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Abstract
Sign language is the primary communication medium for people who are deaf or have hearing loss. However,
given the divergent range of sensory abilities of these individuals, there is a communication gap that needs to
be addressed. In this paper, we present action-concentrated embedding (ACE), which is a novel sign token
embedding framework. Additionally, to provide a more structured foundation for sign language analysis, we
introduce a dedicated notation system tailored for sign language that endeavors to encapsulate the nuanced
gestures and movements that are integral with sign communication. The proposed ACE approach tracks a
signer’s actions based on human posture estimation. Tokenizing these actions and capturing the token embedding
using a short-time Fourier transform encapsulates the time-based behavioral changes. Hence, ACE offers input
embedding to translate sign language into natural language sentences. When tested against a disaster sign
language dataset using automated machine translation measures, ACE notably surpasses prior research in
terms of translation capabilities, improving the performance by up to 5.79% for BLEU-4 and 5.46% for ROUGE-L metric.

Keywords: sign language translation, sign language token embedding framework, short-time Fourier trans-
form

1. Introduction

The transformer (Vaswani et al., 2017) paves a new
way for communicating between intercultural soci-
eties (Araabi and Monz, 2020; Chi et al., 2021).
However, its benefits are limited to spoken lan-
guages, meaning people who are deaf or have
hearing loss remain on the sidelines of communi-
cation. As a result, an information imbalance per-
sists within the deaf community (Lillo-Martin et al.,
2023). To overcome this communication barrier,
neural machine translation with sign language is
gaining attention.

An understanding of the deep structures of the
source language is essential to fully convey the
original meaning, resulting in more accurate and
complete translation results (Dai et al., 2022). This
also applies to sign language, which is a unique
linguistic system that has its own grammar, phonol-
ogy, and lexicon.

Sign language translation approaches that sim-
ply represent a sequence of consecutive images
overlook the intrinsic linguistic nature of sign lan-
guages (Camgoz et al., 2020; Yin and Read, 2020;
Angelova et al., 2022). In other words, they lack suf-
ficient consideration of sign language as a complex
linguistic system in which each action represents
stems and affixes (Müller et al., 2023). This ambi-
guity in the definition of tokens creates difficulties
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Figure 1: Concept of notation for sign language
with a set of joints of posture

in terms of the consistent interpretation of linguis-
tic elements and increases the time complexity of
transformer models, which is proportional to the
square of the number of tokens (Vaswani et al.,
2017). To convey the essence of sign language,
the machine translation of sign language needs to
be rethought. Many natural language processing
approaches analyze the morphological structure
of languages. Furthermore, the phonology system
of sign language is similar to that of spoken lan-
guages, indicating that sign communication should
be treated as a language (Yin et al., 2021; Angelova
et al., 2022)

In speech processing using frequency analy-
sis, short-time Fourier transform (STFT) is a key
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method for representing the pronunciation of words
as frequency characteristics over time and recog-
nizing syllables in human speech (Mohd Hanifa
et al., 2021). Sign language relies on frequency
analysis to effectively capture gestures, as in spo-
ken languages, where speech content and speaker
identification are available (Beaudry et al., 2014).
Frequency domain data can represent information
from multiple frames in a high-dimensional form.
Moreover, it can increase the efficiency of data pro-
cessing and significantly reduce the time complexity
of transformer models (Griffin and Lim, 1984).

Analyzing the frequency characteristics of sign
language over time offers a new methodology in
sign language translation. The signals sampled
from actions (similar to voice analysis) are repre-
sented as frequency characteristics over time. This
indicates that frequency analysis can distinguish
given actions (Tran et al., 2014). Ultimately, to-
kenizing sign language is analogous to how we
recognize words by listening to sounds. Hence, an-
gles within a “pose” can be defined as an alphabet,
and successive angle changes within a portion of a
frame sequence can be interpreted as stems or af-
fixes. The Figure 1 explains the concept of notation
for sign language with a set of joints of posture.

In this paper, we propose the action-concentrated
embedding (ACE) framework, which focuses on
changes in the speaker’s hands, face, and body
motions. The ACE framework captures the pos-
ture changes of body parts over time and provides
token embeddings using the STFT. In addition, it
understands each action in the sign as a linguis-
tic system of stems and affixes. The proposed
approach effectively represents various actions of
sign language and facilitates the understanding of
sign language based on patterns of part-specific
movement changes. Finally, the proposed frame-
work improves sign language translation using a
transformer-based model.

The remainder of the paper is structured as fol-
lows: Section 2 presents a review of related work in
sign language recognition and translation, highlight-
ing the gaps that the ACE framework addresses.
Section 3 details the ACE framework, from angular
data extraction to token embedding. Experiments
validating ACE, including results and comparisons,
are presented in Section 4. Section 5 presents the
conclusions, a summary of the contributions, and
suggestions for future research directions in sign
language translation.

2. Related Work

2.1. Sign Language Recognition

Sign language recognition (SLR) is a branch of
computational sign language that recognizes ges-

tures to understand their meaning. Several studies
have conducted research on recognizing human
signatures, including sensing- and vision-based
approaches.

The sensing-based approach is representative
of the way in which wearable devices are man-
ufactured (Wen et al., 2021; Zhou et al., 2020b;
Zhang et al., 2023a), with non-contact approaches
including radar (Rahman et al., 2021) and radio
frequency (Ma et al., 2018; Zhang et al., 2020).
However, these technologies have the disadvan-
tage of requiring additional equipment.

In vision-based approaches, 3DCNN is the key
method used for feature extraction (Huang et al.,
2015; Al-Hammadi et al., 2020a,b). In addition
to these traditional CNN-based approaches, pose-
based methods that can incorporate human infor-
mation have also been developed. These can ex-
tract human key points using pose estimation frame-
works, such as OpenPose (Cao et al., 2017; Simon
et al., 2017; Wei et al., 2016) or MediaPipe (Lu-
garesi et al., 2019). The work of Jiao et al. (2023);
de Amorim et al. (2019); Tunga et al. (2021) are
typical approaches that are based on the graph con-
volution network (GCN). Ko et al. (2018); Amaliya
et al. (2021) recognized sign language by the key
point on the image, where word-level SLR deter-
mines a gloss from a piece of data. Because contin-
uous SLR (CSLR) recognizes gloss in continuous
sign language data, temporal information becomes
very important. Many researchers have attempted
to extract temporal features with different models,
including the hidden Markov model (Koller et al.,
2017, 2016), long short-term memory (Yang and
Zhu, 2017; Basnin et al., 2020) and both (Koller
et al., 2019). Recently, CNN-based models, such
as spatio-temporal multi-cue network (Zhou et al.,
2020a) and 3D-CNN (Zhang et al., 2023b), have
also been proposed.

2.2. Sign Language Translation
Although CSLR conveys sign language meaning,
it is difficult for hearing people to fully understand
sentences expressed through it. The Neural Sign
Language Translation (NSLT) paper formally pro-
poses a deep learning-based SLT (Camgoz et al.,
2020)), which includes sign-to-text (S2T), gloss-to-
text (G2T), and sign-to-gloss-to-text (S2G2T). Yin
and Read (2020) converted gloss sequences ex-
tracted by CSLRs into sentences via a transformer
structure. In the S2G2T model, signs are converted
to glosses that are subsequently translated into text.
Recently, several studies have been conducted on
end-to-end translation from sign to text, bypassing
the conversion to gloss. In the study by Camgoz
et al. (2020), each frame extracted by the CNN
served as a token for the transformer. TSPNet em-
ploys a temporal semantic pyramid using 3D-CNN
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to extract multiple temporal data (Li et al., 2020; Mi-
randa et al., 2022). Zheng et al. (2020) proposed
a frame stream density compression algorithm to
reduce the amount of data.

In contrast, the key point-based methods extract
human key points per frame using the pose esti-
mation framework. This reduces the number of
features compared to CNN-based methods and
human information can be effectively incorporated.
In the work of Ko et al. (2019) and Kim and Baek
(2023), the key points extracted from OpenPose
were normalized, and then random frame sampling
was performed. These research outperformed S2T
model in Camgoz et al. (2018). Kim and Kim (2023)
tokenized sign language videos into action units
using key points and highlighted non-manual parts
such as eyes, eyebrows, and mouth. As a result,
they demonstrated that a human-informed model
using key points is a promising approach for char-
acterizing sign language.

3. Methodology

Herein, we propose a token embedding framework
(ACE) that efficiently represents sign language by
focusing on body movements to translate sign lan-
guage into sentences, as displayed in Figure 2. The
proposed framework performs key point extraction,
which reveals the signer’s expressions. In addition,
ACE tokenizes changes in posture over time within
each token into frequency components.

3.1. Transforming the Frame to Angular
Information

Sign language consists of both manual and non-
manual signals. Manual signals indicate gloss with
hand movement, while non-manual signals express
grammatical and contextual features, emotions,
and attitudes through facial expressions and body
postures. ACE recognizes the signer’s hand pos-
tures, facial expressions, and body postures from
the input video frames. Angle information is then
extracted from these signals to standardize a nota-
tion system for sign language, similar to phonetic
symbols in spoken languages.
Key point detection in sign language. For each
input video frame, ACE detects key points from a
signer’s four distinct body parts: the upper body,
face, left hand, and right hand. More specifically,
we use an open-source human pose estimation
library (OpenPose) and detect 12, 70, 21, and 21
key points from each body part, respectively. Fi-
nally, we obtain a total of 124 key points, where
each key point ki is represented as its x-y coordi-
nate in the frame (i.e., [xi, yi]). It should be noted
that ACE does not extract any key points from the

signer’s lower body, as these have less impact on
sign language translation.
Posture construction with edge-pairs. ACE rep-
resents the signer’s posture as angular information
between the detected key points. Let ei,j denote
an edge vector of two key points (ki and kj). Given
the two vectors ei,j and ek,l, ACE first computes
their cosine value c as

c =
ei,j · ek,l

∥ei,j∥∥ek,l∥
, (1)

where · is the inner product of the vectors and ∥ei,j∥
and ∥ek,l∥ are the magnitudes of each vector. We
repeat this process for each edge pair defined in Ta-
ble 1. It should be noted that the numbering of the
key points in the table follows the numbering con-
vention of OpenPose. In other words, for the i-th
input video frame, we obtain a set of cosine values
denoted Vi, where Vi = {c1(i), c2(i), . . . , c76(i)}. Fi-
nally, ACE outputs an angular information set V ,
which contains the cosine values obtained from
each video frame (i.e., V = {V1, V2, . . . , VT }),
where T is the total number of input video frames.
Notation System for Sign language Unlike spo-
ken languages, sign language uses a spatial di-
mension for conveying meaning. In other words,
the positions and movements of the hands, face,
and body are not arbitrary. Rather, they have struc-
tured and nuanced significance. Angular informa-
tion serves as a pivotal bridge between physical
gestures and linguistic meaning. Moreover, it pro-
vides a systematic and quantifiable measure of
spatial relations, creating a structured notation sys-
tem that is similar to how phonetics serves spoken
languages.

Within each frame, the cosine values of edge
pairs offer a snapshot of the signer’s morphology at
that particular moment, encoding both manual and
non-manual signals. This granular approach allows
us to capture the minutiae of sign languages, includ-
ing subtle shifts in hand shapes, orientations, lo-
cations, and facial expressions. When sequenced
over time, this becomes a coherent narrative that is
equivalent to sentences in spoken language. Our
notation system omits spaces, reflecting the contin-
uous nature of sign language gestures. By adopting
this angular-based notation system, we can sys-
tematically deconstruct, analyze, and interpret the
morphological patterns inherent in sign language,
providing a foundation for further linguistic and com-
putational explorations.

3.2. Token Framework in the Frequency
Domain

A key concept of ACE is to generate embeddings
that are effective for sign language translation,
leveraging the time varying frequency character-
istics of the signer’s movements. To achieve this,
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Figure 2: Overview of the ACE token embedding framework for sign language representation.

Figure 3: Illustration of tokenizing angular informa-
tion using the short-time Fourier transform (STFT)
method to capture time-varying frequency charac-
teristics of signer’s movements.

we apply the STFT method to the obtained angular
information set V . In other words, by using STFT,
we tokenize V into multiple windows and convert
their frequency characteristics into token embed-
dings (Figure 3).
Sliding window-based tokenization. First, ACE
divides the angular information set V into multiple
sub-windows using a sliding window method. Each
token serves as a token for sign language. Let Wi

denote the i-th sub-window obtained from V , which
is defined as

Wi = {Vj |H×(i−1)+1 ≤ j ≤ H×(i−1)+N}, (2)

where N is the window size and H is the interval
between two consecutive windows. H is computed

as N − O, where O is the size of the area that
overlaps with a previous window.
Token embedding with frequency components.
Once tokenized, ACE extracts embeddings from
each token through a frequency domain analysis.
More specifically, we extract Xi, which is the one-
sided fast Fourier transform (FFT) magnitudes for
the i-th edge pair’s angular information, as follows:

Xi(f) = |
N∑

k=1

ci(k)e
−j(2πfk)/N |, (3)

where k is the frame index in the given token. It
should be noted that f ranges from 0 to ⌊N

2 ⌋−1 ac-
cording to the Nyquist frequency theorem (Nyquist,
1928; Shannon, 1949). Subsequently, ACE pro-
duces an embedding for the token by concatenating
the magnitudes of all edge pairs.

3.2.1. Insights into resolution and
comprehension in sign language
tokenization

It is essential to understand the properties of move-
ment representation when analyzing sign language.
Parameters N and O have a significant impact on
how effectively we can capture this movement. A
larger value of N can hinder the analysis of rapid
movement details due to excessive frame aggre-
gation, while a smaller value could result in insuffi-
cient context. Larger O values promote continuity,
enabling analysis from multiple perspectives. To
optimize sign language representation, we must
investigate how N and O interact with the unique
linguistic characteristics of sign language, which
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Edge-pair
No. Edge ei,j Edge ek,l No. Edge ei,j Edge ek,l
1 BODY (0, 1) BODY (1, 2) 2 BODY (0, 1) BODY (1, 5)
3 BODY (2, 1) BODY (1, 5) 4 BODY (1, 2) BODY (2, 3)
5 BODY (2, 3) BODY (3, 4) 6 BODY (1, 5) BODY (5, 6)
7 BODY (5, 6) BODY (6, 7) 8 BODY (17, 18) BODY (0, 1)
9 BODY (6, 7) HANDL (0, 9) 10 BODY (3, 4) HANDR (0, 9)
11 FACE (41, 36) FACE (36, 37) 12 FACE (40, 41) FACE (41, 36)
13 FACE (47, 42) FACE (42, 43) 14 FACE (46, 47) FACE (47, 42)
15 FACE (59, 48) FACE (48, 49) 16 FACE (58, 59) FACE (59, 48)
17 FACE (67, 60) FACE (60, 61) 18 FACE (66, 67) FACE (67, 61)
19 FACE (36, 37) FACE (37, 38) 20 FACE (37, 38) FACE (38, 39)
21 FACE (38, 39) FACE (39, 40) 22 FACE (39, 40) FACE (40, 41)
23 FACE (42, 43) FACE (43, 44) 24 FACE (43, 44) FACE (44, 45)
25 FACE (44, 45) FACE (45, 46) 26 FACE (45, 46) FACE (46, 47)
27 FACE (48, 49) FACE (49, 50) 28 FACE (49, 50) FACE (50, 51)
29 FACE (50, 51) FACE (51, 52) 30 FACE (51, 52) FACE (52, 53)
31 FACE (52, 53) FACE (53, 54) 32 FACE (53, 54) FACE (54, 55)
33 FACE (54, 55) FACE (55, 56) 34 FACE (55, 56) FACE (56, 57)
35 FACE (56, 57) FACE (57, 58) 36 FACE (57, 58) FACE (58, 59)
37 FACE (60, 61) FACE (61, 62) 38 FACE (61, 62) FACE (62, 63)
39 FACE (62, 63) FACE (63, 64) 40 FACE (63, 64) FACE (64, 65)
41 FACE (64, 65) FACE (65, 66) 42 FACE (65, 66) FACE (66, 67)
43 FACE (17, 18) FACE (18, 19) 44 FACE (18, 19) FACE (19, 20)
45 FACE (22, 23) FACE (23, 24) 46 FACE (23, 24) FACE (24, 25)
47 HANDL (0, 1) HANDL (1, 2) 48 HANDL (1, 2) HANDL (2, 3)
49 HANDL (2, 3) HANDL (3, 4) 50 HANDL (0, 5) HANDL (5, 6)
51 HANDL (5, 6) HANDL (6, 7) 52 HANDL (6, 7) HANDL (7, 8)
53 HANDL (0, 9) HANDL (9, 10) 54 HANDL (9, 10) HANDL (10, 11)
55 HANDL (10, 11) HANDL (11, 12) 56 HANDL (0, 13) HANDL (13, 14)
57 HANDL (13, 14) HANDL (14, 15) 58 HANDL (14, 15) HANDL (15, 16)
59 HANDL (0, 17) HANDL (17, 18) 60 HANDL (17, 18) HANDL (18, 19)
61 HANDL (18, 19) HANDL (19, 20) 62 HANDR (0, 1) HANDR (1, 2)
63 HANDR (1, 2) HANDR (2, 3) 64 HANDR (2, 3) HANDR (3, 4)
65 HANDR (0, 5) HANDR (5, 6) 66 HANDR (5, 6) HANDR (6, 7)
67 HANDR (6, 7) HANDR (7, 8) 68 HANDR (0, 9) HANDR (9, 10)
69 HANDR (9, 10) HANDR (10, 11) 70 HANDR (10, 11) HANDR (11, 12)
71 HANDR (0, 13) HANDR (13, 14) 72 HANDR (13, 14) HANDR (14, 15)
73 HANDR (14, 15) HANDR (15, 16) 74 HANDR (0, 17) HANDR (17, 18)
75 HANDR (17, 18) HANDR (18, 19) 76 HANDR (18, 19) HANDR (19, 20)

Table 1: Edge pairs used for extracting the angular information of sign language. A total of 76 edge pairs
were selected to encapsulate human movements.

will guide us toward answering the following funda-
mental questions:

• RQ1: To what extent does increasing over-
lap size O influence the ability to represent
sign language from diverse analytical perspec-
tives?

• RQ2: What size of window N maximizes the
quality of sign language representation, bal-
ancing the need for detail and sufficient con-
text?

In Section 4.1, we conduct experiments in differ-

ent configurations, where the parameters are set
to explore our two research questions. The result-
ing performance is then evaluated to answer the
questions.

3.3. ACE-Enhanced Transformer
Structure

The ACE framework is incorporated into a trans-
former architecture to capture the intrinsic nuances
of sign languages more effectively. The robust rep-
resentation of signer actions and postures feeds
into the encoder layer. At the decoder layer, the
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model tokenizes sentences with a wordpiece-based
byte-pair encoding tokenizer, which is trained on a
given corpus of translation label sentences. The
detailed code and the model implementation can
be found in the attached GitHub1.

4. Experiments

This section presents the experimental results that
validate the performance of ACE. We explored the
RQs by comparing the translation performance
of the hyperparameters in ACE. Furthermore, the
value of the STFT-based token embedding frame-
work was evaluated by comparing it with previous
research that used key points as token embedding.

4.1. Setup

For sign language translation, the transformer
(Vaswani et al., 2017) model was built using Py-
Torch. The model comprises three transformer lay-
ers, each with a dimension of 256 and 4 heads. Our
decoder used a vocabulary size of 22,000 and the
model was trained over 50 epochs, with a dropout
rate of 0.1 to avoid overfitting. The batch process-
ing was configured to manage 32 samples with a
Nvidia RTX 3090 GPU. The Adam optimizer was
used with a learning rate of 0.001. For the train-
ing data, we aggregated the video data of sign
language for disaster safety information from the
AI Hub platform. Of the 160,677 training samples
(excluding incomplete data), 95% was allocated
for training and 5% for testing. The STFT was im-
plemented using scipy (Virtanen et al., 2020) with
the Hann window function, without any padding or
boundary conditions.

We used the BLEU-4, ROUGE-L, and METEOR
evaluation metrics to determine the translation per-
formance. A high BLEU-4 score indicated that
the machine output closely resembled that of a
human, focusing on the accuracy of the text pro-
duced. In contrast, ROUGE-L emphasized the cov-
erage or thoroughness between the translated and
reference text. The METEOR metric provided a
comprehensive and nuanced assessment, which
included the accuracy and comprehensiveness of
the translated material.

4.2. Exploring the Impact on Sign
Language Translation

This section presents the experimental analytics
of the RQs. We addressed the RQs by examining
variations in the evaluation metrics that focused on

1https://github.com/Splo2t/action_
concentrated_embedding

window and overlap size. We also discuss the im-
pact of the proposed framework on sign language
translation.

• RQ1: To what extent does increasing over-
lap size O influence the ability to represent
sign language from diverse analytical perspec-
tives?

We analyzed the metrics for machine translation
while progressively adjusting the overlap sizes for
various window sizes. Table 2 presents the metric
related to variations in overlap size O. For N values
of 30, 20, and 15, the highest scores were achieved
when the O values were 20, 15, and 10, respec-
tively. Specifically, significant differences emerged
between ROUGE-L and METEOR. The evaluation
scores were directly proportional to the overlap area
across the window sizes. Moreover, an increase
in the overlap size enhanced the chances of corre-
lating one movement to another. The ACE frame-
work supported the model in achieving a deeper
understanding of the movements, enabling a clear
interpretation of the signer’s utterances.

• RQ2: What size of window N maximizes the
quality of sign language representation, bal-
ancing the need for detail and sufficient con-
text?

Table 3 presents an analysis of the metrics as N
changed while maintaining a similar overlap ratio.
The BLEU-4 and ROUGE-L score appeared to be
inversely proportional to increases in N , and ME-
TEOR exhibited minor deviations at values below
N = 50, after which it reduced significantly.

In an additional analysis, we further explored
the relationship between the window size and the
translation completeness. Here, we introduced the
metric of sentence information size, which was de-
rived by multiplying the average token length with
the token embedding dimension. A comparison be-
tween the sentence information size and ROUGE-L
indicated that the sign language translation’s ability
to convey meaning was proportional to the informa-
tion quantity in a sign language sentence.

The window size affected how the model repre-
sented sign language tokens. While a larger size
captured more movement per token, it could over-
simplify the expression of sign language sentences.
The abundance of information in tokens rendered
them more challenging to distinguish, resulting in re-
duced accuracy. Therefore, an appropriate window
size should be selected based on the directionality
of the translation.

The experimental results revealed significant find-
ings regarding the translation of sign language. An
intricate association between the overlap and win-
dow sizes was essential to enhance the quality and
clarity of the translation. Increasing the overlap

https://github.com/Splo2t/action_concentrated_embedding
https://github.com/Splo2t/action_concentrated_embedding
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N O Avg. Token length BLEU-4 ROUGE-L METEOR
30 20 44.18 36.72 40.10 41.44
30 10 22.36 32.36 32.83 38.24
30 5 17.92 29.67 30.23 36.40
30 0 15.11 26.86 26.96 33.99
20 15 89.83 38.21 40.69 42.65
20 10 45.19 36.44 39.02 41.56
20 5 30.23 33.18 34.68 38.91
20 0 22.82 30.91 31.09 37.32
15 10 90.83 38.80 41.29 42.74
15 5 45.64 36.73 39.14 41.32
15 0 30.65 32.53 34.12 38.29

Table 2: Performance metrics for various window sizes and overlap ratios.

N Overlap Ratio Sentence Information Size BLEU-4 ROUGE-L METEOR
80 75% 61,765 32.71 34.06 38.40
60 75% 65,162 35.60 36.72 40.15
50 74% 64,332 35.63 37.64 40.71
40 75% 68,924 37.00 38.90 41.60
30 76.66% 76,470 37.87 40.28 42.20
20 75% 75,090 38.21 41.00 42.79
15 73.33% 68,965 38.57 41.79 42.64

Table 3: Evaluation metrics for different window sizes while maintaining similar overlap ratios. Results are
averaged over three different random seeds to account for variability.

size improved the interpretation of sign language
patterns, although an equilibrium with the window
size was crucial to avoid losing the meaning of
the message. This research sets the foundation
for further research in the field of sign language
translation automation to achieve more significant
improvements.

4.3. Impact of Body Part Features on
ACE

In this experiment, we evaluated the influence of
various body part features on the performance of
ACE using a maximum sequence length of 50 and
the following set of parameters: N = 40 and O =
30.

From Table 4, it is evident that when ACE em-
ployed only the “Hands” feature, its performance
gap to the baseline was relatively small. Similarly,
even when using both “Hands” and “Face” features,
ACE’s performance improvement was relatively
small. However, when the experiments included
the “Body” feature, ACE’s performance notably sur-
passed the baseline. This differential in perfor-
mance can be attributed to ACE’s design, which
optimizes angular information to capture relational
dynamics between body parts. When confined to
the “Hands” feature, ACE’s potential diminished
because “Hands” alone only offers a constrained
range of angular data, overlooking intricate relation-
ships with other body parts (such as the torso and

shoulders).
In contrast, the baseline model was skillful in

identifying hand-to-hand relationships that used
normalized key points, rendering it less dependent
on the broader body context compared to ACE.
By incorporating the “Body” feature, ACE gained
extensive angular relations across the body, en-
hancing its relational understanding. This result
also highlighted the essential role of dynamic body
movements in advancing sign language translation
algorithms.

4.4. Comparison with Prior Work

In this research, we compared the machine trans-
lation performance of the proposed and existing
models in a constrained environment. Previous
research based on key points introduced random
sampling on frame sequences to optimize com-
puting resources. In this experiment, we evalu-
ated the performance of the proposed model with
various numbers of sampling tokens. Figure 4
lists the automatic translation performance met-
ric according to various maximum token lengths.
When comparing the models at a maximum of
50 tokens, the proposed model exhibited improve-
ments of 5.43%, 4.32%, and 3.96% in the BLEU-
4, ROUGE-L, and METEOR scores, respectively.
When the model had only 25 max tokens, the pro-
posed model achieved a performance improvement
of over 6.42%, 5.46%, and 5.16% in the BLEU-4,
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Features
Model Metric Hands Hands, Body Hands, Face Hands, Body, Face

Baseline
BLEU-4 29.65 30.31 30.43 30.82
ROUGE-L 32.87 33.08 32.9 33.58
METEOR 36.6 37.37 37.42 37.21

ACE
BLEU-4 31.97 35.23 33.16 36.78
ROUGE-L 36.14 38.86 36.56 38.39
METEOR 37.54 40.44 38.65 41.51

Table 4: Influence of body part features on the performance of ACE and the baseline model (Ko et al.,
2019).

Figure 4: Comparison of automatic translation performance metrics for various maximum token lengths
between the proposed ACE and the baseline by (Ko et al., 2019). Results are averaged over three different
random seeds to account for variability.

ROUGE-L, and METEOR scores, respectively.
Although frame sampling only covers the instan-

taneous posture of the sign language, the proposed
method did not have this problem because the
signer’s movements defined the token. Further-
more, the overlapping feature allowed the infer-
ence of lost sign language expressions when a
token was sampled. Accordingly, the proposed
ACE presented improved evaluation metrics for sign
language performance, even with a limited token
length.

5. Conclusion

In this paper, we introduced the ACE framework,
which is a novel approach to sign language tok-
enization and understanding. By focusing on the
dynamics of body movements and leveraging the
STFT for tokenization, ACE displayed promising re-
sults in sign language-to-sentence translation. The
experimental results confirmed ACE’s adaptability
and efficiency regarding the number of tokens. Es-
pecially under the restriction of a limited number
of tokens, the increase in BLEU-4 and ROUGE-L
metrics was remarkable. The ACE framework’s
innovative approach to capturing and representing
sign language nuances highlighted the vast poten-

tial of bridging the communication gap between the
deaf community and society. This study provided
a strong and comprehensive depiction of sign lan-
guage, while also establishing a solid framework
for future research. Its findings bring us closer to
the ultimate objective of precise and effective com-
prehension and translation of sign language.
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