of OOV types shows
that proper nouns seem to carry the bigger share
of OOVs. Other major sources of OOV include
spelling errors, spelling variations of the same
word, and erroneous merging of words. These
results show that paradigm gap filling, the ad-
dition of rare phenomena (especially the ener-
getic mood and indirect object pronominal clitics),
and the seamless integration of Wikidata entities
had a considerable impact on OOV reduction. Fi-
nally, we report that the number of analyses per
type in CAMELMORPH MSA is 1.4 times that in
SAMA/CALIMA.

2On one core of a Mac Book Air M2 with 16GB RAM.

Camel Morph MSA SAMA/CALIMA
MSA CA MSA CA 

Run Time (sec) 4,231 1,960
Type OOV 67.9% 34.7%
Token OOV 2.3% 1.5%
Analyses/Type 18.9 21.2
Analyses/Token 38.6 45.7

12,293 4,667
75.1% 43.2%
3.5% 2.5%
13.7 15.2
18.9 20.3

Table 3: Results comparing speed and coverage of
CAMELMORPH MSA and SAMA/CALIMA over a
large set of Arabic words from MSA (9.9B tokens,
11.4M types) and CA (0.7B tokens, 2.4M types).

Accuracy We assess the quality of CAMEL-
MORPH MSA by evaluating its coverage of PATB-
Train. We drop all incomplete PATB gold analyses
marked with placeholder values (∼1% of all en-
tries). Of the rest, we are able to recall 95.9%
(94.5% in unique type space) based on matching
on all of lemma, diacritization, and morphological
analysis. A human evaluation on a sample of the
mismatching instances shows that about 90% of
mismatches are actually due to a defect in the gold
data. Cases include spelling inconsistencies be-
tween lemma and stem, attributing a stem to a
wrong lemma because of paradigm ambiguity, or
simply wrong analysis on one or more features.
Our system handles these cases correctly.

Project Updates Based on the error analyses we
conducted above, we updated our CAMELMORPH
MSA DB for completeness. We tried to include
as many missing phenomena as possible, without
compromising our morphological and orthographic
guidelines. All updates and future additions will be
publicly available.1

6. Conclusions and Future Work

We presented CAMELMORPH MSA, the largest
open-source Arabic morphological analyzer and
generator to date and evaluated it against a popular
morphological analyzer, showing superior perfor-
mance.

In the future, we plan to continue expanding
CAMELMORPH MSA to increase its coverage fur-
ther to include more MSA and CA lexical items, as
well as expanding it to include Arabic dialects. We
plan to continue filling any gaps in the DB, such
as any incomplete diacritizations, transcriptions
and missing glosses. We also plan to increase
its robustness to input spelling errors and develop
smart back-off utilities to allow it to propose plau-
sible answers for unseen words. We also plan on
improving speed performance and offering users
options for controlled reduced DB sizes.
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A. Sample Specifications

Figure 2 shows a small sample of specifications for three Arabic verbs, and a very small chunk of their
inflectional paradigms. Some specifications like the passive forms and transcriptions are generated by
scripts which are provided as input to the DB Maker algorithm (see Figure 1).

I. ORDER

PREFIX STEM SUFFIX

(a) [QUES] [CONJ] [STEM-PV] [PVSuff] [PRON]

II. MORPH

CLASS FUNC FORM BW GLOSS FEAT COND-REQ COND-SET

(b) [QUES] prc3:0

(c) [QUES] >a/PART_INTERROG >a >a/INTERROG_PART is/are prc3:>a_ques

(d) [CONJ] prc2:0

(e) [CONJ] fa/CONJ fa fa/CONJ so/and prc2:fa_conj

(f) [CONJ] wa/CONJ wa wa/CONJ and prc2:wa_conj

(g) [PVSuff] PVSuff.2MS ta ta/PVSUFF_SUBJ:2MS you_[m.s.] asp:p per:2 gen:m num:s else c-suff

(h) [PVSuff] PVSuff.2MS ~a ~a/PVSUFF_SUBJ:2MS you_[m.s.] asp:p per:2 gen:m num:s #t c-suff

(i) [PVSuff] PVSuff.2FS ti ti/PVSUFF_SUBJ:2FS you_[f.s.] asp:p per:2 gen:f num:s else c-suff #^i

(j) [PVSuff] PVSuff.2FS ~i ~i/PVSUFF_SUBJ:2FS you_[f.s.] asp:p per:2 gen:f num:s #t c-suff #^i

(k) [PVSuff] PVSuff.3MS a a/PVSUFF_SUBJ:3MS he asp:p per:3 gen:m num:s else v-suff

(l) [PVSuff] PVSuff.3FS at at/PVSUFF_SUBJ:3FS she asp:p per:3 gen:f num:s else v-suff

(m) [PRON] enc0:0

(n) [PRON] hu/PRON.3MS hu hu/XVSUFF_DO:3MS him enc0:3ms_dobj trans else enc0

(o) [PRON] hu/PRON.3MS hi hu/XVSUFF_DO:3MS him enc0:3ms_dobj trans #^i enc0

(p) [PRON] hA/PRON.3FS hA hA/XVSUFF_DO:3FS her enc0:3fs_dobj trans enc0

III. LEXICON

CLASS LEMMA FORM BW GLOSS FEAT COND-REQ COND-SET

(q) [STEM-PV] katab katab katab/PV write pos:verb asp:p trans

(r) [STEM-PV] Saw~at Saw~at Saw~at/PV vote pos:verb asp:p #t trans

(s) [STEM-PV] fAt fAt fAt/PV go_by pos:verb asp:p v-suff #t trans

(t) [STEM-PV] fAt fut fut/PV go_by pos:verb asp:p c-suff #t trans

Figure 2: Sample Morphological Specifications for MSA perfective verbs, as they would appear in the
specification sheets. COND-REQ and COND-SET refer to COND-T and COND-S, respectively. Note that
the pattern and root information is missing from the LEXICON section of this table.
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