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Abstract
In an era where rumors can propagate rapidly across social media platforms such as Twitter and Weibo, automatic
rumor detection has garnered considerable attention from both academia and industry. Existing multimodal
rumor detection models often overlook the intricacies of sample difficulty, e.g., text-level difficulty, image-level
difficulty, and multimodal-level difficulty, as well as their order when training. Inspired by the concept of curriculum
learning, we propose the Curriculum Learning and Fine-grained Fusion-driven multimodal Rumor Detection
(CLFFRD) framework, which employs curriculum learning to automatically select and train samples according to
their difficulty at different training stages. Furthermore, we introduce a fine-grained fusion strategy that unifies
entities from text and objects from images, enhancing their semantic cohesion. We also propose a novel data
augmentation method that utilizes linear interpolation between textual and visual modalities to generate diverse data.
Additionally, our approach incorporates deep fusion for both intra-modality (e.g., text entities and image objects) and
inter-modality (e.g., CLIP and social graph) features. Extensive experimental results demonstrate that CLFFRD out-
performs state-of-the-art models on both English and Chinese benchmark datasets for rumor detection in social media.
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1. Introduction

In today’s rapidly expanding digital landscape, the
widespread availability of the Internet and the preva-
lence of social media platforms have created a
global ecosystem where information spreads at un-
precedented rates. Social media platforms, such
as Twitter and Weibo, host vast quantities of user-
generated content, much of which lacks credible
validation and verification, resulting in the rapid dis-
semination of unverified or false information.
Automated rumor detection has become a vital

necessity due to the limitations of manual methods,
including low coverage and significant delays in
verification. Recent years have witnessed a surge
in automatic rumor detection within both academic
and industrial domains (Wang et al., 2018; Zhou
et al., 2020; Xu et al., 2021; Singhal et al., 2022;
Zheng et al., 2022; Dhawan et al., 2022). How-
ever, current multimodal rumor detection models
face three critical challenges. First, they typically
select samples randomly during training without
considering the complexity of samples, such as
text-level, image-level, and multimodal-level diffi-
culty. Intuitively, gradually increasing the sample
difficulty during training, akin to how humans learn,
could enhance rumor debunking. Second, exist-
ing multimodal rumor detection models often lack
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mechanisms for a deep fusion of fine-grained fea-
tures from textual and visual modalities, such as
entities from text and objects from images, which
hinders their ability to capture intricate relations
within multimodal data. Third, existing models suf-
fer from a data scarcity issue, especially concerning
images. For instance, the Twitter dataset released
by Boididou et al. (2018) comprises 13,893 sam-
ples but only 514 images. Current models, whether
concatenating textual and visual representations
(e.g., Singhal et al., 2022; Khattar et al., 2019) or
employing co-attention models (e.g., Zheng et al.,
2022; Wu et al., 2021) that focus on aligning textual
and visual modalities, suffer from image scarce-
ness. Therefore, augmenting the visual modality
using the textual modality presents a promising av-
enue to enhance the performance in the context of
scarce visual data.

To address the above challenges, we introduce a
framework, Curriculum Learning and Fine-grained
Fusion-driven multimodal Rumor Detection (CLF-
FRD)1, to automate sample selection and training
by assessing sample difficulty at different training
stages. Moreover, we present a fine-grained fusion
strategy that combines entities from textual content
with objects from images, creating a common se-
mantic space for improved model understanding.

1Code for all experiments in this paper are available
at https://github.com/jxnuzl/CLFFRD
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In addition, we propose a novel data augmenta-
tion method utilizing linear interpolation between
textual and visual modalities to generate diverse da-
ta. Furthermore, our approach incorporates deep
fusion techniques, integrating intra-modality ele-
ments (such as entities from source text and image
objects) and inter-modality elements (e.g., CLIP
and social graph) simultaneously. Extensive exper-
imentation validates the effectiveness of CLFFRD,
demonstrating its superior performance compared
to state-of-the-art methods on benchmark datasets
for rumor detection in social media, encompassing
both English and Chinese content.
This paper offers three major contributions.
(1) We introduce a curriculum learning strategy

that adapts training according to the difficulty of
samples, mirroring the natural progression of hu-
man learning.
(2) Our fine-grained fusion technique enhances

multimodal model performance by merging textual
and visual features, creating a shared semantic
space.
(3) We present a novel data augmentation

method involving linear interpolation between tex-
tual and visual modalities, enabling the generation
of diverse data.

2. Related Work

Single Modality-based Approaches focus on
leveraging specific features extracted from the tex-
tual modality to train a classifier. Notable aspects
explored within these models include: (1) Propaga-
tion Patterns (Wu et al., 2015; Ma et al., 2017; Lao
et al., 2021) have delved into the analysis of prop-
agation patterns. For example, Wu et al. (2015)
observed that rumors often start with posts by nor-
mal users, gain support from opinion leaders, and
are subsequently reposted by a large number of nor-
mal users. The propagation pattern of fake news,
however, differs significantly, with opinion leaders
directly reposting the content, bypassing the initial
stage of normal user posts. (2) User Credibility
(Mukherjee and Weikum, 2015; Yuan et al., 2020;
Li et al., 2019). Mukherjee and Weikum (2015) e-
valuated user credibility based on a combination of
factors, including community engagement metric-
s (such as the number of answers, ratings given,
comments, ratings received, disagreement, and
the number of raters), inter-user agreement, typical
perspective and expertise, and interaction pattern-
s. (3) Writing Styles (Rubin et al., 2015; Potthast
et al., 2018; Przybyla, 2020; Xu et al., 2020) has
adopted various linguistic features, such as charac-
ters’ unigrams, bigrams, and trigrams, stop words,
part of speech distribution, readability values, word
frequency, proportion of quoted text, and external
links, as well as structural characteristics like the

number of paragraphs and the average length of
text.
Multimodal-based Approaches have emerged

as potent tools for rumor detection, capitalizing on
their ability to explore the dynamic interactions be-
tween textual and visual modalities. Dhawan et al.
(2022) introduced a graph attention-based frame-
work to incorporate the interaction between textual
word information and local visual objects from im-
ages. Yuan et al. (2019) presented a graph-based
rumor detection model to combine the encoding
of local semantic and global structural information
simultaneously. Zheng et al. (2022) proposed a
GAT-based model to integrate textual, visual, and
social graphs. Wang et al. (2018) introduced a
GAN-based multimodal fake news detection mod-
el, to adopt the Visual Geometry Group (VGG) to
extract visual features and utilize a Convolutional
Neural Network (CNN) for simultaneous extraction
of textual features. Recently, Xu et al. (2023) pro-
posed a knowledge distillation driven framework to
conduct incomplet modality rumor deteciton. Xu
et al. (2024) presented a hierarchical graph atten-
tion networks based model to model the proposed
text-image graph which can capture the different
semantic interactions of the intra-modality and the
inter-modality simultaneously.

However, existing rumor detection models often
overlook a critical aspect: the assessment of sam-
ple difficulty at various stages of training. While Ma
et al. (2022) considered the difficulty of negative
samples by masking some nodes of propagation
graph perspective, their model needs to discrimi-
native negative samples in advance. In contrast
to their method, we do not differentiate between
negative and positive samples; instead, we intro-
duce a holistic framework to gauge the difficulty of
all samples. This framework considers three es-
sential dimensions: text-level difficulty, image-level
difficulty, and multimodal-level difficulty.

3. Methodology

3.1. Task Formulation

We define P = {p1, p2, ..., pn} as a set of posts.
Each post pi consists of {ti, vi, ui, ci}, where ti in-
dicates a source text, vi denotes an image, ui rep-
resents a user, and ci refers to a comment. We
approach rumor detection as a binary classifica-
tion task, with a goal of learning a function f(pi)→
y, where pi represents the given multi-modal post,
and y represents the label assigned to the post,
where y=1 signifies a rumor and y=0 represents a
non-rumor.



3316

Figure 1: Framework of CLFFRD; R: rumor; N: non-rumor.

3.2. Framework of CLFFRD

Figure 1 illustrates the proposed CLFFRD frame-
work, consisting of five key modules, namely multi-
modal feature extraction, curriculum learning, data
augmentation, fine-grained feature fusion, and the
output layer. Specifically, the multimodal feature ex-
traction module obtains representations from both
intra-modality (entities from the source text and im-
age objects) and inter-modality (CLIP and social
graph). The extracted multimodal features are fed
into a fine-grained feature fusion process, wherein
we employ textual features to enrich image features
through a linear interpolation operation, creating
a synergy between textual and visual information.
In the output layer module, we directly concate-
nate the representations from intra-modality and
inter-modality, and this combined representation
is further processed through a fully connected lay-
er. To optimize our model’s training process, we
employ curriculum learning, involving the selec-
tion of the order of samples based on their per-
ceived difficulty, encompassing text-level, image-
level, and multimodal-level challenges. Curriculum
learning helps us gradually increase the complexity
of the samples during training, aligning with the
natural learning progression observed in human
cognition. Overall, our CLFFRD framework inte-
grates the strengths of curriculum learning and fine-
grained feature fusion to tackle the intricacies of
multimodal rumor detection, enhancing the model’s
accuracy and effectiveness in the face of challeng-
ing rumor detection scenarios.

3.3. Multimodal Feature Extraction
3.3.1. Intra-modality Features

For a given multimodal post pi, we adopt the large-
scale pre-training model CLIP (Radford et al., 2021)
to encode both textual and visual modalities, yield-
ing Ft and Fv, respectively, as per Equations 1 and
2.

F it = CLIP.encode_text() (1)

F iv = CLIP.encode_image() (2)
We obtain the multi-head self-attention feature

of textual modality after using CLIP encoding as
Equation 3.

Zit = (||Hh=1softmax(
QitK

i
t
T

√
d

)F it )W
O
t (3)

where "||" denotes concatation operation. h refers
to the h-th head,WO

t ∈ R(d∗d) indicates the output
of linear transformation, and d refers to the dimen-
sion size of the word embedding.

Similarly, we obtain the multi-head self-attention
feature of visual modality after using CLIP encoding
as Equation 4.

Ziv = (||Hh=1softmax(
QivK

i
v
T

√
d

)F iv)W
O
v (4)

where WO
v ∈ R(d∗d) indicates the output of linear

transformation.
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3.3.2. Inter-modality Social Graph Modeling

We construct a social graphGsocial = (V,E), where
V = {post, comment, user} as node. The edge is
calculated by computing the cosine similarity be-
tween any pair of nodes Vi and Vj . If the value of
cosine similarity as shown in equation 5 is greater
than 0.5, there is an edge, otherwise there is no
edge. If the cosine similarity, as defined in Equation
5, exceeds 0.5, an edge is established; otherwise,
no connection is formed.

EVi,Vj
=

ViVj
‖Vi‖‖Vj‖

(5)

After constructing the social graph, we update
the node features using a Graph Attention Network
(GAT) followed by a mean pooling operation to ob-
tain the feature of social graph as shown in Equa-
tion 6 whereMultiHead(vi, vj) and headh are de-
fined in Equations 7 and 8, respectively.

FSocial = σ(
∑
j∈Nj

MultiHead(vi, vj)) (6)

MultiHead(vi, vj) = Wo||Hh=1(head1, ..., headH)
(7)

where "||" donates concatation operation, and H
indicates the number of heads.

headh = softmax(
Wh
q Vi(W

h
k Vj)

T

√
d

)Wh
v Vj (8)

where d refers to the size of dimension of node.

3.3.3. Curriculum Learning

Curriculum learning, originally proposed by Bengio
et al. (2009), is a training strategy that emulates
human learning proces ses, advocating the notion
of commencing learning with easy samples and
gradually advancing to tackle more complex ones.
This strategy has consistently demonstrated its ef-
ficacy in enhancing the generalization capability
and convergence rate of various models across
diverse domains, including computer vision and
natural language processing.
Curriculum learning aims to enhance rumor de-

bunking through a gradual and adaptive training
process. The methodology is inspired by the ob-
served natural learning progression in human cog-
nition, where individuals tend to start with simpler
concepts before progressing to more complex ones.
Our rationale for incorporating curriculum learning
is rooted in its ability to guide the model through
a curriculum of samples, starting from easier in-
stances and gradually introducing more challeng-
ing ones. This mimics the learning phase observed
in human cognition, where individuals are exposed

to simpler concepts before tackling more intricate
ones. By aligning the training curriculum with this
natural learning progression, we aim to improve
the model’s performance by allowing it to build a
robust understanding of rumors in a step-by-step
manner. Drawing inspiration from the principles of
curriculum learning, we introduce a novel approach
by establishing three distinct scores to gauge the
difficulty of samples across three scenarios: textual
level, image level, and multimodal level.
Textual-level Score: To determine the difficul-

ty of a text within a multimodal post, we employ
Text-Smart Utility to generate syntax trees for all
training samples, subsequently sorting the syntax
tree depth values in ascending order to derive the
difficulty score, Scoretext. This method intuitively
signifies that the deeper the syntactic tree level, the
more complex the sample is.
Image-level Score: For an image within a multi-

modal post, we assess its difficulty by measuring
entropy and sorting the entropy values of each im-
age in ascending order to obtain the difficulty score,
Scoreimage, as defined in Equation 9. In this contex-
t, higher information entropy corresponds to higher
sample difficulty, as greater entropy values indicate
richer, more intricate information content in the im-
age.

Scoreimage =

255∑
i=0

PilogPi (9)

where Pi represents the proportion of pixels with a
grayscale value of i in an image.
Multimodal-level Score: We get

Scoremultimodal by computing the cosine similarity
between textual and visual features obtained
from the large-scale pre-training model CLIP.
Subsequently, we sort these cosine similarity
values in descending order, as illustrated in
Equation 10. Notably, samples with higher cosine
similarity values are deemed to be comparatively
easier to learn.

Scoremultimodal =
FtFv

‖Ft‖‖Fv‖
. (10)

where Ft = CLIP.encode_text(), and Fv =
CLIP.encode_image().
Pacing Function: The pacing function defines

our course scheduling strategy, regulating the pro-
gression of training steps within each stage of the
training phase. To optimize this process, we intro-
duce a novel linear pacing function, as depicted
in Equation 11, which incrementally adds training
samples with each epoch. Additionally, our model
explores logarithmic and exponential pacing func-
tion. Note that our experiments reveal that the linear
pacing function outperforms the other two alterna-
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tives.

g(t) = min(1, λ0 +
1− λ0
Tgrow

t) (11)

where t denotes the specific epoch, Tgrow indicates
the maximum training epoch, and λ0 is a hyper-
parameter to control the initial selected training
samples.

3.3.4. Fine-grained Feature Fusion

Given a multimodal post, we begin by applying
Faster-RCNN (Ren et al., 2017) to extract a set of
potentially significant areas (object) from the as-
sociated image. More specifically, we extract ob-
jects from image, obtaining R = {r1, r2, r3, ..., rk},
where k is total number of objects, ri ∈ RD0 where
D0 is the dimension size of an image, k is set to
36, and D0 is set to 2048.
For the source text within the same multimodal

post, our procedure commences with stop word
filtering and entity extraction, to obtain entity set
Te. We adopt Spacy2 and Text-smart3 to extract
entities for English and Chinese post respectively.
We obtain the Te = {e1, e2, e3, ..., eL} as the repre-
sentation of all entities, where L is total number of
entities. Then, we adopt the BERT to extract textual-
level features, obtaining T ′e = {e′1, e′2, e′3, ..., e′L}, ei
∈ RDe where De is the dimension size of an entity,
and De is set to 768.
To facilitate integration, we employ an MLP to

project both textual (T ′e) and visual (R) features into
a common semantic space, generating T ′′e and R′,
respectively.

Considering the varying attentional relationships
between textual and visual modalities, we calculate
the similarity between textual entity features and im-
age object features to serve as weights, obtaining
new entity features T ′e−i and object features R′i−e
as shown in Equations 12 and 13, respectively.

T ′e−i =

K∑
i=1

αijT
′′
e (12)

R′i−e =

L∑
e=1

αijR
′ (13)

where αij =
exp(λ1 ¯sij

)∑K
i=1 exp(λ1 ¯sij

)
, s̄ij = [sij ] +

/
√∑K

i=1[sij+]2, and si,j =
R′

i
TT ′′

e

‖R′
i‖‖T ′′

e ‖
.

Finally, we obtain the final feature representation
Ffusion = concat(Zit , Z

i
v, T

′
e−i, R

′
i−e, FSocial).

We perform alignment between the modeled fea-
tures of the comments and the self-attention fea-

2https://spacy.io/
3https://ai.tencent.com/ailab/nlp/texsmart/zh/index.html

tures of the text, obtaining Lossdist1 and Lossdist2
as shown in Equations 14 and 15, respectively.

Lossdist1 =
1

n

n∑
i=1

(Zit , FSocial)
2 (14)

Lossdist2 =
1

n

n∑
i=1

(Ziv, FSocial)
2 (15)

3.3.5. Data Augmentation

Taking inspiration from the multimodal data aug-
mentation method MixGen (Hao et al., 2023), we
incorporate linear interpolation to create novel im-
ages and concatenate pairs of texts to generate
fresh text samples, as delineated in Equations 16
and 17. For the newly generated text and image
pairs, we ensure that similarity is maintained after
augmentation. To achieve this, we utilize BERT to
encode the newly generated text, Tnew to generate
T ′new = BERT (Tnew). Simultaneously, we employ
the vision transformer (Dosovitskiy et al., 2021) to
encode the new generated image Inew to generate
I ′new = V IT (Inew). Given that supervised contrast
learning (SCL) (Khosla et al., 2017) effectively pulls
together representations of the same class while
segregating representations from different classes,
we adopt the supervised contrast learning function
to represent the data augmentation loss as Equa-
tion 18. Through this data augmentation, the mod-
el gains the capacity to acquire diverse features,
thereby enriching the dataset.

Tnew = concat(Ti, Tj) (16)

Inew = λIi + (1− λ)Ij (17)

Lossdist3 = − 1

N

N∑
i=1

log
exp(

sim(T ′
new,I

′
new)

τ )∑N
j exp(

sim(T ′
new,I

′
new)

τ )

(18)
where τ indicates a temperature parameter to con-
trol different categories.

3.3.6. Output Layer

The total loss for the rumor detection is shown in
Equation 19.

Losstotal = α ∗ lossCE + β ∗ (Lossdist1 + Lossdist2)

+γ ∗ Lossdist3
(19)

where CE denotes cross entropy, LossCE =
ylog(ȳ) + (1 − ȳ)log(1 − y), and ȳ =
softmax(MLP (Ffusion)).
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4. Experimentation

4.1. Dataset
We adopt two benchmark datasets: the English
dataset Pheme (Yu et al., 2017) and the Chinese
dataset Weibo (Song et al., 2019). Statistics of the
datasets are presented in Table 1.

Table 1: Statistics of datasets.
Pheme Weibo

#Non-rumor 1,428 877
#Rumor 590 590
#Images 2,018 1,467
#Users 894 985
#Comments 7,388 4,534

4.2. Experimental Settings
Parameter Settings: The batch size is set to 64,
the value of epoch is set to 64, the learning rate
is set to 0.001, the optimizer is ADMA, the image
size is 224*224, the patch size is set to 32, the
channel size is set to 3, the total number of patches
is set to 49, the size of feature dimension is set to
1024, τ in supervised contrastives learning is set
to 0.05, λ1 in equation 13 is set to 0.9, the feature
extracted by using Faster-RCNN is set to 2048, and
λ in equation 10 is set to 0.5. We adopt pytorch
1.10 to write our source code and execute them on
a server with RTX-3090 GPU with 24 GB memory.
We set the total number of head is 8. Tgrow is set to
64, and λ0 is set to 0.3. We adopt Adam (Kingma
and Ba, 2014) to optimize our loss function.
Evaluation Metric: We employ four widely-

recognized evaluation metrics: accuracy, precision,
recall, and F1-Score, to assess the performance
of our proposed framework and other comparative
approaches.

4.3. Baselines
To assess the performance of CLFFRD, we conduct
comparative studies against eight baseline models.
We maintain consistent training, validation, and
testing splits with these baseline systems, enabling
direct comparisons of results.
EANN (Wang et al., 2018): The EANN mod-

el extracted features from text through CNN, and
obtained features from images using VGG, and
learned the common features between different
news to obtain the invariance of events.
MVAE (Khattar et al., 2019): A multi-modal vari-

ational self encoder based model is adopted in
MVAE to learn the shared representation of text
and image modes.
QSAN (Tian et al., 2020): A quantum-probability

based rumor detection model is proposed jointly

consider the importance and stance of comments
under a unified framework.
SAFE (Zhou et al., 2020): A similarity-aware mul-

timodal model that debunks fake news from the
similarity between multimodal and cross-modal fea-
tures jointly.
EBGCN (Wei et al., 2021): An edge-enhanced

bayesian graph convolutional networks-based mod-
el that investigates the reliability of potential rela-
tionships in propagation structures.
GLAN (Yuan et al., 2019): An integration of local

semantic and global structural information-based
model that debunks rumor.
MFAN (Zheng et al., 2022): A feature-enhanced

attention networks-based multimodal model that
combines textual, visual, and social graphs to en-
hances graph topology and neighborhood aggre-
gation processes when detecting rumor.
ChatGPT4: A popular application showcasing

the capabilities of the GPT language model is our
baseline model. Since ChatGPT cannot receive
image modality, we adopt the source text and the
first comment as the input of ChatGPT, along with
a question "judge it a rumor or not" to obtain the
response, and map the results to labels (i.e.g, "yes"
to rumor, and "no" to non-rumor).

4.4. Results
Model Comparison: Table 2 presents the aver-
age performance and standard deviation obtained
from five executions on both the English Pheme
and Chinese Weibo datasets. The results demon-
strate the superiority of CLFFRD across key per-
formance metrics, including accuracy, precision,
recall, and F1-Score. This highlights the signifi-
cance of curriculum learning, data augmentation,
and fine-grained feature fusion in our approach.
While ChatGPT has proven effective in various NLP
tasks, its performance in rumor detection is not sat-
isfactory. The insights drawn from Table 2 are as
follows:

(1) Among the four multi-modal baselines (EAN-
N, MVAE, QSAN, and SAFE), SAFE achieves the
highest performance in all four measures. Howev-
er, QSAN demonstrates the poorest performance
across all metrics, on the Weibo dataset, which
highlights the ineffectiveness of the superficial com-
bination of textual and visual modalities in QSAN.
In contrast, the EANN model, enriched by the inclu-
sion of event information, exhibits a positive impact
on rumor debunking. Notably, SAFE successful-
ly incorporates a deep interaction between textual
and visual modalities, resulting in superior perfor-
mance.
(2) Among the three social graph-based base-

lines (EBGCN, GLAN, and MFAN), they consis-

4https://openai.com/blog/chatgpt
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tently outperform the simpler EAN-N and MVAE
models. Both EBGCN and GLAN achieve compa-
rable performance as they incorporate structural
information. However, MFAN, which combines tex-
tual, visual, and social graph-based information,
outperforms the others in all metrics.
Ablation Study of Modules: Table 3 presents

the performance of ablation analysis of modules,
where we examine the impact of various compo-
nents by considering five cases:

• w/o CLIP: We exclude the use of CLIP.

• w/o Fine-grained feature fusion: We omit
the utilization of the fine-grained feature fusion.

• w/o Data augmentation: We disregard the
inclusion of data augmentation.

• w/o Curriculum learning: We eliminate the
application of curriculum learning, and feed
the sample randomly into the proposed model.

• w/o Social graph modeling: We do not em-
ploy social graph module in the proposed mod-
el.

Based on the findings in Table 3, several con-
clusions can be drawn. 1) Curriculum learning
plays a crucial role in rumor detection. The per-
formance significantly deteriorates when this pro-
cess is excluded, underscoring the importance of
the sample order related to its difficulty at different
training stages. 2) Data augmentation contributes
to debunking rumors, as evidenced by their ab-
sence leading to a decline in performance. 3) Fine-
grained feature fusion enhances the model’s ability
to distinguish between positive and negative sam-
ples in the corpora, which positively impacts the
performance of the model. 4) The CLIP modeling
is also important for multimodal rumor detection,
which can create a hidden semantic space for tex-
tual and visual modalities. 5) The social graph also
helps to debunk rumor, as user comments serve as
valuable indicators for conducting effective rumor
detection.
Ablation Study of Sample Difficulty: Table 4

presents the performance of ablation analysis of
sample difficulty. Generally, the performance of
multimodal-level sample difficulty performs better
than textual-level and image-level difficulties, indi-
cating the importance of the fusion between textual
and visual modalities. Basically, these three sam-
ple difficulties have complementarity. We obtain
promising performance improvement when com-
bining these three sample difficulties all together.
In current work, we just add up the different scores
to fuse these different sample difficulties directly.
Similarity Threshold Value Setting for Social

Graph Construction: Table 5 lists the perfor-
mance of threshold value selection for social graph

Table 5: Accuracy of similarity threshold value set-
ting for social graph construction.

Cosine similarity value Pheme Weibo
0.1 89.64 91.82
0.2 89.93 91.88
0.3 90.05 91.95
0.4 90.08 92.06
0.5 90.16 92.20
0.6 90.09 92.15
0.7 90.01 92.18
0.8 89.95 92.01
0.9 89.69 91.89
1.0 89.43 91.57

Figure 2: T-SNE visualization on Pheme.

construction on Pheme and Weibo. The findings
from Table 5 indicate that our model consistent-
ly achieves stable performance when the cosine
similarity threshold is set to 0.5.
Visualization Studies: Figures 2 and 3 dis-

play the T-SNE visualizations of the test data from
Pheme and Weibo, respectively. The visualizations
clearly depict the successful classification of most
samples into distinct groups, demonstrating the ef-
fectiveness and strong representation capability of
our proposed model.

Figures 4 shows attention visualizations for sam-

Figure 3: T-SNE visualization on Weibo.



3321

Table 2: Performance comparison of rumor detection models on Weibo and Pheme.
Pheme Weibo

Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score
EANN 77.13±0.96 71.39±1.07 70.07±2.19 70.44±1.69 80.96±2.26 80.19±2.37 79.68±2.46 79.87±2.40
MVAE 77.62±0.64 73.49±0.81 72.25±0.90 72.77±0.81 71.67±0.89 70.52±0.95 70.21±1.01 70.34±0.98
QSAN 75.13±1.19 69.97±2.03 65.80±1.72 66.87±1.70 71.01±1.81 71.02±0.95 67.54±3.27 67.58±3.59
SAFE 81.49±0.84 79.88±1.22 79.50±0.81 79.68±0.70 84.95±0.85 84.98±0.82 84.95±0.91 84.96±0.86
EBGCN 82.99±0.65 81.13±0.73 79.29±0.71 79.82±0.64 83.14±2.01 85.46±2.12 81.76±1.54 81.45±1.74
GLAN 83.32±1.64 81.25±2.06 77.13±3.26 78.51±2.68 82.44±2.02 82.45±2.26 80.86±1.71 81.26±1.93
MFAN 88.73±0.83 87.07±1.41 85.51±1.65 86.16±1.04 88.95±1.43 88.91±1.60 88.13±1.68 88.33±1.53
ChatGPT 34.29±0 24.26±0 26.94±0 25.53±0 29.83±0 28.27±0 28.95±0 28.52±0
CLFFRD 89.95±0.73 88.26±0.86 87.57±0.74 88.13±0.77 91.26±1.24 90.23±1.29 89.70±1.24 89.82±1.28

Table 3: Ablation study of modules.
Pheme Weibo

Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score
CLFFRD 90.16 89.06 88.22 88.84 92.20 91.47 90.73 91.03
w/o Curriculum learning 88.48 88.45 88.56 88.47 90.92 91.06 90.54 90.91
w/o Data augmentation 89.15 88.24 88.15 88.22 91.18 90.60 90.24 90.48
w/o Fine-grained feature fusion 87.79 87.19 88.23 87.53 89.47 87.73 88.53 88.05
w/o CLIP 88.57 87.88 87.13 87.59 90.50 89.85 90.51 90.14
w/o Social graph modeling 88.10 87.68 87.83 87.75 90.62 89.93 90.25 89.98

ples labeled as "non-rumor" and "rumor" within the
two datasets, respectively, which provides insights
into the intricate interaction between textual and vi-
sual information, shedding light on how enhanced
features contribute to rumor debunking. In Figure
4a, the words "police officers" and "car" highlighted
in red demonstrate high attention weights and align
well with specific regions in the corresponding im-
age. However, the important word "danger" fails to
align with any image regions, indicating poor align-
ment and predicting the sample as a rumor correct-
ly. In contrast, in Figure 4b, the words "company",
"fainted", "everyone", and "emergency assistance"
can be successfully aligned with specific regions in
the image. This accurate alignment contributes to
the prediction of the sample as a non-rumor. These
observations highlight the deep semantic interac-
tion between the textual and visual modalities within
our proposed model.

5. Conclusion

This paper presents a novel rumor detection frame-
work that harnesses the synergistic power of cur-
riculum learning and data augmentation. By incor-
porating curriculum learning, our framework intelli-
gently orders training samples based on their dif-
ferent difficulties, encompassing text-level, image-
level, and multimodal-level intricacies at distinct
stages of training. Furthermore, our simple yet ef-
fective data augmentation method, relying on linear
interpolation between textual and visual modalities,
adeptly addresses the challenge of data scarce-
ness in rumor detection. Our future endeavors will
focus on the integration of user credibility into our
framework for further improvement.
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Table 4: Ablation study of sample difficulty.
Pheme Weibo

Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score
Textual-level 88.65 88.47 88.36 88.40 89.98 89.13 88.56 89.07
Image-level 88.57 88.46 87.77 88.77 90.05 89.95 89.26 89.87
Multimodal-level 89.75 89.26 88.60 89.42 91.15 90.23 89.70 90.16
Textual-level
& Image-level 89.27 88.18 88.72 88.63 90.74 90.30 89.83 89.97
Textual-level
& Multimodal-level 90.02 89.01 88.26 88.61 91.32 90.44 90.69 90.52
Image-level
& Multimodal-level 89.83 88.75 88.61 88.68 91.56 91.12 90.25 90.88
Textual-level
& Image-level
& Multimodal-level 90.16 89.06 88.22 88.84 92.20 91.47 90.73 91.03

(a) Attention visualization on Pheme (b) Attention visualization on Weibo

Figure 4: Attention visualization.

References

Yoshua Bengio, Jérôme Louradour, Ronan Col-
lobert, and Jason Weston. 2009. Curriculum
learning. In Proceedings of the 26th annual inter-
national conference on machine learning (ICM-
L’09). Montreal, Quebec.

Christina Boididou, Symeon Papadopoulos,
Markos Zampoglou, Lazaros Apostolidis, Olga
Papadopoulou, and Yiannis Kompatsiaris. 2018.
Detection and visualization of misleading content
on twitter. International Journal of Multimedia
Information Retrieval, (1):71–86.

Mudit Dhawan, Shakshi Sharma, Aditya Kadam,
Rajesh Sharma, and Ponnurangam Kumaraguru.
2022. Game-on: graph attention network based
multimodal fusion for fake news detection. arXiv
preprint arXiv 2202.12478v2.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani,
Matthias Minderer, Georg Heigold, Sylvain Gelly,
Jakob Uszkoreit, and Neil Houlsby. 2021. An

image is worth 16x16 words: transformers
for image recognition at scale. arXiv preprint
arXiv:2010.11929v2.

Xiaoshuai Hao, Yi Zhu, Srikar Appalaraju, Aston
Zhang, Wanqian Zhang, Bo Li, and Mu Li. 2023.
Mixgen: a new multi-modal data augmentation.
arXiv preprint arXiv:2206.08358v3.

Dhruv Khattar, Jaipal Singh Goud, Manish Gup-
ta, and Vasudeva Varma. 2019. Mvae: multi-
modal variational autoencoder for fake news de-
tection. In Proceedings of the International World
WideWebConferences (WWW’19), pages 2915–
2921. San Francisco, USA.

Prannay Khosla, Piotr Teterwak, Chen Wang,
Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron
Maschinot, Ce Liu, and Dilip Krishnan. 2017. Su-
pervised contrastive learning. In Proceedings of
the 34th International Conference on Neural In-
formation Processing Systems (NIPS’17), pages
5998–6008. Online.

Diederik P. Kingma and Jimmy Ba. 2014. Adam: a
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.



3323

An Lao, Chongyang Shi, and Yayi Yang. 2021. Ru-
mor detection with field of linear and non-linear
propagation. In Proceedings of the Web Confer-
ence (WWW’21), pages 3178–3187. Ljubljana,
Slovenia.

Quanzhi Li, Qiong Zhang, and Luo Si. 2019. Rumor
detection by exploiting user credibility informa-
tion, attention and multi-task learning. pages
1173–1179. Florence, Italy.

Jiachen Ma, Yong Liu, Meng Liu, and Meng Han.
2022. Curriculum contrastive learning for fake
news detection. In Proceedings of the 31th
ACM International Conference on Information
and Knowledge Management (CIKM’22), pages
4309–4313. Atlanta, USA.

Jing Ma, Wei Gao, and Kam-Fai Wong. 2017. De-
tect rumors in microblog posts using propagation
structure via kernel learning. In Proceedings of
the Annual Meeting of the Association for Com-
putational Linguistics (ACL’17), pages 708–717.
Vancouver, Canada.

Subhabrata Mukherjee and GerhardWeikum. 2015.
Leveraging joint interactions for credibility anal-
ysis in news communities. In Proceedings of
the ACM International Conference on InfomIation
and KnowIedge Management (CIKM’15), pages
353–362. Melbourne, Australia.

Martin Potthast, Johannes Kiesel, Kevin Reinartz,
Janek Bevendorff, and Benno Stein. 2018. A
stylometric inquiry into hyperpartisan and fake
news. In Proceedings of the 56th Annual Meeting
of the Association for Computational Linguistics
(ACL’18), pages 231–240. Melbourne, Australia.

Piotr Przybyla. 2020. Capturing the style of fake
news. In Proceedings of the thirty-fourth AAAI
Conference on Artificial Intelligence (AAAI’20),
pages 490–497. New York, USA.

Alec Radford, Jong Wook Kim, Chris Hallacy, A-
ditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin,
Jack Clark, Gretchen Krueger, and Ilya Sutskever.
2021. Learning transferable visual models from
natural language supervision. In Proceedings
of the 38th International Conference on Machine
Learning (ICML’21). Online.

Shaoqing Ren, Kaiming He, Ross Girshick, and
Jian Sun. 2017. Faster r-cnn: towards real-time
object detection with region proposal network-
s. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 39(6):1137–1149.

Victoria Rubin, Niall Conroy, and Yimin Chen. 2015.
Towards news verification: deception detection
methods for news discourse. In Proceedings

of the Hawaii International Conference on Sys-
tem Sciences (HICSS48) Symposium on Rapid
Screening Technologies, Deception Detection
and Credibility Assessment Symposium, pages
1–11. Hawaii, USA.

Shivangi Singhal, Tanisha Pandey, Saksham Mrig,
Rajiv Ratn Shah, and Ponnurangam Kumaragu-
ru. 2022. Leveraging intra and inter modality re-
lationship for multimodal fake news detection. In
Proceedings of the Web Conference (WWW’22),
pages 726–734. Online.

Changhe Song, Cheng Yang, Huimin Chen, Cun-
chao Tu, Zhiyuan Liu, and Maosong Sun. 2019.
Ced: credible early detection of social media
rumors. IEEE Transactions on Knowledge and
Data Engineering, 33(8):3035–3047.

Tian Tian, Yudong Liu, Xiaoyu Yang, Yuefei Lyu,
Xi Zhang, and Binxing Fang. 2020. Qsan: a
quantum-probability based signed attention net-
work for explainable false information detection.
In Proceedings of the 29th ACM International
Conference on Information and Knowledge Man-
agement (CIKM’20), pages 1445–1454. Online.

Yaqing Wang, Fenglong Ma, Zhiwei Jin, Ye Yuan,
Guangxu Xun, Kishlay Jha, Lu Su, and Jing Gao.
2018. Eann: event adversarial neural networks
for multi-modal fake news detection. In Proceed-
ings of the 24th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining (KDD’18),
pages 849–857. London, UK.

Lingwei Wei, Dou Hu, Wei Zhou, Zhaojuan Yue,
and Songlin Hu. 2021. Towards propagation un-
certainty: edge-enhanced bayesian graph con-
volutional networks for rumor detection. arXiv
preprint arXiv:2107.11934.

Ke Wu, Song Yang, and Kenny Q. Zhu. 2015.
False rumors detection on sina weibo by prop-
agation structures. In Proceedings of the IEEE
International Conference on Data Engineering
(ICDE’15), pages 651–662. Seoul, Korea.

Yang Wu, Pengwei Zhan, Yunjian Zhang, Lim-
ing Wang, and Zhen Xu. 2021. Multimodal fu-
sion with co-attention networks for fake news
detection. In Proceedings of the Findings of the
Association for Computational Linguistics (ACL-
IJCNLP’21), pages 2560–2569. Online.

Fan Xu, Pinyun Fu, Qi Huang, Bowei Zou, AiTi
Aw, and Wang Mingwen. 2023. Leveraging con-
trastive learning and knowledge distillation for
incomplete modality rumor detection. In Findings
of the Association for Computational Linguistics:
EMNLP, pages 13492–13503. Singapore.



3324

Fan Xu, S. Sheng Victor, and MingwenWang. 2020.
Near real-time topic-driven rumor detection in
source microblogs. Knowledge-Based Systems,
207(106391):1–9.

Fan Xu, S. Sheng Victor, and MingwenWang. 2021.
A unified perspective for disinformation detection
and truth discovery in social sensing: a survey.
ACM Computing Surveys, 55(1):1–33.

Fan Xu, Lei Zeng, Qi Huang, Keyu Yan, Mingwen
Wang, and S. Sheng Victor. 2024. Hierarchi-
cal graph attention networks for multi-modal ru-
mor detection on social media. Neurocomputing,
569(127112):1–11.

Feng Yu, Qiang Liu, Shu Wu, Liang Wang, and
Tieniu Tan. 2017. A convolutional approach for
misinformation identification. In Proceedings of
the 26th International Joint Conference on Arti-
ficial Intelligence (IJCAI’17), pages 3901–3907.
Melbourne, Australia.

Chunyuan Yuan, Qianwen Ma, Wei Zhou, Jizhong
Han, and Songlin Hu. 2019. Jointly embedding
the local and global relations of heterogeneous
graph for rumor detection. In Proceedings of
the 19th IEEE International Conference on Da-
ta Mining (ICDM’19), pages 796–805. Beijing,
China.

Chunyuan Yuan, Qianwen Ma, Wei Zhou, Jizhong
Han, and Songlin Hu. 2020. Early detection of
fake news by utilizing the credibility of news, pub-
lishers, and users based on weakly supervised
learning. In Proceedings of the 28th International
Conference on Computational Linguistics (COL-
ING’20), pages 5444–5454. Online.

Jiaqi Zheng, Xi Zhang, Sanchuan Guo, Quan
Wang, Wenyu Zang, and Yongdong Zhang. 2022.
Mfan: multi-modal feature-enhanced attention
networks for rumor detection. In Proceedings of
the 31st International Joint Conference on Arti-
ficial Intelligence (IJCAI’22), pages 2413–2419.
Messe Wien, Vienna, Austria.

Xinyi Zhou, Jindi Wu, and Reza Zafarani. 2020.
Safe: similarity-aware multi-modal fake news
dectection. arXiv preprint arXiv:2003.04981.


	Introduction
	Related Work
	Methodology
	Task Formulation
	Framework of CLFFRD
	Multimodal Feature Extraction
	Intra-modality Features
	Inter-modality Social Graph Modeling
	Curriculum Learning
	Fine-grained Feature Fusion
	Data Augmentation
	Output Layer


	Experimentation
	Dataset
	Experimental Settings
	Baselines
	Results

	Conclusion

