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Abstract
Abbreviations and their associated long forms are important textual elements that are present in almost every
scientific communication, and having information about these forms can help improve several NLP tasks. In this paper,
our aim is to fine-tune language models for automatically identifying abbreviations and long forms. We used existing
datasets which are annotated with abbreviations and long forms to train and test several language models, including
transformer models, character-level language models, stacking of different embeddings, and ensemble methods. Our
experiments showed that it was possible to achieve state-of-the-art results by stacking RoBERTa embeddings with
domain-specific embeddings. However, the analysis of our first run showed that one of the datasets had issues in the
BIO annotation, which led us to propose a revised dataset. After re-training selected models on the revised dataset,
results show that character-level models achieve comparable results, especially when detecting abbreviations, but
both RoBERTalarge and the stacking of embeddings presented better results on biomedical data. When tested on a
different subdomain (segments extracted from computer science texts), an ensemble method proved to yield the best
results for the detection of long forms, and a character-level model had the best performance in detecting abbreviations.
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1. Introduction
Abbreviations and long forms are ubiquitous in sci-
entific communication, and their understanding can
pose challenges for those who are unfamiliar with
the domain, or even among peers. As such, the au-
tomatic recognition of these linguistic elements can
help in Natural Language Processing (NLP) tasks
that require information about these types of lexi-
cal units, such as machine translation, automatic
terminology extraction, and information retrieval.
As Toole (2000) mentions, in terms of information
retrieval, the non-recognition of abbreviations and
their long forms can lead to a negative impact on
both precision and recall. In addition, a text can be-
come completely unintelligible if abbreviations are
not translated correctly, and terminology databases
can be affected by the wrong automatic recognition
of abbreviations and long forms.
In this paper, our aim is to train and fine-tune lan-
guage models that can offer state-of-the-art (SOTA)
performance in both abbreviation and long-form de-
tection. Our work builds upon the work of Zilio
et al. (2022) in abbreviation and long-form detec-
tion by expanding the evaluation to different types
of pre-trained models and by conducting an exten-
sive error analysis based on the disagreements in
the language model predictions. This error anal-
ysis ultimately identified issues not only with the
predicted output but also in both publicly avail-
able datasets. Our evaluation especially focuses

†Both authors contributed equally to this work.

on character-level language models’ (CLMs) per-
formance compared with standard autoencoders
(BERT-based models), such as RoBERTa (Liu
et al., 2019), and how stacked embeddings (Akbik
et al., 2019) and ensembling can further improve
the task performance. CLMs, which are modelled
on character-level vocabulary, have achieved SOTA
performance on multiple Named Entity Recognition
(NER) datasets (Akbik et al., 2018). NER is an NLP
task modelled as token classification, akin to ab-
breviation and long-form detection. This focus on
CLMs is based on our hypothesis that CLM stack-
ing should help achieve better performance on a
task dealing with character sequences unknown to
the pre-trained language model’s (autoencoders)
token-level vocabulary.

Our results show an improvement over SOTA for
the detection of both abbreviations and long forms
on the PLOD dataset (Zilio et al., 2022), which con-
tains texts from the biomedical domain. In addi-
tion, we were able to improve over previous results
on the English scientific data provided by Veyseh
et al. (2022a) in the Shared Tasks at the Scientific
Document Understanding Workshop 2022 (SDU
dataset). The SDU dataset is composed by seg-
ments extracted from the domain of computer sci-
ence, especially papers from the collection of the
Association for Computational Linguistics (ACL),
and fine-tuning on CLMs presented the best results
for abbreviation detection on this dataset. The key
contributions of our work can be summarised as
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follows:

• Our work achieved SOTA performance for de-
tecting abbreviations and long forms on the
PLOD and the SDU datasets using stacked
embeddings and an ensemble method.

• A comprehensive evaluation was presented
based on various language model combina-
tions.

• We built pre-trained lightweight CLMs which
can be fine-tuned to achieve performance com-
parable to Transformer-based fine-tuned mod-
els (Vaswani et al., 2017), which are signifi-
cantly larger in size.

• Our approach evaluated the models’ robust-
ness in generalisation to out-of-distribution
subdomains. Both SDU and PLOD datasets
are from the overarching scientific domain, but
PLOD has biomedical data, while SDU con-
tains mainly extracts from computational lin-
guistics research.

• We performed a detailed error analysis and
discussed errors in model predictions and
datasets.

• We re-annotated the PLOD BIO data1 and pro-
posed a new version of the dataset2 that cor-
rected BIO errors and increased the total num-
ber of abbreviations in the dataset.

In the remainder of this paper, Section 2 reviews
related work for abbreviation detection with a focus
on CLMs. Section 3 describes the datasets used
for training and testing our proposed methods. Sec-
tion 4 explains the methods we used to improve
the performance of token classifiers for abbrevia-
tion detection. Section 5 shows the results of our
trained models and discusses the effectiveness of
our proposed methods. Section 6 concludes the
paper with a summarisation of the methods and
results and suggests directions for future work.

2. Related work
Token classification or sequence labelling is a
known method for modeling foundational NLP tasks
like NER (Murthy et al., 2022) and part-of-speech
tagging (Chiche and Yitagesu, 2022). It is also ap-
plied to word-level quality estimation (Zerva et al.,
2022), abbreviation and long-form detection (Zilio

1BIO is an annotation scheme to train token classifiers,
in which abbreviations were annotated as B-AC (i.e.,
Begin Abbreviation), and tokens that were a part of long
forms were assigned B-LF (i.e., Begin Long Form) at the
beginning, and I-LF (i.e., Inside Long Form) in the middle
or end. Tokens that did not belong to abbreviations or
long forms were assigned B-O, which stands for Other.

2The dataset is available at https://github.com/
surrey-nlp/PLODv2-CLM4AbbrDetection.

et al., 2022; Veyseh et al., 2022b). While these
tasks cater to different problems in NLP, common
approaches, such as fine-tuning pre-trained lan-
guage models (PTLM) in a supervised setting, have
helped improve the task performance for all of them.
To this end, the development of frameworks, like
spaCy (Honnibal et al., 2020), Stanza (Qi et al.,
2020), and FLAIR (Akbik et al., 2019), along with
web-based tools like MadDog (Pouran Ben Veyseh
et al., 2021), helps propagate NLP research for all
these tasks.
Approaches that utilise methods based on
rules (Park and Byrd, 2001; Schwartz and Hearst,
2002; Kirchhoff and Turner, 2016) or feature engi-
neering (Kuo et al., 2009; Liu et al., 2017; Li et al.,
2018; Hasso et al., 2022, 2023) are outperformed
by those based on deep learning, which use neural
networks to achieve a better generalisation capa-
bility for detection of cross-domain, out-of-domain
and multilingual abbreviations (Wu et al., 2015; Zhu
et al., 2021; Li et al., 2021). Wang et al. (2023)
tested the capacity of GPT3 for the task of NER
on English datasets and showed that generative
models have worse performance than supervised
baselines.
In 2022, Zilio et al. (2022) released the largest En-
glish dataset for abbreviation and long-form detec-
tion. The efficacy of the released dataset, PLOD,
was evaluated by fine-tuning several PTLM variants
based on the Transformers architecture, including
a variant from the Sentence-BERT (Reimers and
Gurevych, 2019) architecture.
On the one hand, PTLMs use token-level infor-
mation to predict masked tokens, and sentence-
level context to predict the next sentence (Devlin
et al., 2019). PTLMs also work with a set vocab-
ulary of known words and a tokenisation process
which helps break down unknown words and ap-
proximate their embeddings in the semantic space3.
On the other hand, character-level language mod-
els (CLM) alleviate the issue of unknown words by
predicting characters using the preceding charac-
ters as information. They utilise the hidden states
of a forward-pass LSTM and a backward-pass
LSTM (i.e., forward-backward LM) to create con-
textualised word embeddings. Both forward and
backward passes are pre-trained separately, and
the embeddings generated from them are stacked
together for further fine-tuning.
Intuitively, abbreviations are usually derived from
character sequences that appear on their long
forms, so, in this paper, we evaluate pre-trained
CLMs, and, in addition, we stack the embeddings
from Transformer-based PTLMs and word embed-
ding models like GloVe (Pennington et al., 2014)

3For example, the word “sleeping” could be tokenised
into “sleep” and “##ing”, as “sleep” is a known word in
the PTLM vocabulary.

https://github.com/surrey-nlp/PLODv2-CLM4AbbrDetection
https://github.com/surrey-nlp/PLODv2-CLM4AbbrDetection
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and FastText (Bojanowski et al., 2017), performing
an almost exhaustive evaluation of LM combina-
tions for abbreviation detection. To this end, we
also pre-train a CLM on the PLOS textual data, and
continue the pre-training of the existing PubMed-
based CLM using PLOS data, helping to push the
SOTA boundary.

3. Datasets
3.1. Pre-training Dataset
For in-domain training of CLMs, we extracted the
textual content from the annotated segments in
PLOD dataset4. This resulted in a corpus of
42,889,363 tokens which we used to pre-train both
forward and backward passes of a new CLM, which
we refer to in this paper as the CLM-PLOS language
model.
We also used the same data for continued pre-
training of the existing CLM-PubMed language
model to generate the CLM-PubMed-PLOS lan-
guage model. We provide the details of this pre-
training and continued pre-training in Section 4.

3.2. PLOD v1
The original PLOD dataset (which we call PLOD
v1) (Zilio et al., 2022) is currently the largest dataset
for abbreviation and long-form detection. It is avail-
able in two variants: an unfiltered and a filtered
dataset. The difference between these two vari-
ants is not significant in terms of numbers, as both
contain more than 160k annotated segments. Still,
the filtered variant went through semi-automatic
validation of the annotation, so it should be a more
reliable resource.
The annotation was based on manually constructed
glossaries of published papers, which are available
in some articles of the PLOS Journals5. The man-
ually constructed glossaries in each paper were
used as input for automatically detecting abbrevia-
tions and long forms. Given the automatic nature
of the annotation, it is expected that this dataset
will present some issues, some of which have also
been pointed out by the authors of the dataset.
Both variants (filtered and unfiltered) of the PLOD
dataset are available in tab-separated values (TSV)
format, as a single file, and for comparability pur-
poses, as separate BIO-annotated train, validation
and test sets. We used the BIO-annotated files
to fine-tune and test our models. We also used
the TSV files to extract the raw textual information
from the PLOS journals for training character-level
language models, as mentioned in Section 3.1.

4The full, non-tokenised textual content of the
segments is available as a TSV file in PLOD’s
Github: https://github.com/surrey-nlp/
PLOD-AbbreviationDetection.

5The PLOS Journals are available at https://plos.
org/.

3.2.1. Issues with PLOD v1 BIO annotation
After training our models on the unfiltered PLOD v1,
during the error analysis stage, we analysed 300
random segments of annotated data (which con-
tained 1,527 annotated tokens), and we realised
that the tokens in the BIO datasets were not actually
matching the segments available in the TSV files of
PLOD; an error that was probably originated when
the data in TSV format was converted to BIO for-
mat, as the TSV files were checked without finding
any of the issues discussed here.
There were mainly three BIO annotation issues: 1)
misplacement of abbreviation tokens; 2) duplication
of abbreviation tokens; and 3) misannotation of
tokens. For example, the following sequence is
part of a BIO-annotated segment in the unfiltered
PLOD v1 (each line is a triplet composed of token,
part-of-speech tag, and BIO annotation):

positron NOUN B-LF
FP-CIT PROPN B-AC
emission NOUN I-LF
tomography NOUN I-LF
( PUNCT B-O
PET PROPN B-AC
) PUNCT B-O

For some reason, the token “FP-CIT” was mis-
placed right in the middle of the long-form “positron
emission tomography”, while the original segment
presents the following order:

“FP-CIT positron emission tomography (PET)”

These issues led us to reconsider using the cur-
rently available BIO data, which was kept in this
paper just for the sake of comparability with the
models trained by Zilio et al. (2022). After this, we
created a new BIO conversion script based on the
PLOD dataset TSV files. We describe this process
and its outcome in the next subsection.

3.3. PLOD v2 and SDU
We used the indices of abbreviations and long
forms in the TSV files of the PLOD data described
in Section 3.2 and re-created the BIO dataset by ad-
justing the indices to token boundaries. As shown
in Table 1, the BIO re-annotation process not only
improved the accuracy of BIO labels but also in-
creased the number of abbreviations while keeping
almost the same amount of long forms. After the
re-annotation, the number of abbreviations in the
filtered and unfiltered variants increased by almost
40k instances6. The re-annotated BIO dataset
(PLOD v2) was randomly split into 70% of the seg-
ments for training, 15% for development, and 15%

6The code for this re-annotation and the re-
annotated BIO data is available along with our mod-
els in our GitHub repository: https://github.com/
surrey-nlp/PLODv2-CLM4AbbrDetection.

https://github.com/surrey-nlp/PLOD-AbbreviationDetection
https://github.com/surrey-nlp/PLOD-AbbreviationDetection
https://plos.org/
https://plos.org/
https://github.com/surrey-nlp/PLODv2-CLM4AbbrDetection
https://github.com/surrey-nlp/PLODv2-CLM4AbbrDetection
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for testing. These splits were used for fine-tuning
token classification models.

PLOD v1 PLOD v2
AC LF AC LF

Filtered 439, 447 262, 745 478, 275 261, 721
Unfiltered 448, 090 266, 534 486, 956 265, 466

Table 1: The number of abbreviations (AC) and
long forms (LF) before and after re-annotation.

To test the generalisation ability of trained models
and compare with results in the PLOD paper (Zilio
et al., 2022), we used the English dataset for ab-
breviation detection from the SDU dataset provided
by Veyseh et al. (2022a). Following the same pro-
cedure applied by Zilio et al. (2022), we combined
both the train and validation sets released by the
shared-task organisers into a single test set. Since
the SDU data are not BIO annotated (provided with
raw texts and indices of abbreviations and long
forms), we re-annotated the data using our new
BIO converter to get the correct annotations.
The number of abbreviations and long forms in the
re-annotated data used for training, validation and
testing is shown in Table 2.

AC LF
train 334294 183347
valid 71838 39247

PLOD v2
filtered test 72143 39127

train 341894 186402
valid 72888 39877

PLOD v2
unfiltered test 72174 39187

SDU train+valid 9167 6411

Table 2: The number of abbreviations (AC) and
long-forms (LF) in re-annotated PLOD v2 and SDU
datasets.

4. Methodology
To improve the performance of abbreviation and
long-form detection algorithms, we explored differ-
ent methods, namely, fine-tuning existing CLMs,
pre-training new CLMs, continued pre-training of
existing CLMs, and stacked embedding models.
We fine-tuned our token classifiers on PTLMs, ex-
isting CLMs and resultant CLMs from this work,
while also stacking embeddings from two or more
language models. In addition, we used an ensem-
ble method to observe whether pooling model pre-
dictions together would yield better results.

4.1. Base models
Existing CLMs. We used both in-domain and
out-of-domain models, i.e., FLAIR-News language
model (CLM-News) and PubMed language model
(CLM-PubMed), released by Akbik et al. (2018).

These CLMs were all trained on sequences of char-
acters without any explicit notion of words/tokens in
their vocabulary. CLM-News was trained with a 1-
billion-word corpus, and CLM-PubMed was trained
with 5% of PubMed (biomedical) abstracts.
Pre-training and continued pre-training. We
used in-domain PLOS Journals to first pre-train
a CLM using the FLAIR framework7 (Akbik et al.,
2019), which generated the CLM-PLOS model. Af-
ter that, we used the same PLOS data for a con-
tinued pre-training of the existing CLM-PubMed
model, which generated the CLM-PubMed-PLOS
model. For both pre-training and continued pre-
training, we set the non-annealed learning rate to
20, the hidden size to 2048, the number of layers
to 1, the sequence length to 256, the batch size to
200, and the number of epochs to 300. Pre-training
of CLMs was performed on a single NVIDIA A40
for about 14 days (7 days per pass). Continued pre-
training was carried out on a single NVIDIA RTX
A5000, which also took about 14 days.
Stacking of embeddings. We tested different
concatenations of embeddings using FLAIR (Ak-
bik et al., 2018), including CLM-PubMed embed-
dings, embeddings from our pre-trained CLM-
PLOS and continually pre-trained CLM-PubMed-
PLOS, in combinations with Transformer-based
embeddings from BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019), and with word embed-
dings from GloVe and FastText. The final sequence
representation is given, for example, by:

Wi =

[
WGloV e

i

WCLM−PLOS
i

]
Here, WGloV e

i is the GloVe embedding (Penning-
ton et al., 2014), and WCLM−PLOS

i is the embed-
ding from our pre-trained character-level language
model on the PLOS dataset.

4.2. Fine-tuning for token classifiers
After preparing the base models, the second step
was submitting them to fine-tuning in order to get
token classifiers for abbreviation and long-form de-
tection. All these base models were first fine-tuned
on the misannotated unfiltered PLOD v1 BIO data
to: 1) investigate which method would give us the
best result; and 2) to obtain results comparable to
those in the release paper of the PLOD dataset.
After testing which methods would lead to better
results, we used the best models to fine-tune on
the re-annotated PLOD v2 BIO data for improving
upon the state of the art.
Training details. All base models were fine-
tuned using the FLAIR framework with default hy-
perparameters. We set the learning rate to 0.01,

7For more information: https://github.com/
flairNLP/flair.

https://github.com/flairNLP/flair
https://github.com/flairNLP/flair
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and the number of epochs to 150; we also opted for
a linear scheduler with warmup to slowly decrease
the learning rate. The batch size for fine-tuning
most models was 32, except for the models that
stacked RoBERTa embeddings, for which we set it
to 2, in accordance with the capacity of our GPU.
To compare with the state of the art provided in Zilio
et al. (2022), we also fine-tuned the RoBERTalarge

model using the Jupyter notebook on the PLOD
GitHub without changing any of the hyperparam-
eters. The overall fine-tuning experiments for this
work took about 3 months. Each resultant model
which used stacked RoBERTalarge embeddings
took approximately 4 weeks to train on the unfil-
tered variant, and 3 weeks on the filtered variant of
PLOD8.

4.3. Ensemble method
After having fine-tuned all the models, we applied
an ensemble method to identify whether the results
would improve over individual models. For this, we
used majority voting over the predictions obtained
from the top three models. Tie-breakers (for the
cases in which all three systems disagreed) were
decided in favour of the model that presented the
individual best predictions on the test sets. This
best model was selected based on an unweighted
average of F1 scores in abbreviation and in long-
form detection.

5. Results and Discussion
5.1. Model results
Table 3 shows the results of models fine-tuned on
misannotated, unfiltered PLOD v1 BIO data. We
treat existing results from the PLOD paper as base-
line results (top two rows in the table). The third
and fourth rows show results on fine-tuning ex-
isting CLMs trained on out-of-domain news data
(CLM-News) and in-domain PubMed data (CLM-
PubMed). We observe that both results are signifi-
cantly better than the baseline ALBERTbase model,
which suggests that they can achieve comparable
results to BERT-like transformer models. The fifth
and sixth rows in Table 3 show the performance
of our pre-trained CLMs on the PLOS data (CLM-
PLOS) and continually pre-trained PubMed model
with the PLOS data (CLM-PubMed-PLOS). We can
see that, as expected, in-domain pre-training con-
sistently improves the CLM performance, while con-
tinued pre-training only slightly improves the base
model’s performance in detecting abbreviations. Al-
though the results for these CLMs is still below the
performance of the large variant of the RoBERTa
model, they are significantly lighter in size even
when combining both passes of the CLMs.

8The FLAIR version we used employs SGD optimizer
which is very slow compared to the more recent AdamW.

From the seventh to the last row in Table 3, mod-
els were fine-tuned with combinations of differ-
ent embeddings. We used stacked embeddings
of GloVe and CLM-PubMed, GloVe and CLM-
PLOS, FastText and CLM-PLOS, CLM-PubMed
and CLM-PLOS. In addition, we also stacked em-
bedding combinations from BERT and CLM-PLOS,
RoBERTalarge and CLM-PubMed-PLOS; FastText,
RoBERTalarge and CLM-PubMed-PLOS; and, fi-
nally, GloVe, RoBERTalarge and CLM-PubMed-
PLOS. We observe from the stacked embeddings
models that simply stacking more embeddings
does not help the performance. When we stacked
word embeddings like FastText and GloVe with
transformer embeddings, they seemed to add noise
to the training, and the results were no better than
without them.
We got our new SOTA from the stacked embed-
dings model of RoBERTalarge plus CLM-PubMed-
PLOS, which achieved the highest F1 score in both
abbreviations and long forms.
As we discussed in Section 3, PLOD v1 has issues
related to the BIO annotation. Hence, the next two
tables present the results on re-annotated PLOD v2
BIO data, including selected models from our initial
investigation and results from the ensemble method
we experimented with. We left the SOTA from Zilio
et al. (2022) at the top of each table just for a quick
reference, but the datasets are now different, as we
re-annotated the BIO files and used new random
splits.
Table 4 shows the results of models fine-tuned on
re-annotated, unfiltered PLOD v2 BIO data. We
fine-tuned one RoBERTalarge model, one PubMed
model (CLM-PubMed), which is a character-level
language model, and one stacked embeddings
model, which is composed of embeddings from
RoBERTalarge and from the continued pre-trained
model based on the PLOS data (CLM-PubMed-
PLOS). On this dataset, we achieved the highest
F1 scores using RoBERTalarge stacked with CLM-
PubMed-PLOS embeddings for abbreviation detec-
tion. This is the same result as we had in PLOD
v1. However, for detecting long forms, the majority
voting further improved the results by more than
one percentage point (which is a large margin, con-
sidering that we have a large test set, with more
than 100k annotated tokens).
When performing predictions on the SDU dataset,
which contains document from different scien-
tific subdomains, RoBERTa-based models did not
achieve the best results in either abbreviation or
long form detection. In abbreviation detection, CLM-
PubMed showed a much higher recall performance
than the other models, which pushed it to achieve
the best F1 score. In terms of long form detec-
tion, the ensemble method drastically improved the
performance compared to individual models. This
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Pre-trained Language Model (PTLM) Abbreviations Long Forms
P R F P R F

Baselines
ALBERTbase (baseline on PLOD) 0.8450 0.8980 0.8710 0.7580 0.8120 0.7840
RoBERTalarge (SOTA on PLOD) 0.9110 0.9350 0.9220 0.8760 0.9210 0.8980
Existing CLMs
CLM-News 0.8604 0.9171 0.8879 0.8190 0.8624 0.8402
CLM-PubMed 0.8778 0.9245 0.9005 0.8438 0.8860 0.8644
CLMs Pre-trained w/ PLOD train data
CLM-PLOS 0.8722 0.9284 0.8994 0.8326 0.8782 0.8548
CLM-PubMed-PLOS 0.8761 0.9279 0.9013 0.8362 0.8879 0.8613
Stacked Embeddings
GloVe + CLM-PubMed 0.8729 0.9272 0.8992 0.8368 0.8830 0.8593
GloVe + CLM-PLOS 0.8750 0.9295 0.9015 0.8365 0.8795 0.8575
FastText + CLM-PLOS 0.8782 0.9312 0.9039 0.8396 0.8817 0.8601
CLM-PubMed + CLM-PLOS 0.8811 0.9333 0.9065 0.8398 0.8828 0.8608
BERT + CLM-PLOS 0.8978 0.9338 0.9154 0.8465 0.8991 0.8720
RoBERTalarge + CLM-PubMed-PLOS 0.9164 0.9456 0.9308 0.8833 0.9308 0.9065
FastText + RoBERTalarge + CLM-PubMed-PLOS 0.9145 0.9413 0.9277 0.8841 0.9263 0.9047
GloVe + RoBERTalarge + CLM-PubMed-PLOS 0.8800 0.9317 0.9051 0.8316 0.8959 0.8625

Table 3: Abbreviation Detection performance using various language model combinations evaluated using
Precision (P), Recall (R), and F1-score (F), trained on the unfiltered PLOD v1 BIO data.

goes to show that both CLM and the ensemble
method are more robust in cross-domain scenar-
ios.
Table 5 shows the results of models fine-tuned on
re-annotated, filtered PLOD v2 BIO data. We can
see that RoBERTalarge is the best model in terms
of detecting abbreviations in the PLOD v2 test set,
but it is surpassed by the majority voting ensemble
method when it comes to long-form detection. Here
it is important to highlight that, for abbreviation de-
tection, the ensemble method is only slightly worse
(0.1 point) in terms of F1 score, as it has better
recall than RoBERTalarge. So, on PLOD v2, the
ensemble method achieves the best overall perfor-
mance for the task of abbreviation and long-form
detection. When tested on the SDU dataset, this
becomes clearer, as RoBERTalarge does not per-
form well at detecting either abbreviations or long
forms (similar to what happened with the unfiltered
dataset). The best results on SDU were achieved
using the CLM-PubMed for abbreviation detection,
and the ensemble method for long-form detection,
again proving that the CLM offers better recall than
the other models.
The re-annotation of the BIO data and the re-
training of these models not only improved the per-
formance on the PLOD test set, but also enhanced
the generalisation ability of the models, as the F1
scores see a huge boost on the SDU dataset when
compared with the results presented in the PLOD
paper (Zilio et al., 2022).
Overall, considering our interest in comparing
character-level language models with transformer
models, our results revealed that character-level

models can achieve comparable results in the de-
tection of abbreviations, where they can even sur-
pass transformer models, especially in terms of
generalisation. We also noticed that CLMs usu-
ally improve the recall of predictions on the test
sets. However, while they performed well on abbre-
viation detection, they were much less reliable for
long-form detection, where they were consistently
outperformed by large Transformer models. The
stacking of different embeddings, especially em-
beddings from large Transformer models proved to
be robust in both abbreviation and long-form detec-
tion, being surpassed only in specific scenarios of
our experiments, and even so, achieving compara-
ble results. Using an ensemble of different models,
even as a simple majority voting system, proved
useful to further improve model performance when
it comes to long-form detection. This was espe-
cially true in the test of generalisation, when the
models were applied to the SDU dataset. In this
case, the results of the majority voting were around
8 percentage points higher than the second best
model.

5.2. Disagreement analysis
After running our three selected models on both
the re-annotated, filtered PLOD v2 test set and
the SDU dataset, we analysed which tokens were
causing disagreements in the output. We randomly
selected a sample of 300 segments from the fil-
tered PLOD v2 test set and another 300 from the
SDU dataset in which at least one token presented
disagreement either among the three systems or
between the models and the test sets. As such,
we only looked at tokens in which either one of the
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Language Model
PLOD Test unfiltered SDU (Train+Dev Set)

Abbreviations Long Forms Abbreviations Long Forms
P R F P R F P R F P R F

SOTA on PLOD unfiltered 0.9110 0.9350 0.9220 0.8760 0.9210 0.8980 0.7070 0.6410 0.6720 0.4230 0.1910 0.2640
RoBERTalarge 0.8916 0.9152 0.9033 0.8607 0.9142 0.8867 0.9075 0.8115 0.8568 0.8029 0.7149 0.7564
CLM-PubMed 0.8502 0.9155 0.8816 0.8270 0.8864 0.8557 0.8941 0.8845 0.8893 0.7594 0.6411 0.6953
RoBERTalarge 0.8977 0.9351 0.9160 0.8726 0.9260 0.8985 0.9012 0.8207 0.8590 0.7896 0.7348 0.7613+ CLM-PubMed-PLOS
Ensemble 0.8893 0.9362 0.9121 0.8758 0.9482 0.9106 0.9148 0.8574 0.8852 0.8449 0.8524 0.8487

Table 4: Abbreviation Detection performance using various language model combinations evaluated using
Precision (P), Recall (R), and F1-score (F), trained on re-annotated, unfiltered PLOD v2 BIO data,
and tested on both.

Language Model
PLOD Test filtered SDU (Train+Dev Set)

Abbreviations Long Forms Abbreviations Long Forms
P R F P R F P R F P R F

SOTA on PLOD filtered 0.9060 0.9350 0.9200 0.8740 0.9250 0.8980 0.7280 0.6430 0.6830 0.5200 0.1690 0.2550
RoBERTalarge 0.9073 0.9348 0.9208 0.8908 0.9318 0.9108 0.9155 0.8074 0.8580 0.8074 0.7197 0.7610
CLM-PubMed 0.8467 0.9226 0.8830 0.8185 0.8887 0.8522 0.9117 0.8708 0.8908 0.7650 0.6464 0.7007
RoBERTalarge 0.8924 0.9375 0.9144 0.8750 0.9225 0.8981 0.9162 0.8238 0.8675 0.7799 0.7245 0.7512+ CLM-PubMed-PLOS
Ensemble 0.8946 0.9464 0.9198 0.8872 0.9529 0.9189 0.9256 0.8500 0.8862 0.8395 0.8521 0.8457

Table 5: Abbreviation Detection performance using various language model combinations evaluated using
Precision (P), Recall (R), and F1-score (F), trained on re-annotated, filtered PLOD v2 BIO data, and
tested on both.

models or the test set annotation disagreed with
the other models.
The error analysis that we report here was purpose-
fully based on disagreements. We expected that
the points of disagreement would represent difficult
cases in the datasets, which could also indicate
cases of misannotation. So it is very important to
keep in mind that we were not just looking at vanilla
annotations in the datasets. Since such type of
analysis requires a higher level of linguistic training,
it was conducted by a linguist.
Tables 6 and 7 present the results of the disagree-
ment analysis conducted on the filtered PLOD v2
test set. It can be seen that, whenever the test
set disagrees with the systems (meaning that all
three models agree on the annotation), it is usually
a mistake on the test set annotation, as it presented
issues in almost 73% of the instances. Of all three
models, RoBERTalarge seems to be the one that
was more influenced by the errors in the dataset,
as there were errors in the test set on almost 51%
of the time in which RoBERTalarge was wrong in
disagreeing with the other two models. This per-
centage was much lower for the other two mod-
els. In this disagreement analysis, CLM-PubMed
was actually right in disagreeing with the other sys-
tems around 46% of the time. As such, although
RoBERTalarge did achieve good overall results in
the experiments, it seems to be far more overfit-
ted than CLM-PubMed, confirming a point that was
observed when we tested our models on the SDU
dataset. Overall, and emphasising again that we
were focusing on difficult annotation cases, where
there were disagreements, the test set presented
a good amount of problems, with more than 47%

of the cases being erroneous, especially in terms
of missing annotations (recall), which amounted to
95% of the observed errors. Because the annota-
tion of PLOD was based on manually constructed
glossaries, this lack of recall actually was an ex-
pected issue. An example of lack of annotation
in PLOD can be seen in the following extract (ID
1110868 in the filtered TSV file):

ACE/ARB, angiotensin-converting enzyme
inhibitors/angiotensin receptor blockers

where there are no annotations in the dataset.
“ACE” and “ARB” are not annotated as abbrevia-
tions, and, as a consequence, neither are their
long forms, even though they are clearly related
and should have been all annotated.

Disagrees w/
other models Is wrong (%) Issues w/

test set (%)
Filtered PLOD v2 428 312 (72.90%) N/A
RoBERTalarge 384 282 (73.44%) 143 (50.71%)
CLM-PubMed 535 288 (53.83%) 57 (19.79%)
RoBERTalarge 435 300 (68.97%) 71 (23.67%)+ CLM-PubMed-PLOS

Table 6: Error analysis of disagreements on the
PLOD v2 test set.

Total
Tokens

Total
Errors Precision Recall

1782 848 (47.59%) 42 (4.95%) 806 (95.05%)

Table 7: Errors in the PLOD v2 test set.

Tables 8 and 9 present the results of the error anal-
ysis conducted on the SDU dataset. This analysis
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was conducted using the same methodology as
in the PLOD v2 dataset, so we are again looking
at disagreements. In terms of model behaviour,
the results on this dataset were very similar, as
again RoBERTalarge was the model that was ac-
tually wrong most of the time when disagreeing
with the other two models. The SDU dataset has
less annotation errors, but it still was more wrong
(53%) than right when disagreeing with the three
models. CLM-PubMed was again the best in dis-
agreeing, as it was actually right in almost 40% of
these cases. Considering the sample extracted
for this error analysis, the SDU dataset presented
around 34% of incorrectly annotated instances, of
which almost 22% were cases of misannotation
(precision). As an example of misannotation, we
have the following extract (ID 644 in the JSON train
file):

4Reviews with NDr = NTr are regarded as
incorrectly classified by TopicSpam.

where “NDr” and “NTr” are both correctly annotated
as abbreviations, but then “are regarded as incor-
rectly” is incorrectly annotated as a long form.

Disagrees w/
other models Is wrong (%) Issues w/

test set (%)
SDU 355 189 (53.24%) N/A
RoBERTalarge 311 214 (68.81%) 45 (21.03%)
CLM-PubMed 471 285 (60.51%) 55 (19.30%)
RoBERTalarge 387 260 (67.18%) 19 (07.31%)+ CLM-PubMed-PLOS

Table 8: Error analysis of disagreements on the
SDU dataset.

Total
Tokens

Total
Errors Precision Recall

1524 519 (34.06%) 113 (21.77%) 406 (78.23%)

Table 9: Errors in the SDU dataset.

However, one of the main issues with the SDU
dataset is actually tokenisation. On many seg-
ments, there are single characters tokenised sepa-
rately from the rest of the word, or words split into
several tokens. For instance, segment 193 of the
JSON train file is “1 25 2. Loca l Word Grouper
(LWG) The funct ion of th i s b lock is to fo rm ” (sic).
Not only it is an incomplete sentence, which can be
problematic if a long form is broken in the middle,
but the tokenisation is also completely broken, and
it is, for instance, breaking one of the words in the
long form “Local Word Grouper”.
As we mentioned previously, by looking only at
disagreements, we were probably only looking at
the most complicated instances in both datasets,
so it is expected that a certain amount of issues
with the test sets would appear.

6. Conclusion
In this paper, we trained language models that offer
SOTA performance in abbreviation and long-form
detection. We tested existing CLMs, pre-training
and continued pre-training of CLMs, and stacked
embeddings models as base models, which we
used for fine-tuning token classifiers. We got SOTA
performance based on the stacking of different em-
beddings and ensemble methods. We also per-
formed a detailed error analysis of our trained mod-
els and summarised the errors in model predictions
and in both datasets. We re-annotated the PLOD
BIO data and proposed a new version of the BIO-
annotated PLOD data that corrected errors in the
dataset and increased the total number of anno-
tated tokens.
More than 30% of the investigated instances pre-
sented issues in both test sets. Although we
were purposefully looking at only disagreements,
which might be the most complicated cases in the
datasets, it is hard not to put a question mark in
terms of the evaluation of which models are actually
performing better. At the same time, we did use
the only two datasets (to our knowledge) that are
currently available for abbreviation detection in En-
glish, so there is not a bulletproof dataset that could
be used instead of these. The comprehensive error
analysis that we conducted consists in an impor-
tant contribution to the field, as it raises questions
regarding the existing abbreviation datasets and
opens up paths for a broader discussion regarding
evaluation.
A fully manual evaluation could be the best way
forward to identify the best models, but it would
prove to be very costly in terms of time and effort,
and it might still prove to be unreliable, if low or no
agreement can be observed between evaluators.
As such, we plan to conduct future investigations
regarding how to better evaluate the reliability of
the existing datasets, including experiments with
manual evaluation in both abbreviation and long-
form detection.

7. Limitations
In virtue of the high computing costs involved in
training the models, we had to make a selection of
models for re-training on PLOD v2 data, and, as
such, we don’t have the results for all models, as
we have on the misannotated PLOD v1. For the
same reason of computing cost, we also only used
default hyperparameters for some of the trained
models.
As we identified during the disagreement analysis,
both datasets present issues in terms of precision
and recall, which have an impact on the models,
and on the results presented in the paper. A manual
revision of either dataset, however, is not feasible
within the scope of this research.
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The disagreement analysis, which included obser-
vations regarding the annotation of the datasets,
was carried out only by one linguist, so we do not
have data on inter-rater agreement. This is some-
thing we plan to explore in the future though.
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