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Abstract
Multiple-choice visual question answering (MC VQA) requires an answer picked from a list of distractors, based on a
question and an image. This research has attracted wide interests from the fields of visual question answering,
visual question generation, and visual distractor generation. However, these fields still stay in their own territories,
and how to jointly generate meaningful questions, correct answers, and challenging distractors remains unexplored.
In this paper, we introduce a novel task, Visual Question-Answer-Distractors Generation (VQADG), which can bridge
this research gap as well as take as a cornerstone to promote existing VQA models. Specific to the VQADG task, we
present a novel framework consisting of a vision-and-language model to encode the given image and generate
QADs jointly, and contrastive learning to ensure the consistency of the generated question, answer, and distractors.
Empirical evaluations on the benchmark dataset validate the performance of our model in the VQADG task.
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1. Introduction

Multiple-Choice Visual Question Answering (MC
VQA) (Kembhavi et al., 2017; Zellers et al., 2019;
Lu et al., 2022b) has become one of the current
hotspots in natural language processing and com-
puter vision research. Most of existing MC VQA
studies focus on the stand-alone generation of
question, answer, or distractors. In reality how-
ever, an all-in-one generation of QADs may provide
a feasible solution of alleviating learning bias (Niu
et al., 2021) and tackling data scarcity. As a byprod-
uct, the generated high-quality MC VQA data can
further assist in improving existing VQA models, or
serve as a crucial component of pre-training data
for large language models (LLM). In this paper,
we investigate how to jointly generate meaningful
questions, correct answers, and challenging dis-
tractors in a unified framework. Taking the example
in Figure 1 (a) for explanation, our task is to gener-
ate the image-related question “What is the color of
the used napkin”, its answer “Green”, and several
distractors, e.g., “Red”, in one body.

Existing studies typically concentrate on a por-
tion of this task: Visual Question Generation (VQG)
(Li et al., 2018; Krishna et al., 2019), Visual Ques-
tion Answering (VQA) (Antol et al., 2015; Zellers
et al., 2019; Lu et al., 2022b), or Visual Distractor
Generation (VDG) (Lu et al., 2022a), as shown in
Figure 1 (b). VQG aims to generate a question by
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comprehending the image content, which should
be image-related, meaningful, and grammatically
well-formed. VQA assumes all of the information
can be induced from the given image and it pro-
vides a correct answer corresponding to the ques-
tion. In contrast to the above two tasks, VDG has
rarely been studied in MC VQA, which requires
generating challenging and high-quality distractors
by investigating the image, question, and answer.
Existing distractors (Zhu et al., 2016) are rather
simple to evaluate a model’s actual cross-modality
discriminative ability. For example, in Figure 1(a),
it is easy to distinguish the correct answer “Green”
from the distractors “Blue” and “Orange” created
by (Zhu et al., 2016), while is not trivial to eliminate
our generated distractor “Red”. Our distractor is
more deceptive since it is both content-related with
the image and semantics-related with the question
and answer.

The difficulty of jointly researching QADs lies in
the infeasibility of simply combining VQA, VQG,
and VQD. It is that three tasks are intrinsically cor-
related and thus, generating each component of
QADs should consider image context while remain-
ing the other two components as conditions. To
address this issue, we propose Visual Question-
Answer-Distractors Generation (VQADG), which
is the first attempt to generate QADs in a uni-
fied way. Technically, we propose a vision-and-
language model with an encoder-decoder archi-
tecture. The visual image and question content
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Figure 1: (a) An example of MC VQA, which
consists of an image, a question, an answer, and
multiple distractors. The used “green” napkin in-
dicates the correct answer, while the unused “red”
napkin is a challenging distractor generated by our
work. (b) In contrast to VQG, VQA, and VDG which
focus on parts of QADs, our VQADG generates
QADs jointly.

are multimodally encoded and transferred to an au-
toregressive text decoder to generate QADs. The
high-quality QADs generated by our framework are
not only more deceptive than the manually created
ones but also can serve as the augmented data to
enhance existing VQA models. Moreover, we in-
troduce contrastive learning to keep the generated
QADs consistent. A comprehensive experimental
evaluation on Visual7W (Zhu et al., 2016) validates
the holistic generation capability of our model.

The main contributions of this work are listed as
follows:

• We introduce visual question-answer-distractors
generation which is the first attempt to jointly
generate meaningful questions, correct answers,
and challenging distractors from images.

• We propose a novel vision-and-language model
with a multimodal mixture of encoder-decoder
architecture and integrate contrastive learning to
enhance the generation quality of QADs.

• Extensive experimental results on the bench-
mark dataset reveal that generated QADs can
be used to enhance the performance of existing
VQA models.

2. Related Works

2.1. Visual Question-Answer-Distractors
Generation

Many recent efforts have been invested in generat-
ing QADs.

VQG targets to generate pertinent questions
by considering visual and textual clues, such as
ground truth answers, question types, and answer
categories. Fan et al. (2018) designed a strategy
to perform the learning of the distribution of ques-
tion types for each image. Krishna et al. (2019)
proposed a model that maximizes the mutual in-
formation among the image, the expected answer,
and the generated question.

VQA takes an image and a meaningful question
as input and produces a correct answer as output.
VQA can be divided into open-ended VQA (An-
tol et al., 2015; Masry et al., 2022) and MC VQA
(Zhu et al., 2016; Kembhavi et al., 2017; Lu et al.,
2022b) based on the answer form. Recently, some
studies focus on combining question and answer.
Li et al. (2018) introduced question generation as
a dual task of question answering to improve the
VQA performance. Yang et al. (2021) integrated
variational inference to generate various question-
answer pairs.

VDG targets to generate challenging and high-
quality distractors when given the context image,
meaningful question, and correct answer. Lu et al.
(2022a) proposed a reinforcement learning strat-
egy to generate distractors for visual images.

In a word, QADs are separately studied by the
above studies, research on generating QADs in
a unified architecture has been thus far under-
explored.

2.2. Vision-and-Language Pretraining

Transformers (Vaswani et al., 2017; Devlin et al.,
2018; Raffel et al., 2020; Brown et al., 2020) have
shown exceptional performance in the natural lan-
guage processing domain. Following this success,
large-scale image-text pairs have been used to im-
prove the multimodal representation of vision-and-
language models (Cho et al., 2021; Wang et al.,
2022; Li et al., 2022; Alayrac et al., 2022; Li et al.,
2023; Liu et al., 2023; Dai et al., 2023). Most of pre-
vious vision-and-language pretraining models (Su
et al., 2019; Chen et al., 2020b) typically focused
on discriminative tasks, while recent works have
begun to turn to generative downstream tasks (Cho
et al., 2021; Li et al., 2021, 2022). In this paper, we
resort to VL-T5 (Cho et al., 2021), which consists
of a multimodal encoder to fuse image features
and textual question types, and an autoregressive
decoder that generates QADs in generative tasks.
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Figure 2: The model architecture of our VQADG model. The multimodal encoder takes the concatenation
of image embedding and text embedding as input and outputs their contextualized joint representation.
This cross-modal representation is used to guide the text decoder generates QADs jointly. We incorporate
contrastive learning loss and language modeling loss to train our final VQADG model.

3. The VQADG Model

We propose VQADG, a unified vision-and-
language framework with a multimodal mixture
of an encoder-decoder architecture to generate
QADs. Our VQADG model consists of a multi-
modal encoder, a text decoder, and different con-
trastive learning objectives. The multimodal en-
coder and text decoder use the pre-trained VL-T5
model (Cho et al., 2021) as the backbone model.
We also design different contrastive learning loss
functions to improve consistency of QADs. The
overall architecture of VQADG is shown in Fig-
ure 2. This section initially presents the preliminary
of the new task, and then introduces our model
architecture.

3.1. Preliminary

We define the task VQADG, given:

• An informative image I, which can generate vari-
ous QADs according to different textual prefixes.

• A prefix T in textual modality, which represents
the instruction to generate specific QADs. T =
(t1, t2, ..., tM ) is a sequence with M tokens.

The goal of VQADG is to generate QADs accord-
ing to the image I and a textual prefix including
question type T in a unified framework. QADs com-
prise a meaningful question Q = (q1, q2, ..., qN ), a
correct answer A = (a1, a2, ..., aP ), and challeng-
ing distractors D = (d1, d2, ..., dS). Q, A, and D
are all textual sequences consisting of words or
tokens limited by length N , P , and S. Our final
objective is to train the VQADG model to obtain
the best model parameter θ∗, which can maximize

the likelihood of the QADs in an autoregressive
manner as follows:

θ∗ = argmaxP (Q,A,D|I, T ; θ). (1)

3.2. Multimodal Encoder

Our multimodal encoder is extended from the text
encoder of T5 (Raffel et al., 2020), which consists
of self-attention layers and fully-connected layers
with residual connections. It takes both image and
text as input and outputs a contextualized joint rep-
resentation, which guides the generation of QADs
in the decoding stage.
Image Embedding We employ a pre-trained
object detector for image embedding extraction to
represent the image I, that is, Faster R-CNN (Ren
et al., 2015) trained on Visual Genome (Krishna
et al., 2017). Specifically, each input image I is
sliced into 36 patches. The object features and
bounding box coordinates of each patch are ex-
tracted from the pre-trained image extractor. Then,
the object features and bounding box coordinates
are encoded with a linear layer. Following linear
projection, object features are embedded as the
visual feature embedding ef , and bounding box
coordinates are embedded as the visual position
embedding ep. The final image embedding is the
sum of the visual feature embedding and visual po-
sition embedding, which is denoted as eI = ef+ep.

Text Embedding The text input T = (Prefix :
Type) includes a prefix and the original input text,
i.e., question type. The prefix Prefix = vqadg is
added to support the model for generating QADs1.

1The prefix setting allows our model to be applied to
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Introducing the prefix setting is inspired by the VL-
T5 model (Cho et al., 2021)2. The question type
refers to the type of question expected to be gen-
erated by the model, including what, where, when,
why, who, and how. This augmented input text is
encoded as the text embedding eT .

The multimodal encoder provides the contextu-
alized joint representation after receiving the con-
catenation of image embedding eI and text em-
bedding eT as input. This joint embedding serves
as the whole multimodal representation which can
guide the generation of QADs in the text decoder
via the cross-attention layer.

3.3. Text Decoder

Different from the original T5, which only requires
a single modality input, our decoder pays attention
to the textual and joint content from the multimodal
encoder. A cross-attention layer takes the output
of the self-attention layer and multimodal encoder
as input to model vision-and-language interactions.
Thus, the text decoder is a stack of transformer
blocks, which comprises a self-attention layer, a
cross-attention layer, and a fully-connected layer
with residual connections. The final text decoder
iteratively attends to previously generated tokens
and the encoder outputs (via cross-attention), and
then predicts the probability of the next text tokens.
We jointly optimize two objectives during training,
one of which is the generation-based objective
that optimizes the language modeling loss and an-
other is the understanding-based objective that op-
timizes the contrastive learning loss. The language
modeling loss is formulated as a cross entropy loss
which trains the model to minimize the negative log-
likelihood of label text tokens y = (Q,A,D) when
given the input prefix type T and image I:

LLM = −
|y|∑
j=1

logP (yj |y < j, I, T ). (2)

3.4. Contrastive Learning

We incorporate contrastive learning loss with lan-
guage modeling loss to improve the consistency
of generated QADs. Contrastive learning (Rad-
ford et al., 2021) can learn effective embeddings
accordingly to keep the positive pairs stay closely
and the negative pairs stay away in the embed-
ding space. We leverage the embeddings of the
predicted result P and ground truth G as positive

other tasks in MC VQA as well, such as Prefix = vqg
in VQG.

2(Cho et al., 2021) finds that a single prefix can
successfully handle multiple VQA-related tasks without
dataset-specific prefixes. Similar results were observed
in text QA (Khashabi et al., 2020).

pairs; the negative pairs are generated by replac-
ing P or G with the samples selected from each
mini-batch randomly. In terms of the similarity of P
and G, we calculate the softmax-normalization of P
to G and G to P as follows:

pg2pm (G) =
exp(s(G,Pm)/τ)

M∑
m=1

exp(s(G,Pm)/τ)

, (3)

pp2gm (P ) =
exp(s(P,Gm)/τ)

M∑
m=1

exp(s(P,Gm)/τ)

, (4)

where τ is a temperature hyperparameter and
s(P,G) is the cosine similarity PTG

|P ||G| . Let yp2g(P )

and yg2p(G) deno te the ground truth one-hot label,
where y = 1 if G and P are positive pairs and y = 0
if they are negative pairs. The contrastive learning
loss is defined as the cross-entropy H between p
and y as:

Lpg =
1

2
[H(yp2g(P ), pp2g(P ))+

H(yg2p(G), pg2p(G))].
(5)

We design different contrastive learning loss
functions for only question, only answer, only dis-
tractors, answer and distractors, and joint QADs.
For the situation with only question, we choose the
question part of P as the predicted result, and we
select G as ground truth. P and G of one sample
are the positive pairs in contrastive learning, thus
the question part of contrastive learning loss is Lpq.
In selecting the question part from the overall em-
bedding of P , we calculate the ratio of the question
length to the length of total QADs and then use this
ratio to segment the embedding. In the same man-
ner, the contrastive learning of the answer is Lpa.
For distractors generation, in addition to Lpd, we
design another contrastive learning loss to improve
the similarity between distractors and the correct
answer to generate challenging distractors:

Lpd_a =
1

2
[H(ya2d(A), αpa2d(A))+

H(yd2a(D), αpd2a(A))],
(6)

where α is a hyperparameter that measures the
similarity between distractors and the answer. For
example, α = 2 denotes the similarity is 0.5. We
also use Lpqad to represent the total contrastive
learning loss between QADs with the overall pre-
dicted result. Finally, we accumulate the sum of the
contrastive learning losses to construct the training
loss L of our framework as follows:

LCL = Lpqad + Lpq + Lpa + Lpd + Lpd_a, (7)

L = βLLM + (1− β)LCL, (8)
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where β is a hyperparameter that measures the ra-
tio of the language modeling loss to the contrastive
learning loss. In terms of the ground truth label in
the contrastive learning loss, we test image, text,
and both of them in experiments; finally, using text
as the ground truth label achieves the best perfor-
mance.

4. Experiments

4.1. Datasets

We evaluate our model using the publicly avail-
able MC VQA dataset, Visual7W (Zhu et al., 2016)
and VQAv2 dataset (Goyal et al., 2017). Visual7W
is collected based on COCO (Lin et al., 2014)
and consists of 47,300 images and 327,939 MC
QA pairs. We extracted MC VQA data from the
VQAv2 dataset, which includes 87,544 images and
187,688 MC QA pairs.

4.2. Baselines

We compare our model with the following state-of-
the-art methods:

• IQ (Krishna et al., 2019) approaches the question
generation task by maximizing the mutual infor-
mation between the generated question, image,
and answer or its category.

• VisualBert† (Li et al., 2020) is a pre-trained
vision-and-language encoder for joint vision and
language representation. Corresponding to the
output of the VisualBert encoder, we incorporate
a Bert decoder to generate QADs.

• BLIP† (Li et al., 2022) employs noisy image-
text data to train a model designed for vision-
language comprehension and generation tasks.
We retrained BLIP to ensure it can generate
QADs according to the images.

• InstructBLIP (Dai et al., 2023) is a instruction
tuning framework towards generalized vision-
language models. We used InstructBLIP to as-
sess the quality of QADs.

In view of the limitations of the aforementioned
state-of-the-art methods in generating distractors,
we extend four variants from our proposed VQADG
model to conduct a more comprehensive evalua-
tion:

• Pipeline: QADs are generated in a pipeline man-
ner, as shown in Figure 3 (a).

• Pipeline+CL: Contrastive learning loss functions
for QADs are added to the question model, an-
swer model, and distractors model, respectively.

• Joint: QADs are generated in a joint manner,
as shown in Figure 3 (b). This variant only uses
language modeling loss during the training stage.

Figure 3: Two types of variants of our VQADG
model.

• Joint+CL: The complete contrastive learning
loss is added to the Joint model. This variant
is equivalent to our VQADG model.

4.3. Evaluation Metrics

We employ BLEU (Papineni et al., 2002),
ROUGE (Lin, 2004), METEOR (Banerjee and
Lavie, 2005), and CIDEr (Vedantam et al., 2015)
with ground truth QADs to evaluate the quality of
the generated QADs. Moreover, we calculate the
consistency score (Yang et al., 2021) to evaluate
the consistency degree between the generated
question, answer, distractors, and image. The con-
sistency score is calculated as:

St = Sigmoid ◦ f(I, t), (9)

where t ∈ {Q,A,D1, D2, ..., Di} and St ∈ [0, 1].
A high score indicates that the image has high
consistency with the generated QADs.

4.4. Implementation Details

The VQADG model3 is built on the pre-trained VL-
T5 and fine-tuned on the Visual7W dataset. We
set the maximum text length to 80, and α is set to 2
after a pilot study. In the case of BLIP, we adjust the
image size to 224 and eliminate label smoothing for
optimal performance. VisualBert and BLIP are all
retrained on Visual7W to generate QADs. We train
all the models with the same prefix and a batch
size of 32.

4.5. Results and Analysis

4.5.1. Automatic Evaluation

We evaluate the question generation, question-
answer pair generation, and QADs generation.

The performance of our models and baseline
models on Visual7W are shown in Table 1. In terms
of the question evaluation, the Pipeline model can

3The source code will be released after the paper is
published.
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Model Content BLEU-4 ROUGE-L METEOR CIDEr
Q A D

IQ (Krishna et al., 2019) ✓ – – 15.40 47.12 21.40 122.18
VisualBert† (Li et al., 2020) ✓ – – 18.72 50.78 25.61 120.13
BLIP† (Li et al., 2022) ✓ – – 22.21 53.90 27.62 152.94

VQADG

Pipeline ✓ – – 23.16 54.47 27.27 159.33
Pipeline+CL ✓ – – 23.59 54.82 27.30 161.10
Joint ✓ – – 23.32 54.56 27.37 157.40
Joint+CL ✓ – – 24.35 55.35 27.64 165.71

VisualBert† (Li et al., 2020) ✓ ✓ – 12.33 40.34 22.41 58.37
BLIP† (Li et al., 2022) ✓ ✓ – 17.10 46.61 23.40 115.75

VQADG

Pipeline ✓ ✓ – 17.07 44.97 24.15 107.31
Pipeline+CL ✓ ✓ – 17.43 45.32 24.24 109.78
Joint ✓ ✓ – 17.55 45.64 24.45 111.61
Joint+CL ✓ ✓ – 18.25 46.57 24.69 118.53

VisualBert† (Li et al., 2020) ✓ ✓ ✓ 6.30 25.52 30.21 18.42
BLIP† (Li et al., 2022) ✓ ✓ ✓ 9.09 29.76 28.28 32.92

VQADG

Pipeline ✓ ✓ ✓ 10.23 31.70 31.38 56.07
Pipeline+CL ✓ ✓ ✓ 10.49 32.02 31.48 58.10
Joint ✓ ✓ ✓ 10.65 32.38 31.58 59.12
Joint+CL ✓ ✓ ✓ 11.14 33.34 31.72 63.76

Table 1: The comparison results between our methods and some baselines on the traditional metrics.
The performance of IQ on Visual7W has been reported in (Roy et al., 2022), VisualBert† and BLIP† are
implemented by us.

Data Type Accuracy

VQAv2 55.42
VQAv2+Generated Train 55.81
VQAv2+Generated Val 56.09

Table 2: Evaluation on the effect of the generated
VQA pairs by VQADG as augmented data to en-
hance the performance of the VQA task.

Model Type Raw Ours

Zero-shot (Dai et al., 2023) 66.57 63.20
Fine-tuned (Dai et al., 2023) 68.05 65.06

Table 3: Evaluation on the effect of the generated
distractors by VQADG. Low accuracy of the VQA
task implies that the generated distractors can fool
existing VQA models, which demonstrates the su-
perior of our model.

generate questions directly. The Joint model gen-
erates QADs and we only take the question part for
evaluation. For QA evaluation, the Pipeline model
generates questions and answers, respectively.
Therefore, we concatenate questions and answers
for evaluation and take the question and answer
part from the QADs generated from the Joint model.
For QAD evaluation, the Joint model can generate

QADs, and we concatenate the QADs generated
from the Pipeline model. We leverage VisualBert†
and BLIP† to generate QADs and take the same
operation as the Joint model for evaluation.

On almost all evaluation metrics in three
generation tasks, our VQADG model outperforms
the baseline models. Specifically, in the question
generation task, our four models achieve signifi-
cant improvements over the traditional model (IQ)
and also over the pre-trained vision-and-language
model (VisualBert† and BLIP†). In the evaluation
of question-answer pairs and QADs generation,
our four methods outperform VisualBert† and
BLIP† by a large margin, with the exception of
BLIP† achieving a higher ROUGE-L score in the
question-answer evaluation. Furthermore, we find
that contrastive learning loss can improve the per-
formance of the Pipeline and the Joint model. Our
Joint+CL model achieves the highest performance
across all generation tasks, outperforming the
other three variants of our models.

Evaluation on the Generated QADs We applied
the InstructBLIP (Dai et al., 2023) to independently
evaluate the quality of the generated question-
answer (QA) pairs and distractors, utilizing the
VQAv2 dataset (Goyal et al., 2017). In the QA
evaluation, we harnessed QA pairs from the
newly generated data to supplement the VQA
dataset. Subsequently, we trained a novel VQA
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Model BLEU-4 ROUGE-L METEOR CIDEr

Q A D Q A D Q A D Q A D

Joint+CL 24.35 7.54 3.32 55.35 20.66 13.65 27.64 17.59 34.33 165.71 65.31 37.13

Joint+CL-w/o QAD 24.08 7.67 3.29 55.20 20.61 13.57 27.53 17.52 34.31 163.56 65.12 36.79
Joint+CL-w/o Q 24.23 8.08 3.32 55.25 20.73 13.74 27.60 17.67 34.34 164.50 66.43 37.51
Joint+CL-w/o A 24.25 7.64 3.25 55.27 20.66 13.65 27.54 17.51 34.26 164.82 64.24 36.80
Joint+CL-w/o D 24.32 7.77 3.32 55.28 20.30 13.44 27.60 17.51 34.37 165.21 64.85 36.63
Joint 23.32 7.59 3.13 54.56 19.44 12.85 27.37 17.47 34.19 157.40 63.80 34.86

Table 4: Ablation study towards contrastive learning, where “w/o QAD” denotes to remove the Lpqad

loss function, “w/o Q” denotes to remove the Lpq loss function, “w/o A” denotes to remove the Lpa loss
function, and “w/o D” denotes to remove the Lpd and Lpd_a loss functions.

Figure 4: The performance of the Joint+CL model
on generating QADs for different ratios (β) of the
language modeling loss to contrastive learning
loss.

Metric Type Content

Q A D

P(%)
Raw 57.31 83.03 78.04
Joint 67.10 85.96 77.65
Joint+CL 69.43 86.07 78.51

Table 5: Consistency evaluation for the raw data,
the Joint model, and the Joint+CL model.

model with both the original and the generated
datasets. This model was then put to the test on
the original test data. For distractor evaluation, we
generated new distractors using the QA pairs from
the original dataset and compared them to the
original distractors within the dataset.

Table 2 presents the outcomes of the QA pair
evaluation. We selected multiple-choice VQA
questions from the test dataset and gauged
the performance of the VQA model when the
generated QA pairs were employed as supple-
mentary data. The experimental findings suggest
that incorporating the generated QA pairs can
potentially boost the accuracy of pre-existing VQA
models. Despite the modest improvement in
model performance due to our generated data, it
is noteworthy that our data is comparatively easier
to obtain than manually curated data and can be
produced at a larger scale. Table 3 showcases

Model C1 A C2 F

Pipeline 4.23 3.44 2.6 3.02
Joint 4.28 3.85 2.84 2.96
Joint+CL 4.53 4.17 3.30 3.31

Table 6: Human evaluation for generated QADs
by our models. C1 denotes to consistency score,
A denotes to accuracy score, C2 denotes to confu-
sion score, and F denotes to fluency score.

the evaluation results of the distractors in the VQA
model. Notably, both the zero-shot and fine-tuned
models exhibit reduced accuracy when confronted
with our generated distractors. This decline in
performance underscores the challenging nature
of our generated distractors and their potential to
mislead the VQA model. The results presented in
the two tables suggest that our proposed method
is capable of generating high-quality QADs, which
can be utilized to enhance the performance of
existing models.

Ablation Study To verify the effectiveness of dif-
ferent components in the proposed VQADG model
(i.e., the contrastive learning loss and the ratio
of language modeling loss to contrastive learning
loss), we conduct an ablation study in the following
experiments.

Table 4 presents the ablation study of contrastive
learning loss in each part of QADs. We remove the
contrastive learning loss of QADs, question, an-
swer, and distractors from the Joint+CL model, re-
spectively, and then evaluate the QADs generation.
As shown in Table 4, compared with the Joint+CL
model, the performance of the Joint model would
decrease when removing the QADs, question, an-
swer, and distractors contrastive learning loss, re-
spectively. In addition, all of the Joint models with
contrastive learning loss perform better than the
Joint model. This indicates that all of the four con-
trastive learning loss functions have boosting ef-
fects on the corresponding generation tasks.

Figure 4 illustrates the QADs performance of the
Joint+CL model with different ratios of language
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Figure 5: The figure illustrates the meaningful questions, the correct answers, and the challenging
distractors, generated by VisualBert†, the Joint model, and the Joint+CL model, respectively.

modeling loss to contrastive learning loss. As
shown in the figure, the Joint+CL model achieves
the best result when the ratio is 3:7 (i.e., β = 0.3).

We also report the percentage of consistent
QAPs (denoted as P(%))4 in Table 5. Note that for
the percentage of consistent QADs in distractors,
we calculate the consistency scores for the ground
truth answer and three distractors, separately, and
then select the one with the largest consistency
score as the predicted answer. The experimental
result demonstrates that our Joint+CL model
outperforms the Raw data and the Joint model in
the consistency evaluation.

4.5.2. Human Evaluation

To further assess the quality of the generated
QADs, we conduct human evaluations on 900
QADs with 300 images generated by our models.
We recruit three people to rate them between 1 to
5 points on four qualitative aspects: language flu-
ency, consistency, accuracy, and confusion score,
to measure the overall quality of the generated
QADs, the question, the answer, and the distrac-
tors, respectively.

Table 6 displays the outcomes of human evalu-
ation, revealing that the Joint+CL model achieves

4More details can be seen in (Yang et al., 2021).

the highest scores across all four metrics. It is
noteworthy that, for the fundamental variants of our
models, the Joint model outperforms the Pipeline
model, signifying that QADs generated jointly are
superior to those produced in a pipeline manner,
with the exception of language fluency. This finding
underscores the significance of generating QADs
concurrently.

4.5.3. Case Study

We conduct case study to demonstrate the quality
of the QADs generated by our baselines and mod-
els. Figure 5 presents several QADs generated
by VisualBert†, the Joint model, and the Joint+CL
model. We can observe that in Case 1, compared
with VisualBert† and our Joint model, the question
generated by our Joint+CL model is meaningful
and has high relevance to the image. In Case
2, our Joint+CL model can generate the correct
answer, while VisualBert† and the Joint model gen-
erate the wrong answer. In Case 3, our Joint+CL
model generates the distractor “Dog” which is more
deceptive than those generated by VisualBert† and
the Joint model.
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5. Conclusion

In this paper, we have introduced a new task,
Visual Question-Answer-Distractors Generation
(VQADG). A vision-and-language model has been
proposed to encode the multimodal information in-
cluding the vision features and prefix containing
question types. QADs are generated jointly accord-
ing to an autoregressive text decoder. Furthermore,
contrastive learning has been incorporated to cope
with the consistency requirement. Our model has
achieved superior results under major evaluation
metrics on the benchmark dataset. Additionally,
the generated QADs have demonstrated effective-
ness in enhancing the performance of existing VQA
models.
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