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Abstract

Multiple-choice questions (MCQs) are widely used in the evaluation of large language models (LLMs) due to their
simplicity and efficiency. However, there are concerns about whether MCQs can truly measure LLM’s capabilities, par-
ticularly in knowledge-intensive scenarios where long-form generation (LFG) answers are required. The misalignment
between the task and the evaluation method demands a thoughtful analysis of MCQ’s efficacy, which we undertake
in this paper by evaluating nine LLMs on four question-answering (QA) datasets in two languages: Chinese and
English. We identify a significant issue: LLMs exhibit an order sensitivity in bilingual MCQs, favoring answers located
at specific positions, i.e., the first position. We further quantify the gap between MCQs and long-form generation
questions (LFGQs) by comparing their direct outputs, token logits, and embeddings. Our results reveal a relatively
low correlation between answers from MCQs and LFGQs for identical questions. Additionally, we propose two
methods to quantify the consistency and confidence of LLMs’ output, which can be generalized to other QA evaluation
benchmarks. Notably, our analysis challenges the idea that the higher the consistency, the greater the accuracy.
We also find MCQs to be less reliable than LFGQs in terms of expected calibration error. Finally, the misalignment
between MCQs and LFGQs is not only reflected in the evaluation performance but also in the embedding space. Our
code and models can be accessed at https://github.com/Meetyou-AI-Lab/Can-MC-Evaluate-LLMs.

Keywords: Natural Language Processing, Large Language Model, Question Answering, Text Generation,
Evaluation Methods

1. Introduction
Over the past few years, large language models
(LLMs) have exhibited remarkable performance
on a wide range of question-answering (QA)
tasks (Brown et al., 2020; Kadavath et al., 2022;
Robinson and Wingate, 2023). The evaluation
of LLMs’ strengths and limitations often relies
on diverse benchmarks presented in different for-
mats (Singhal et al., 2023; Liu et al., 2023b), do-
mains (Jin et al., 2019; Zhong et al., 2020), and
languages (Petroni et al., 2019; Bang et al., 2023).
As previous research has shown (Liang et al., 2022;
Chang et al., 2023; Li et al., 2023a; Chia et al.,
2023), evaluation using benchmarks is essential
for the detection and mitigation of various issues
such as misinformation (Zheng et al., 2021; Gao
et al., 2022), hate speech (ElSherief et al., 2021; Lu
et al., 2023), and malicious uses (Xu et al., 2021;
Ganguli et al., 2022; Shaikh et al., 2023; Zou et al.,
2023). Such mechanisms are critical for safeguard-
ing against harmful content and promoting respon-
sible usage of LLMs in various contexts.
QA benchmarks come in a variety of formats, includ-
ing True/False questions (TFQs) in which models
predict whether a statement in the question is cor-
rect or not, multiple-choice questions (MCQs), in
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which multiple candidate answers accompany the
input question, and long-form generation questions
(LFGQs), in which a generated answer could span
multiple sentences. Among these, multiple-choice
is the most popular format as it allows a simple and
quick assessment of model performance (Bhak-
thavatsalam et al., 2021; Ramamurthy and Aakur,
2022; Liu et al., 2023a; Huang et al., 2023). How-
ever, MCQs also present several limitations, such
as potential misalignment with real-world use cases
where LLMs are often required to answer ques-
tions in long-from generation format (Nuance, 2023;
Bommasani et al., 2021). In addition, LLMs have
been shown to be affected by changes in the posi-
tion of the candidate answers (Zheng et al., 2023;
Wang et al., 2023) and their contents (Pezeshkpour
and Hruschka, 2023) when answering MCQs. The
aforementioned problems highlight the limitations
of MCQs benchmarks in evaluating LLMs, which
could potentially lead to overestimation of LLMs
capabilities.
With the above issues in mind, our motivation is to
explore the limitations and characteristics of both
MCQs and LFGQs as main evaluation formats in
QA tasks. We aim to answer the following research
questions:

1. How does the arrangement of options in MCQs
influence LLMs’ selection of responses?
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2. What methodologies can be employed to con-
duct comprehensive comparative experiments
between MCQs and LFGQs? Additionally,
what specific aspects should be considered
when conducting comparative tests?

The answers to these questions contribute to the un-
derstanding and comparison between MCQs and
LFGQs as evaluation formats in QA tasks. Given
the prevalence of MCQs as the dominant evalua-
tion format, our aim is to thoroughly examine their
efficacy. This begins with a detailed exploration of
MCQs’ capabilities and subsequently extends to
a comparative analysis with LFGQs, providing a
comprehensive assessment of both formats.
We address the first question by conducting a se-
ries of experiments (§3) to reveal the sensitivity of
LLMs to answering MCQs by applying slight pertur-
bations to the positional order of the options. We
find significant differences between the answers
in multiple LLMs (§3.1). We also identify specific
patterns of the selected answer according to its
position that varies among different LLMs (§3.2).
For the second question, we conduct comparative
experiments (§4) to quantify the misalignment be-
tween MCQs and LFGQs on three different spaces:
direct output space (§4.1), token logits space (§4.2),
and hidden embedding space (§4.3). By doing
this, we aim to gain a deeper understanding of the
unique characteristics between the two types of
questions.
Our key findings reveal that:

• LLMs exhibit order sensitivity in bilingual
MCQs, favoring answers at the first position.

• Answers obtained from MCQs and LFGQs for
identical questions have a low correlation.

• Higher consistency does not indicate better
model performance.

• The misalignment between MCQs and LFGQs
is evident in the evaluation performance as
well as in the embedding space.

Overall, our study aims to provide a better under-
standing of the difference in QA formats in LLM
evaluation, uncover underlying patterns, and shed
light on the improvement of current methods.

2. Experimental Details
Models We use different models on different ex-
periments, tailoring our choices based on the spe-
cific goals of each experiment, as summarized
in Table 1. To check whether LLMs are sensi-
tive to the order of the candidate answers (§3),
we evaluate three models: ChatGLM-6B (Zeng
et al., 2023; Du et al., 2022) and two models from
the GPT family, namely GPT-3.5-turbo (OpenAI,
2023b) and GPT-4 (OpenAI, 2023a). In compar-
ing MCQs and LFGQs (§4), we again use different
models on the three different spaces. For the di-
rect output space (§4.1), we use GPT-3.5-turbo,

GPT-4, and ChatGLM-6B, considering both their
diversity and performances. For the token log-
its space (§4.2), we only test GPT-3.5-turbo, as
it is the only model that can output token prob-
abilities (Manakul et al., 2023) within three mod-
els. Finally, in the embedding space (§4.3), we
conduct experiments with models from multiple
popular LLM families across various sizes, in-
cluding StableLM-Tuned-Alpha-3/7B (Stability-AI,
2023), RedPajama-INCITE-Instruct-3B-v1 (Com-
puter, 2023), Llama-2-7b-chat-hf (Touvron et al.,
2023b), Dolly-v2-2/7/12B (Conover et al., 2023),
Vicuna-7b-v1.3 (Chiang et al., 2023), and Open-
llama-3/7B (Touvron et al., 2023a).
Datasets We conduct experiments on four evalu-
ation benchmarks:

1. CARE-MI (Xiang et al., 2023): A Chinese
benchmark for evaluating LLM misinformation
in the maternity and infant care domain. It in-
cludes 1, 612 LFGQs. The questions can also
be obtained as MCQs and TFQs from the origi-
nal MLEC-QA(Li et al., 2021) and MEDQA (Jin
et al., 2020) datasets, according to the ques-
tion generation process of CARE-MI, resulting
in each question being formulated in the three
formats: MCQ, LFGQ, and TFQ.

2. M3KE (Liu et al., 2023a): A dataset with 20, 477
standard Chinese questions for 71 tasks, en-
compassing all major levels of Chinese educa-
tion system, including humanities, history, poli-
tics, law, education, psychology, science, tech-
nology, art and religion in MCQ format. Each
question presents four candidate answers.

3. ARC (Clark et al., 2018): A dataset with natu-
ral, grade-school science questions (authored
for human tests) in English. It is the largest
public-domain set of this kind with 7, 787 ques-
tions. Each question contains four candidate
answers.

4. MATH: A synthetic dataset randomly gener-
ated by a script with simple mathematical ques-
tions in English. Each question has four can-
didate answers.

As shown in Table 2, we ensure data balance by us-
ing a similar number of samples from each dataset.
For the first research question (§3), we use all the
datasets: CARE-MI, M3KE, ARC, and MATH. In
the second research question (§4), we use the
CARE-MI dataset for the direct output (§4.1) and
token logits analysis (§4.2) as it is the only dataset
offering the three different QA formats. The ARC
dataset is used on the embedding space analysis
(§4.3), wherein we extend its MCQs to LFGQs by
not presenting the candidate answers to the LLMs.
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Are LLMs sensitive to order? MCQ vs LFGQ
Model Order Sensitivity Patterns Decomposition Direct Output Token Logits Embeddings

GPT-3.5-turbo (OpenAI, 2023b) ✓ ✓ ✓ ✓
GPT-4 (OpenAI, 2023a) ✓ ✓ ✓
ChatGLM-6B (Zeng et al., 2023) ✓ ✓ ✓
Stablelm-tuned-α (Stability-AI, 2023) ✓
RedPajama-INCITE-3B-v1 (Computer, 2023) ✓
Dolly-v2 (Conover et al., 2023) ✓
Vicuna-7b-v1.3 (Chiang et al., 2023) ✓
Open-llama (Touvron et al., 2023a) ✓
Llama-2-7b-chat-hf (Touvron et al., 2023b) ✓

Table 1: Summary of the LLMs used in each of our analyses.

Dataset Size Lang. Format

CARE-MI 344 ZH MCQ/LFGQ/TFQ
M3KE 299 ZH MCQ
ARC 291 EN MCQ
MATH 300 EN MCQ

Total 1, 234 - -

Table 2: Summary of the evaluation datasets.
Lang. stands for the language of the datasets.

The selection of benchmarks is guided by three
specific criteria: (1) Source diversity: we aim to
conduct our analyses across different domains.
(2) Language: We presume language is a po-
tential factor influencing LLMs evaluation perfor-
mance, so we conduct experiments on two high-
resource languages, i.e., Chinese and English. (3)
Performance-level: By incorporating benchmarks
with varying levels of LLMs demonstrated perfor-
mance, we aim to better understand how model
proficiency influences results in the different QA for-
mats. Additionally, in the token logits space (§4.2),
we investigate changing the number of candidate
answers to explore their impact on the expected
calibration error.
Prompt design To encourage the generation of
concise responses, we provide LLMs with prompts
both prior to (pre-prompt) and following (post-
prompt) each question in any dataset format. Addi-
tionally, for MCQs, each question is accompanied
by four candidate options, with only one being cor-
rect. The pre-prompt for MCQs is “Please select
a correct option", while the post-prompt “Only one
option can be selected. No explanation is allowed".
For LFGQs, the post-prompt is “Just answer in one
sentence", and for TFQs, it is “Just answer ‘yes’ or
‘no’". We find that this prompt design facilitates the
generation of brief content, aiding subsequent ac-
curacy evaluation (§4.1) and automatic confidence
calculation (§4.2).

3. Are LLMs sensitive to the order of
candidate answers?

We first investigate how the arrangement of candi-
date answers in MCQs datasets affects the eval-

64 39 39
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Which of these objects will mostly likely 
float in the water?
(A) glass marble (B) steel ball
(C) hard rubber ball (D) table tennis ball

Which of these objects will mostly likely 
float in the water?
(B) steel ball (A) glass marble 
(C) hard rubber ball (D) table tennis ball
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correct option: D
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Option Number

291 
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Figure 1: Example of order sensitivity experiments,
in which the correct answer is D. In the ARC dataset,
when predicting a wrong option (A, B, or C), the
LLM prefers the option located in the first position.

uation of LLMs. We find that LLMs consistently
exhibit a strong preference for specific positions
when presented with options in different orders, as
illustrated in Figure 1.

3.1. Order Sensitivity
To check whether there are significant differences
in LLMs’ answers when the candidate options are
arranged in a different order, we employ the chi-
squared test (McHugh, 2013). To isolate the influ-
ence of the correct answer, we designate option
D as the only correct option for all the questions.
Then, we establish two scenarios: in CASE1, the
option order is ’ABCD’, and in CASE2, it is ’BACD’.
Importantly, when arranging the option order, we
also rearrange the contents and positions of each
candidate option accordingly, rather than simply
altering the numbering, as shown in Figure 1.
In the chi-squared test, we set the null hypothe-
sis, H0, stating that the responses in CASE1 and
CASE2 originate from the same distribution. The
chi-squared statistic is calculated as

X2 =

N∑
i=0

(Oi −Ri)
2

Ri
, (1)

where
N∑
i=0

is the sum of N candidate options , Oi

the frequency of each option in CASE1, and Ri

the frequency of each option in CASE2. With the
significance test, we can get the p-value P from the
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GPT3.5 GPT4 ChatGLM

CARE-MI
X2 144.192 15.660 27.605

P **0.000 *0.001 **0.000
Acc 0.203 0.637 0.378

Gap −0.043 −0.029 −0.116

M3KE
X2 90.308 20.829 12.377

P **0.000 **0.000 **0.006
Acc 0.381 0.632 0.411

Gap −0.030 −0.017 +0.014

ARC
X2 36.515 2.681 10.511

P **0.000 0.443 *0.015
Acc 0.512 0.935 0.553

Gap +0.148 -0.031 -0.116
MATH

X2 25.129 4.513 90.566

P **0.000 0.211 **0.000
Acc 0.597 0.780 0.480

Gap +0.000 -0.023 -0.043

Table 3: LLMs’ order sensitivity results. The re-
arrangement of options makes LLMs output dif-
ferent answers.* indicates P < 0.05, ** indicates
P < 0.001, and bold indicates larger than signifi-
cance level α.

chi-squared probabilities based on the chi-squared
statistic and the degrees of freedom, N − 1 = 3.
Additionally, we can calculate the accuracy gap,
which represents the difference between the origi-
nal accuracy and the accuracy after reordering.
Results are shown in Table 3, from which we note
the following observations:

1. There is a considerable disparity in LLMs’ out-
puts across the two scenarios. Except for
two instances,1 all the results have a p-value
P < 0.05, rejecting the null hypothesis and
implying that the distribution of answers pre-
dicted by the model varies significantly when
options A and B are interchanged. This indi-
cates that the order of options significantly in-
fluences LLMs’ predictions in MCQs datasets.

2. Among the GPT family, the rearrangement of
options has a more pronounced effect on GPT-
3.5-turbo, with bigger accuracy gaps, than on
GPT-4.

3. Higher accuracy can mitigate significant dif-
ferences in the order arrangement to some

1GPT4 model on the ARC (X2 = 2.681, P = 0.443)
and the MATH (X2 = 4.513, P = 0.211) datasets.

extent. Results from GPT-4 on the ARC and
the MATH datasets indicate that high accura-
cies (≥ 0.780) can lead to not rejecting the null
hypothesis.

4. There is no evident correlation between the
accuracy gap and the original accuracy. A
higher accuracy does not necessarily imply a
lower gap between the two scenarios.

3.2. Pattern Decomposition
Next, we further explore the pattern decomposition
of LLMs to investigate potential patterns underlying
their sensitivity to order. We propose the follow-
ing two hypotheses for exploration: (1) LLMs may
have different positional preferences due to their
different model bases; (2) LLMs may have differ-
ent positional preferences depending on whether
they have previously memorized the contents of
the datasets.
We use the same LLMs as in §3.1, as they can
provide concise answers to the questions and
come from different model bases. Regarding the
datasets, CARE-MI, M3KE, and ARC are derived
from website documents, while the MATH dataset,
synthetically generated by us, ensures that the
LLMs have not been exposed to identical questions
during training.
Results are presented in Table 4, from which we
can extract the following conclusions:

1. Within the GPT family, GPT-3.5-turbo and
GPT4 exhibit different behavior. When predict-
ing incorrect options (A, B, or C), GPT4 shows
a stronger inclination towards the option posi-
tioned first compared to GPT-3.5-turbo. Specif-
ically, when option B is presented first, GPT-
3.5-turbo tends to lean towards selecting op-
tion B. Furthermore, ChatGLM-6B showcases
a certain preference for the first two options.

2. The behavior of the LLMs remains consistent
across datasets originating from different lan-
guages and sources. Hence, we can conclude
that the dataset’s language or source, regard-
less of whether the models were previously
exposed to them or not, is not the underlying
cause of the models’ positional preferences.

3.3. Yes, LLMs are sensitive to ordering
Our experiments showed that the order of candi-
date answers in MCQs significantly impacts LLMs
outputs. GPT-3.5-turbo and GPT4 exhibited dif-
ferent preferences, while ChatGLM-6B showed a
certain preference for the first two positions. In
addition, the positional preferences in each LLM
seemed to remain consistent across datasets origi-
nating from different languages and sources.
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GPT-3.5-turbo GPT-4 ChatGLM-6B
Dataset CASE 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd

CARE-MI C1 41 33 26 44 37 19 37 42 21
C2 83 8 9 61 26 13 61 23 16

M3KE C1 25 35 40 49 26 25 33 39 28
C2 75 1 24 49 31 30 46 32 22

ARC C1 47 27 26 37 31 32 33 28 39
C2 52 16 32 21 36 43 33 36 31

MATH C1 22 60 18 41 30 29 17 69 14
C2 61 3 36 47 28 25 22 57 11

Table 4: Pattern decomposition results. C1 refers to CASE1, and C2 to CASE2. The numbers indicate
the percentage (%) of incorrect options (A, B, or C) that each model selects for each position (1st position,
2nd position, and 3rd position). Deeper background indicates a higher preference for that position.

These findings are problematic because they reveal
potential biases and inconsistencies in LLM out-
puts, which can affect the reliability and accuracy of
their responses. Failure to understand and address
these preferences may lead to biased recommen-
dations, inaccurate information retrieval, and flawed
decision-making. It is important to develop meth-
ods to mitigate these effects, as well as to investi-
gate evaluation protocols that are less impacted by
positional preferences. In light of these observa-
tions, in the next section, we compare MCQs and
LFGQs evaluation methods.

4. Multiple Choice vs
Long Form Generation

To compare QA evaluation formats and gain a
deeper understanding of LLMs evaluation proto-
cols, we expose several LLMs to the same ques-
tions presented in different formats. Then, we ana-
lyze and compare the results in three spaces: the
direct output space (§4.1), the token logits space
(§4.2), and the embedding space (§4.3).

4.1. Direct Output
In the direct output space, which refers to the
responses generated by the LLMs, accuracy is
one of the most common evaluation metrics used
for benchmarking purposes and performance as-
sessment. The difference in accuracy between
the MCQs and LFGQs formats is the first aspect
we consider (§4.1.1). Additionally, we study the
relationship between consistency and accuracy
(§4.1.2) by exploring whether LLMs, if familiar with
a particular concept, tend to generate responses
that are similar and encompass consistent factual
information (Manakul et al., 2023).

4.1.1. Accuracy
We randomly select 100 samples from the CARE-MI
dataset and evaluate GPT4, GPT-3.5-turbo, and
ChatGLM-6B on them. For MCQs, accuracy is
computed as usual, i.e. if the predicted answer

matches the ground truth, it is considered correct.
For LFGQs, accuracy is determined through human
evaluation, with 0 denoting an incorrect response
and 1 a correct one.
Figure 2 (top) compares the accuracy between
MCQs and LFGQs across the three LLMs. Notably,
the accuracies of MCQs are consistently higher
than those of LFGQs. This difference can be at-
tributed to the fact that MCQs offer candidate op-
tions, facilitating the prediction task.
To delve deeper into the analysis, in Figure 2 (bot-
tom), we visualize a matrix in which, for the same
question, there are four scenarios: 1) the response
is correct in both formats, 2) the response is incor-
rect in both formats, 3) the response is correct in
MCQs but incorrect in LFGQs, and 4) the response
is correct in LFGQs but incorrect in MCQs. Results
show that there are a relatively large number of
questions where the LLMs can respond correctly
in MCQs, but fail in the LFGQs format.
Furthermore, we quantify the differences in accu-
racy produced by the two formats with Pearson
correlation coefficients. The obtained values are
remarkably low: 0.39 for GPT4, 0.7 for GPT-3.5-
turbo, and 0.33 ChatGLM-6B, clearly indicating that
different versions of the same question yield differ-
ent answers from the LLM.

4.1.2. Consistency
Next, we explore the relationship between consis-
tency and accuracy. Consistency stands for the
degree to which the LLMs provide the same an-
swer when asked the same question multiple times.
For example, an answer of ‘AAAAB’ is considered
more consistent than ‘BCDAB’ when presented with
the same question five times. To conduct this eval-
uation, we first define the quantitative measures
for consistency and accuracy in a sequence of re-
sponses to a repeated question.
Formally, let A = {A1, A2, ..., AD} be a sequence
of answers, where a model is queried D times.
Each answer Ai ∈ A is selected from a set of
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Figure 2: Comparison between MCQs and LFGQs
on the CARE-MI dataset. Top: accuracy and pear-
son correlation. Bottom: MCQ vs LFGQs matrix.

N unique options O = {Opt1, Opt2, ..., OptN}.
From A, we derive a count sequence C =
{count(Opt1),count(Opt2), ...,count(OptN )},
where count(Opti) represents the number of
occurrences of Opti in A, marking Optmax as the
option with the largest count(Opti). We define
sequence consistency K as

K(A) =
1

D
count(Optmax)

+
1

D

∑
Opti ̸=Optmax

max(0,count(Opti)− 1).

(2)

As for accuracy, if Aref ∈ O is the correct answer,
the accuracy for sequence A can be defined as

Acc(A) =
1

D
count(Aref ). (3)

In the experiments, we use the same samples as in
§4.1.1 and repeat each question five times for each
LLM. To compute consistency and accuracy on
LFQs, we manually group the long-text generated
answers into options so that answers with similar
meanings are grouped together under the same
option. We also explore the impact of different
temperatures, which is the parameter that controls
the degree of randomness of the generated text,
by using values 0, 0.5, and 1.
Figure 3 shows GPT-3.5-turbo’s consistency for
MCQs and LFGQs across the three temperature
values. Both formats tend to be consistent in their
answers. Even when the temperature is increased,
consistency does not decrease notably. Between
the two formats, LFGQs tend to be more consistent
than MCQs.
We also calculate the Pearson correlation coeffi-
cient between consistency and accuracy. In the
case of MCQs, the Pearson correlation coefficient
is 0.32, while for LFGQs, the coefficient reaches
0.416, implying that higher consistency does not

0.85
0.990.98

0.820.86

T-1

0.72

T-0.5T-0

LFGQsMCQs

Figure 3: GPT-3.5-turbo’s consistency on MCQs
and LFGQs with different temperatures.

necessarily mean more correct. Our findings sug-
gest that a higher level of consistency indicates a
sharper probability distribution of specific knowl-
edge, but it does not guarantee the correctness
of the knowledge. Unlike SelfCheckGPT (Man-
akul et al., 2023), which leverages the idea that the
higher the consistency, the higher the correctness,
we do not find a direct relationship between con-
sistency and accuracy. We believe this is due to
the knowledge required to answer the evaluation
dataset. While SelfCheckGPT is evaluated on infor-
mation from famous individuals (Lebret et al., 2016),
we use specialized professional medical datasets.

4.2. Token Logits
To compare MCQs and LFGQs in the token logits
space, which is the space of predicted probabili-
ties, we rely on two techniques: unified confidence
calculation and expected calibration error.

4.2.1. Unified confidence calculation
One of the mainstream approaches used to analyze
why LLMs select specific options when answering
MCQs is through token logits (Manakul et al., 2023).
GPT-3.5-turbo, for instance, can generate log prob-
abilities for the most probable tokens associated
with each output token.2 However, while there are
formulas to calculate confidence for multiple op-
tions (Jiang et al., 2021; Holtzman et al., 2021; Lin
et al., 2022a), direct utilization of token probability
calculations for comparing MCQs with LFGQs is
not straightforward.
Since our goal is to compare MCQs and LFGQs,
we follow (Jiang et al., 2021) and propose a unified
confidence calculation applicable to the three QA
formats: MCQs, LFGQs, and TFQs. Let us assume
an input question q that makes a LLM generate the
set of answers A. Each answer Ai ∈ A contains
|Ai| tokens. Each token, denoted as tk, with 1 ≤
k ≤ |Ai|, has a corresponding autoregressive token
log probability Plog(tk|q, t<k). We first compute the

2https://platform.openai.com/docs/
guides/gpt

https://platform.openai.com/docs/guides/gpt
https://platform.openai.com/docs/guides/gpt
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average token log probability of each answer Ai as

Pavg(Ai|q) =
∑|Ai|

i=1Plog(tk|q, t<k)

max(1, |Ai|)
. (4)

From the initial set of answersA, which may contain
duplicates, we consolidate them into z unique an-
swers, denoted as Auni = {Auni

1 , Auni
2 , ..., Auni

z },
where z ≤ D. For each unique answer, we
select the highest log probability observed for
any instance of that answer in A, denoted as
Phighest
log (Auni

i |q). Subsequently, we rank the first
W unique answers, where W ≤ z,3 from Auni in
descending order by their frequency and the corre-
sponding Phighest

log (Auni
i |q), to filter out excessively

similar responses and maintain the diversity in the
unique answers. We calculate the standardized
confidence for the first W answers as

CN (Auni
w ) =

ep
higest
avg (Auni

w |q)∑W
w=1 e

phigest
avg (Auni

w |q)
. (5)

Finally, For MCQs, we use regularization match-
ing to combine first W answers with four candi-
date options, and get the final label (0 or 1) with
the sum of corresponding standardized confidence.
For LFGQs, we directly get the final label (0 or 1)
according to standardized confidence for the first
W answers and human labeling for each answer.

4.2.2. Expected Calibration Error
After obtaining the unified confidence, we compute
model calibration (Gupta et al., 2006; Ahmed et al.,
2020) to test whether a LLM exhibits good calibra-
tion across different dataset evaluation formats. A
well-calibrated model should provide confidence
(i.e., logit) estimates that closely match the actual
probability of the correctness of the answer. Inac-
curate predictions should correspond to low con-
fidence (i.e, logit) values, whereas accurate pre-
dictions should yield high confidence (i.e., logit)
values.
In practice, we employ a commonly used
metric known as expected calibration error
(ECE) (Niculescu-Mizil and Caruana, 2005) to as-
sess the alignment of confidence and accuracy.
ECE is computed as the weighted average of the
difference between the accuracy and confidence.
To measure confidence quantitatively, we divide
the [0, 1] interval into multiple bins. Each sample
falls into one of these bins based on the model’s
predicted results. The average model confidence is
calculated in each bin, and then compared with the
average accuracy of the sample real label in the bin.
The absolute value of these two differences can
measure the model’s confidence. A larger differ-
ence indicates lower model confidence. Formally,

3W = 4 in our experiments.

Format CA CARE-MI M3KE ARC MATH
MCQ 4 0.426 0.317 0.492 0.281
MCQ 3 0.329 0.364 0.382 0.259
MCQ 2 0.414 0.427 0.280 0.257
LFGQ - 0.304 - - -
TFQ 2 0.276 - - -

Table 5: GPT-3.5-turbo’s ECE for different formats
and number of candidate answers. CA stands for
the number of candidate answers.

ECE =

B∑
b=1

|nb|
N

|acc(b)− conf(b)|. (6)

where b represents the b-th bin, B represents the
total number of bins, nb represents the number
of samples in the b-th bin, acc(b) represents the
average value of the true label of the sample in the
b-th bin, conf(b) represents the average value of
the model prediction probability in the b-th bin. In
our experiments, we set B = 100.

4.2.3. Results
Within the CARE-MI dataset, we use the three QA
formats, MCQs, LFGQs, and TFQs, to compute
ECE and reliability. We use confidence scores
and true labels to draw reliability diagrams as
in (Kängsepp et al., 2022). A reliability diagram
closely aligning with the identity line suggests good
model calibration, while a significant deviation indi-
cates poor calibration. Results are shown in Figure
4 and in Table 5. LLMs operating on MCQs ex-
hibit the poorest calibration and highest ECE com-
pared to the other two formats. This suggests that
the LLMs’ predictions in MCQs are not accurately
aligned with the true probability of correct answers,
indicating overconfidence in their responses. Addi-
tionally, we observe that the ECE in TFQs (0.276),
which contain only two candidate options, is lower
than in MCQs (0.426), which have four candidate
options.
To investigate the impact of the number of candi-
date answers, we conduct experiments by varying
the number of options in MCQs across the four
datasets. We analyze whether the number of op-
tions and the domain of each dataset affect ECE.
Throughout these experiments, we maintain the
correct answer consistently positioned as the last
option. As depicted in Table 5, we do not find a
clear correlation between these factors and ECE,
meaning that the number of options and the domain
do not seem to influence LLM’s performance.

4.3. Embeddings
Up to this point, our analysis reveals that the mis-
alignment between MCQs and LFGQs answers
is evident in both the direct output (§4.1) and the
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Figure 4: Reliability diagrams for MCQs, LFGQs, and TFQs on the CARE-MI dataset.

token logits (§4.2). Next, we investigate whether
this difference is also manifested in the embedding
space derived from the hidden states of the mod-
els (Burns et al., 2023). We also explore how the
embeddings behave under different question for-
mats and models. The technique proposed by Li
et al. (2023b) enables the extraction of hidden out-
puts from the model by collecting the heads of the
attention blocks, and use these heads as index to
obtain the hidden outputs of each layer from the
model.4 We utilize the hidden outputs of the last
token in the input. To thoroughly investigate the dis-
tinctions in the embedding space between MCQs
and LFGQs themselves as much as possible, un-
like the prompt design in the previous experiments,
we only set a post-prompt for MCQs, and LFGQs
do not contain any prompts. Finally, the hidden
outputs have information on the number of input
samples, the number of hidden layers, the number
of attentions, and the dimensions of heads. Refer
to Table 6 in the Appendix (§8) for more details.
We randomly select 40 samples from the ARC
dataset, each with MCQs and LFGQs formats, and
plot t-SNE (Van der Maaten and Hinton, 2008) rep-
resentations of the hidden embeddings in each
layer. Figure 5 shows the visualizations for Llama-
2-7b-chat-hf. Other model visualizations are pro-
vided in the Appendix (§8). The results show that
the embeddings from MCQs and LFGQs display
clear separations in some layers of the hidden
states. We observe a consistent trend across the
various LLMs: in the initial layers, embeddings of
the two formats show clear separations. However,
as we progress towards the final layers, the em-
beddings corresponding to MCQs and LFGQs tend
to become closer. Additionally, in certain models,
the embeddings are distinctly separated in specific
middle layers. For instance, in the open-llama-7b
model, the embeddings exhibit clear differentiation
in the 14th layer. Finally, the representation of em-

4https://github.com/davidbau/baukit

Figure 5: t-SNE visualization for each layer in
Llama-2-7b-chat-hf. MCQs in red, LFGQs in green.

beddings from the same model but different sizes
can vary, as shown in the embeddings of Dolly-
v2-3b and Dolly-v2-7b in Figures 9 and 10 in the
Appendix.

4.4. Different QA formats produce
different answers

Our experiments showed that different formats of
a single question may result in different perfor-
mances. Moreover, our results challenged the no-

https://github.com/davidbau/baukit
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tion that greater consistency leads to higher accu-
racy by closely examining the relationship between
them. When comparing MCQs and LFGQs in ex-
pected calibration error, prompts from MCQs were
the most overconfident in their predictions. Finally,
in the embedding space, MCQs and LFGQs repre-
sentations were clearly separated in some layers
of the hidden states.

5. Related Work
5.1. QA Benchmarks
QA is a prevalent evaluation method in natural
language processing tasks. With the surge of
LLMs, several QA evaluation benchmarks have
emerged to asses models’ reasoning and fact-
retrieval skills (Liang et al., 2022; Chang et al.,
2023; Li et al., 2023a; Chia et al., 2023). These QA
benchmarks encompass divers dataset formats,
including multiple-choice questions (MCQs) (Bhak-
thavatsalam et al., 2021; Ramamurthy and Aakur,
2022; Liu et al., 2023a; Huang et al., 2023), long-
form generation questions (LFGQs) (Zhang et al.,
2018; Lin et al., 2022b; Xiang et al., 2023) and
True/False questions (TFQs) (Singhal et al., 2023).
Many existing QA evaluation benchmarks use rela-
tively simple MCQs formats, in which models can
strongly rely to formulate their answers. In addition,
previous work has primarily focused on evaluations
of MCQs, not considering comparisons between
the different formats (Jiang et al., 2021; Lin et al.,
2022a; Robinson and Wingate, 2023). In this pa-
per, we focused on conducting a comprehensive
comparative analysis between MCQs and LFGQs,
thereby enhancing the understanding of the draw-
backs and limitations of the different evaluation
methods.

5.2. LLMs and Multiple-Choice Questions
Previous work has underscored the sensitivity of
LLMs to prompting strategies (Zhao et al., 2021;
Singhal et al., 2023) and positional bias (Wang
et al., 2023), which pose challenges to model
assessment. For instance, (Zheng et al., 2023)
showed that GPT-4 tends to favor the candidate an-
swer presented in the first position, leading to unfair
evaluation results. Additionally, (Pezeshkpour and
Hruschka, 2023) observed that GPT-4 and Instruct-
GPT(Ouyang et al., 2022) perform differently when
answer options are rearranged on various bench-
marks. We expand upon prior work, which focused
on a limited number of models and scenarios, to
study and identify general patterns and analyze
their underlying causes across diverse datasets
and models.

6. Discussion and Conclusion
This paper focused on testing the effectiveness of
MCQs evaluating LLMs. Motivated by the observa-

tion of consistent preference biases across different
datasets with several LLMs, we first conducted a
significance test to determine the position of the
candidate answers affect LLMs’ predictions, result-
ing in accuracy instability. More specifically, we an-
alyzed how different LLMs have different positional
preference patterns on the same dataset, while the
preference positional patterns of a particular LLM
remained constant across datasets from different
sources. In addition, we conducted comparative
experiments between MCQs and LFGs in three
different spaces to ascertain the advantages and
disadvantages of each as evaluation benchmarks.
Recommendations Based on our experiments,
we offer a few suggestions for utilizing MCQs and
LFGQs formats in LLM evaluation benchmarks:

1. The choice of QA format should be aligned
with the type of knowledge being evaluated.
Whereas it may be fine to use MCQs for test-
ing general knowledge, in some professional
domains—particularly those carrying legal re-
sponsibilities, such as the medical field, it is
advisable to use LFGQs under human super-
vision to ensure a more rigorous evaluation.

2. When using MCQs for evaluating LLM, adjust-
ing the number of options, whether decreas-
ing or increasing them, does not necessarily
enhance accuracy and confidence. However,
regarding order sensitivity, reordering candi-
date answers for each question and repeating
questions can enhance the robustness of the
assessment process.

3. Our findings do not indicate a strong corre-
lation between consistency and accuracy in
LLMs responses. Therefore, we do not rec-
ommend relying on consistency as a tool to
enhance performance in LLMs.

4. Given the discrepancy we found between
MCQs and LFGQs results, we believe that
LFGQs is the best format for evaluating LLM,
as it aligns well with real-world use cases.
We recommend prioritizing LFGQs format and
evaluating LLM from various perspectives, in-
cluding correctness, completeness, relevance,
and interpretability.

We hope that the results presented in the paper
and the investigation about order sensitivity and
comparative analyses between MCQs and LFQs
can inspire future research to improve evaluation
benchmarks for LLMs.
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8. Appendix

In this appendix, we report the visualization of the
t-SNE projected embeddings in the other seven
models (Figures 6-13) and the hidden embedding
space details for each LLMs (Table 6).

Figure 6: The visualization of t-SNE for each layer
in the model Open-llama-3b. The red samples are
MCQs, and the samples in green are LFGQs.

Figure 7: The visualization of t-SNE for each layer
in the model Open-llama-7b. The red samples are
MCQs, and the samples in green are LFGQs.
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Model hidden layers attention heads head dim.

open-llama-3b 26 32 100
open-llama-7b 32 32 128
vicuna-7b-v1.3 32 32 128
dolly-v2-3b 32 32 80
dolly-v2-7b 32 32 128
Llama-2-7b-chat-hf 32 32 128
RedPajama-INCITE-Instruct-3B-v1 32 32 80
stablelm-tuned-α-3b 16 32 128
stablelm-tuned-α-7b 16 32 192

Table 6: Number of hidden layers, number of attention heads, and the head dimensionality of the LLMs.

Figure 8: The visualization of t-SNE for each layer
in the model Vicuna-7b-v1.3. The red samples are
MCQs, and the samples in green are LFGQs.

Figure 9: The visualization of t-SNE for each layer
in the model Dolly-v2-3b. The red samples are
MCQs, and the samples in green are LFGQs.
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Figure 10: The visualization of t-SNE for each layer
in the model Dolly-v2-7b. The red samples are
MCQs, and the samples in green are LFGQs.

Figure 11: The visualization of t-SNE for each layer
in the model Stablelm-tuned-alpha-3b. The red
samples are MCQs, and the samples in green are
LFGQs.

Figure 12: The visualization of t-SNE for each layer
in the model RedPajama-INCITE-Instruct-3B. The
red samples are MCQs, and the samples in green
are LFGQs.

Figure 13: The visualization of t-SNE for each layer
in the model Stablelm-tuned-alpha-7b. The red
samples are MCQs, and the samples in green are
LFGQs.
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