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Abstract
While pre-trained language models (LM) for code have achieved great success in code completion, they
generate code conditioned only on the contents within the file, i.e., in-file context, but ignore the rich semantics
in other files within the same project, i.e., project-level cross-file context, a critical source of information that is
especially useful in modern modular software development. Such overlooking constrains code LMs’ capacity in
code completion, leading to unexpected behaviors such as generating hallucinated class member functions or
function calls with unexpected arguments. In this work, we propose CoCoMIC, a novel framework that jointly
learns the in-file and cross-file context on top of code LMs. To empower CoCoMIC, we develop CCFinder, a
static-analysis-based tool that locates and retrieves the most relevant project-level cross-file context for code
completion. CoCoMIC successfully improves the existing code LM with a 33.94% relative increase in exact match
and 28.69% in identifier matching for code completion when the cross-file context is provided. Finally, we perform a
series of ablation studies and share valuable insights for future research on integrating cross-file context into code LMs.

Keywords: Code Completion, Code Generation, Repository-level Code Completion

1. Introduction

In recent years, language models for source code
like Codex (Chen et al., 2021) and CodeGen (Ni-
jkamp et al., 2023) have shown promising perfor-
mance in code completion tasks and have great
potential to improve developer productivity (Barke
et al., 2023). These code LMs are typically trained
with causal language modeling loss and complete
the code conditioning on the previous code tokens
in the same file, which we refer to as in-file context.

Modular programming (Parnas, 1972; Parnas
et al., 1985; Sullivan et al., 2001) is a software
design strategy that divides the complex software
functionality into several independent, interchange-
able components (e.g., files, classes, and func-
tions), such that each component implements only
one aspect of the desired functionality and conse-
quently becomes easily reusable and testable. It
has already been a well-adapted paradigm in mod-
ern software development and maintenance. De-
veloping under the modular programming paradigm
requires knowledge from the current file and the
whole project, to which we refer as cross-file con-
text. As shown in Figure 1, the cross-file context is
critical for code completion: the CodeGen Python
model (Nijkamp et al., 2023) with 2 billion parame-
ters fails to generate the correct code since it only
considers in-file context and lacks visibility to var-
ious crucial references for code completion, e.g.,
member functions of imported classes and argu-

Figure 1: CodeGen-2B-mono fails to complete a
Python program correctly as in-file context does not
provide sufficient information. The model needs
to know that TagHandler takes an argument
raw_tags, which could be obtained through the
function list_tags of git. Generating the cor-
rect code requires the presence of class and func-
tion definitions as part of the context, which cannot
be derived from the current file alone.

ments of imported functions.
In this work, we argue that code LMs should gen-

erate code conditioned jointly on in-file context and
cross-file context. However, there are challenges in
developing such models. First, the project defines
its individual and complex hierarchy and could be
of varied sizes. Thus, given a piece of code, it is
critical yet challenging to efficiently identify the most
relevant and useful cross-file context. Second, we
must carefully design a framework for aggregating
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the information from the in-file and cross-file context.
Naïvely concatenating code from in-file and cross-
file context is not feasible for two reasons. First,
they represent distinct types of contextual informa-
tion, as the former presents the local dependencies
and human intentions (e.g., code comments) for
code completion, while the latter compensates for
the project-level dependencies that do not exist in
the surrounding lines. Thus, the model should not
always treat them equally. Second, the model’s in-
put length is limited, so concatenating all contexts
as input will exceed its context length.

Besides, unlike third-party packages, which are
mostly available in the pre-training dataset of code
LMs, the project-level context is likely to be private
to the model, given its under-development nature.
As illustrated in Figure 1, code LMs demonstrate
diminished performance and hallucination when
code completion necessitates cross-file dependen-
cies from the ongoing private project.

To address the aforementioned challenges, we
propose CoCoMIC, a novel framework that jointly
learns in-file and cross-file context to improve code
completion. To automatically retrieve the most rel-
evant cross-file context, we further build a static-
analysis-based cross-file context finder, CCFinder,
that effectively fulfills this task.
Cross-file Context Finder We design and im-
plement CCFinder, a static code analysis tool, to
retrieve the most relevant cross-file context for code
completion. CCFinder parses the project hierarchy
and code components to extract project informa-
tion. CCFinder further builds a project context
graph to represent the details of each component
(i.e., entity) and the interactions among them (i.e.,
relation). When an incomplete program requests
completion, the tool will first analyze its import
statements and pinpoint the related entities from
the built context graph. Then, the tool will retrieve
the neighbors of the pinpointed entities from the
graph as the cross-file context of the current file.
Jointly Modeling In-file and Cross-file Context
We propose CoCoMIC, a novel framework built on
top of existing code LMs with joint attention to in-file
and retrieved cross-file context. We realize this in
two steps: First, the model will compress cross-
file context and build its representations. Second,
when generating code completion, the model will
attend to both the compressed cross-file context
and the concrete in-file context.

We evaluate the effectiveness of CCFinder and
CoCoMIC on a code completion dataset we built
from the Python Package Index (PyPI), a repos-
itory of open-source Python projects. We show
that CCFinder can retrieve 27.07% more relevant
context for code completion than in-file context. By
integrating the retrieved context from CCFinder,
CoCoMIC improves the backbone pre-trained code

LM, CodeGen (Nijkamp et al., 2023), by 33.94%
in exact match and 28.69% identifier matches rela-
tively. Our main contributions are as follows.

1. Our work sheds light on the importance of
project-level cross-file context, a critical yet
overlooked resource in the era of language
models for code completion.

2. We present CoCoMIC, a novel framework built
on top of code LMs that jointly learns in-file
and cross-file context to enhance code comple-
tion (§4). To empower CoCoMIC, we develop
CCFinder, an effective static-analysis-based
tool that collects the most relevant cross-file
context to be integrated into CoCoMIC (§3).1

3. We show that CoCoMIC with cross-file con-
text from CCFinder significantly outperforms
fine-tuned baselines by up to +33.94% in ex-
act match. We additionally conduct extensive
ablation studies to show the contribution of
different components (§5 & 6).

2. Preliminaries
For the convenience of discussion, we define con-
cepts that will be used throughout the paper.
Project Entities Project entities are code com-
ponents that constitute the skeleton of software
projects; developers frequently import and reuse
these entities as cross-file context. We focus on
four types of entities: file, function, class, and global
variable. In particular, file contains the file name
and file docstring; class contains the class signa-
ture, docstring, and attributes; function contains
function signature, docstring, and body; global vari-
able contains the variable name and its value.
Entity Relations Entity relations represent the
interactions among project entities. We consider
two categories of relations: intra-file and inter-file.
Intra-file relations describe the in-file code hierar-
chies pre-defined by the programming language
grammar. For example, a class is at the first level of
the hierarchy while its member functions are at the
second level. Inter-file relations define the file-to-
file dependencies. Under each category, we further
define several types of relations.
Locale We define locale as the entity’s relative
code location within the software project. For
example, the locale of class entities is defined
as file_name.class_name. The locale is as-
signed a unique name according to the specific
location of a project entity, so we maintain the one-
to-one mapping between each entity and its locale.
The locale benefits CoCoMIC in two ways: (1)
when we construct cross-file context, the locale
efficiently maps the relative path of a code snippet
to its project entity CCFinder builds (§3.2), and (2)

1We will release our code at https://github.
com/amazon-science/cocomic

https://github.com/amazon-science/cocomic
https://github.com/amazon-science/cocomic
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Figure 2: Overview of CCFinder. First, CCFinder builds the project context graph, including the bird’s-eye
view of the whole project and the code details of each module. Then, given the incomplete program,
CCFinder retrieves a set of the most relevant project entities as cross-file context from the graph.

it indicates hierarchical relations among project en-
tities and helps model with code completion (§6.4).
In-file & Cross-file Context For an incomplete
source file S, we define two types of context: in-file
and cross-file. In-file context represents code snip-
pets included in the current file, i.e., code tokens
before the predicting position. Cross-file context
C represents the relevant code information (e.g.,
classes, functions) from the same project that is
out of but imported by the current file. Concretely,
cross-file context refers to a collection of relevant
project entities that might assist with the missing
code prediction but are not in S.

3. Cross-file Context Finder
Software projects typically have complex structures
(Parnas et al., 1985) representing the dependen-
cies among distinct code components. To retrieve
the most relevant cross-file context as the code
LM’s additional reference, we need a tool with three
main characteristics. First, it should be able to nav-
igate the project structure to identify the file and
module dependencies. Second, it can zoom into
the dependencies and extract detailed code com-
ponents. Third, given a code sample, the process
of cross-file context retrieval should be stable and
automated for large-scale training and inference.
Unfortunately, a single off-the-shelf tool could not
meet all three requirements. For example, module
dependency analysis tools2,3 can only provide the
module interactions while missing the hierarchical
details inside each module and cannot directly out-
put the concrete code. Therefore, we develop a
new static-analysis-based tool, CCFinder, to auto-
matically collect the most relevant cross-file context
that will be integrated into code LMs (§4).

2https://github.com/google/importlab
3https://github.com/thebjorn/pydeps

CCFinder’s overall workflow is shown in Fig-
ure 2. It has two main steps: (1) Analyze the pro-
gram dependencies to build a bird’s-eye view of
the whole project and parse the source code to
extract code details of each module. With these,
CCFinder builds the project context graph: graph
nodes represent code components that constitute
the project’s backbone, and edges indicate the rela-
tions among components. (2) Given an incomplete
program, the tool retrieves the most relevant cross-
file context from the built graph. In this work, we
focus on Python as the proof-of-concept to show-
case our main arguments. However, CCFinder’s
conceptual design is extensible to other languages.

3.1. Project Context Graph

CCFinder parses the project structure and corre-
sponding source files to identify the project entities
and entity relations. Then, CCFinder uses enti-
ties and entity relations to build graph nodes and
directed edges, respectively. The context graph is
built top-down. First, we create a root node for the
project and connect it with all file nodes. Second,
each file node will build its own sub-graph, wrapping
code components within the file, and also build con-
nections with other files that it depends on, i.e., it
imports code from these files. Third, nodes will link
to others within the file-level sub-graph based on
the dependencies or scope. For example, a class
node will have edges to its member functions.

Formally, CCFinder builds the multi-relational,
directed context graph G = (V, E) for the project,
where V is the set of nodes representing code com-
ponents, and E is the set of edges that indicate the
interactions among code components.

https://github.com/google/importlab
https://github.com/thebjorn/pydeps
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3.2. Cross-file Context Retrieval
In the project context graph, the closer a graph
neighbor is to a specific code snippet (i.e., entity),
the more relevant that neighbor is. For example,
the detailed information of an imported file entity,
such as its defined functions or classes, should be
only 1 or 2 hops away. Therefore, we first analyze
the import statements of an incomplete program
to pinpoint entities related to its cross-file depen-
dencies. Then we retrieve their neighbors within 2
hops using the depth-first graph search. We justify
that 2-hop neighbors include comprehensive con-
text for code completion in Section 6.5. The set of
retrieved nodes is used as cross-file context, which
will maintain their relative order according to the
original source file.

4. The CoCoMIC Framework
Figure 3 presents the high-level overview of the
CoCoMIC framework. CoCoMIC uses an autore-
gressive LM to encode 1) in-file code snippet and
2) retrieved cross-file context, then predicts the
next code token conditioning on both. CoCoMIC is
model-agnostic and we use CodeGen, one of the
most popular code LMs, to demonstrate later (§5).

4.1. Input Representation
As shown in Figure 3, the model input includes
two parts: source code sample S and its cross-file
context C. Specifically, the source code sample S
consists of a sequence of tokens x1, ..., xT , where
xt is a code token and T is the length of S; the
cross-file context, as introduced in §3, is a list of
entities, C = (c1, ..., cn), retrieved from the project
context graph. Each entity, ci, is a short piece
of code sequence describing the details of that
entity, i.e., ci = (localei, w

1
i , ..., w

m
i ,[SUM]), where

wj
i is a code token within the entity, localei is the

locale (§2) of ci, and [SUM] is a special token.
Representing Entity Relations with Locales As
introduced in §2, each project entity is paired with
a locale that indicates its hierarchical relationship.
We explore the benefits of prepending locales to
provide entities with such relational hints (§6.4).
Specifically, for each cross-file entity, we prepend
its locale to its code text as a comment, followed
by a new line character: for the example in Fig-
ure 3, the retrieved entity def list_tags() will
be prepended with #git.list_tags\n.
Better Entity Representation with [SUM] We
append a special token [SUM] to entity descrip-
tions. We expect [SUM] token to learn the summa-
rization of the entity since the causal attention (Rad-
ford et al., 2019; Brown et al., 2020) allows it to at-
tend to all the previous tokens describing the entity.
When completing code, the model will attend to

the representations of the [SUM] tokens for each
cross-file entity. We compare it with mean pooling
in §6.3 and show that [SUM] works better.

4.2. Encoding Cross-file Context
The computational cost of Transformers increases
exponentially w.r.t. the input length, so it is impracti-
cal to prepend all the retrieved entities as plain text,
as they typically contain thousands of tokens. Also,
only a few keywords in an entity (e.g., identifiers)
play an important role in assisting code comple-
tion. Thus, CoCoMIC encodes each entity into a
single token to balance the space limitation and the
information needed.
hci = fθ(ci) ∈ Rdh ;HC = (hc1 , ..., hcn) ∈ Rn×dh

Specifically, for each entity ci, the model fθ will
encode its code sequence into one representation
hci ∈ Rdh , where dh is the hidden dimension. Then,
CoCoMIC takes the hidden state of the last token,
[SUM], as the entity representation. Finally, the
model will output a list of entity embeddings, HC,
representing the retrieved cross-file context.

4.3. In-file and Cross-file Context
After getting representations of cross-file context,
CoCoMIC continues to encode the in-file context
and train the model to learn both contexts jointly.
In-file Context CoCoMIC utilizes the causal lan-
guage model setting to support the code comple-
tion task, where each token will consider its for-
mer texts as in-file context. Specifically, the in-file
context of source code S, at time step t, will be
st = (x1, ..., xt−1). We pass these tokens through
the model and get the embeddings of each token to
construct the representation of the in-file context.

HS(t) = fθ(st) = fθ(x1, ..., xt−1) ∈ R(t−1)×dh

Joint attention to In-file and Cross-file Context
Different layers of a Transformer model have been
shown to capture different language components
(e.g., lower layers learn language syntax or gram-
mar while upper layers capture language semantics
(Jawahar et al., 2019)). We hypothesize that both
in-file and cross-file contexts contribute to forming
the understanding of language components. There-
fore, we fuse the in-file and cross-file context at
each Transformer layer so that generating the next
token’s hidden state will always depend on both
contexts. At each time step t, for the l-th layer, we
first compute the keys and values for cross-file and
in-file context, using their (l − 1)-th hidden states.

KC = H
[l−1]
C WK , VC = H

[l−1]
C WV

KS(t) = HS(t)
[l−1]WK , VS(t) = HS(t)

[l−1]WV

Then, we concatenate the keys and values from
both contexts so that, at time step t, the generating
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Figure 3: The CoCoMIC framework. Bottom: Given incomplete code, CoCoMIC leverages CCFinder to
identify the corresponding entities in the project context graph (§3.1) and retrieve their k-hop neighbors
as cross-file entities (§3.2). Up: CoCoMIC first generates representations for cross-file entities using
the appended [SUM] token (§4.2). Then it completes the current code by jointly attending to in-file and
cross-file context (§4.3).

token can jointly attend them.
K(t) = KC ||KS(t), V (t) = VC ||VS(t),

Q(t) = fθ(xt)
[l−1]WQ,

Attn(t) = softmax(
Q(t)K(t)⊤√

dK
)V (t),

where || indicates the concatenation of vectors.

5. Experiment Setup
5.1. Data

Our data stem from the Python Package Index
(PyPI). We collect permissively licensed projects
and filter out those with ≤5 python files or ≥5k
nodes in project context graph, ending up with
60,891 projects. Then, we divide the dataset into
80%/10%/10% train, validation, and test sets. We
notice that popular packages, such as numpy, are
used as dependencies by many packages and will
cause potential information leakage if numpy is
part of the test set. Thus, we only include projects
that were not used as dependencies by any train-
ing projects in the test set. We create prompts by
cutting the source file at the location where com-
pletion requires cross-file context. We present the
sequence length statistics in Table 1. For cross-
file context, we concatenate the text of all retrieved
entities as a sequence and count the length.

Figure 1 shows an example prompt we create:
it requires the details of TagHandler and git to
complete the code accurately. In this work, we
consider statement-level code completion, so the
ground truth of the test sample is built accordingly.
For the convenience of studying the model’s pre-

Mean Max Median Min
Prompts 1,354 32,599 758 7
Cross-file Context 4,485 186,339 1,928 22

Table 1: Number of tokens using CodeGen’s tok-
enizer of prompts and cross-file context of the test
set.

diction on local APIs (i.e., APIs defined within the
project), we further filter out the samples that either
can not be parsed by the AST parser or do not in-
clude local API calls in the target statement (to be
completed). Finally, we ended up with the 6,888
held-out prompts for evaluation.

5.2. Implementation Details

Cross-file Context CCFinder uses tree-sitter4 to
parse source code files. Tree-sitter is a widely used
source code parser that generates the abstract
syntax tree (AST) given a program. CCFinder
will traverse the AST to extract information as de-
scribed in §3. Then, CCFinder analyzes the im-
port statements on top of import-dep5 to build the
project context graph. In this work, we retrieve 2-
hop neighbors with at max 128 project entities as
cross-file context, and each entity contains up to
128 tokens. These thresholds are data-driven to
ensure the model input covers most of the relevant
cross-file context.
Model The backbone of CoCoMIC is CodeGen
(Nijkamp et al., 2023) and we use CodeGen-350M-
Mono for all experiments. In all settings, we fine-

4https://tree-sitter.github.io
5https://pypi.org/project/import-deps

https://tree-sitter.github.io
https://pypi.org/project/import-deps
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tune the model for 5 epochs with a max sequence
length of 2,048 tokens and a learning rate of 5e-5
with 5% warm-up steps, then cosine annealing.

Our code is based on Transformers (Wolf et al.,
2020). We train our models on a machine with 8
Nvidia A100s. Each job takes around 50 hours (i.e.,
400 GPU hours) to train all models.

5.3. Baselines & Evaluation Metrics
CodeGen We consider two variations of the
vanilla CodeGen model with the in-file context only:
(1) zero-shot, where we directly evaluate the pre-
trained CodeGen model on our test dataset, and
(2) finetuned, where we finetune CodeGen on our
dataset first and then evaluate.
CodeGen w/ Cross-file Context We also con-
sider a prompting baseline where we prepend the
cross-file context to the input sequence and fine-
tune. Similar to the configuration of CoCoMIC, we
reserve the first 128 tokens of the input for the code
tokens from the cross-file context and use the rest
tokens for the in-file context.
Evaluation Metrics We compute exact match
(EM) and BLEU-4 (Papineni et al., 2002) to assess
the accuracy of the generated code. While code
match indicates the overall correctness of code
completion, we want to zoom into the cases where
cross-file context could most contribute, which is
API usage. Therefore, we measure the identifier
match to evaluate whether cross-file context im-
proves the model’s ability to predict the right APIs.
To this end, we extract the identifiers from the
model prediction and the ground truth, resulting in
two ordered lists of identifiers. Then, we compare
them and report the identifier prediction accuracy
in terms of exact match, precision, and recall.

Besides, we compute the perplexity of all the
tokens on the test set to study whether adding cross-
file context degrades performance when the cross-
file context is not explicitly required.

6. Results and Analysis
6.1. Main Results
We present the results in Table 2. CoCoMIC out-
performs all baselines on all metrics with a clear
margin, demonstrating the effectiveness of our pro-
posed framework. We notice that when the cross-
file context is prepended as a plain text prompt,
CodeGen outperforms the other two baselines with-
out cross-file context. However, limited by the max-
imum input length, it can only include a very limited
amount of cross-file context, which significantly re-
stricts its capacity. In contrast, CoCoMIC encodes
the code sequence of an entity into one single to-
ken, enabling the model to incorporate more cross-
file context while saving the input length.

Besides, we see no degradation when the cross-
file context is not explicitly required. We calculate
the perplexity of all tokens in the test samples, re-
gardless of whether they require cross-file context.
We see that CoCoMIC achieves the lowest per-
plexity, indicating cross-file context in CoCoMIC is
generally beneficial for code completion.

6.2. Effectiveness of CCFinder
The objective of CCFinder is to locate and retrieve
relevant code context from other source files in the
project. Identifiers (e.g., function names and pa-
rameters) are presumably one of the most critical
API information. Therefore, we study the effec-
tiveness of CCFinder by assessing whether their
retrieved-context increases recall of the identifiers
that appear in the ground truth. We hypothesize
that the inclusion of identifiers needed to complete
a code is likely to benefit CoCoMIC.

Table 3 shows that the in-file context covers (re-
call) 75.19% identifiers that appear in the ground
truth. In comparison, prompts augmented with re-
trieved cross-file identifiers bring up identifier recall
to 95.55%. This indicates that CCFinder can re-
trieve most of the cross-file context that can help LM
complete the input code. Note that while CCFinder
increases identifier recall by 27.07%, Table 2 shows
only an 8.97% improvement in identifier recall. This
indicates that more intelligent prompting techniques
or training better LMs to use cross-file context can
lead to better performances. Further, Table 4 shows
that random entities from the same project do not
provide useful information since they are not nec-
essarily related to the input code, and 2-hop re-
trieval outperforms 1-hop retrieval. These verify
that CCFinder retrieves relevant cross-file context
and thus helps CoCoMIC.

6.3. [SUM] Token Representing Entities
We append a special token [SUM] to cross-file con-
text to summarize their information (Figure 3). Now,
we study the importance of the [SUM] token for
a better representation of cross-file context. As a
comparison, we apply the widely-used mean pool-
ing that takes the mean over every cross-file to-
ken’s embedding as the cross-file representation.
We train a CoCoMIC model with mean pooling and
keep the rest of the settings the same. The result
is in Table 5: our proposed [SUM] token effectively
summarizes cross-file context and significantly out-
performs the mean pooling strategy.

6.4. Impact of Locales in CoCoMIC
As introduced in §4.1, we prepend locales as re-
lational hints for better entity representations. We
study the effectiveness of such relational signals.
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Model Finetuned Cross-file
Entities

Code Match ID Match PPL (↓)
EM BLEU-4 EM Prec. Rec.

CodeGen ✗ ✗ 14.56 33.12 22.91 47.74 50.75 2.88
+ Finetune ✓ ✗ 15.97 35.11 24.29 50.46 53.07 2.87

+ Cross-file context ✓ ✓ 17.00 36.34 25.80 48.91 54.76 2.77
CoCoMIC (Ours) ✓ ✓ 21.39 41.65 31.26 55.45 57.83 2.69

Table 2: Performance of CoCoMIC compared with baselines. We show that using the text prompt for
cross-file entities (row 3) helps marginally compared to the in-file-only baseline (row 2). On the contrary,
CoCoMIC with cross-file context (row 4) improves the performance by a large margin (+33.94% Code
Match EM and +28.69% ID Match EM) compared to the in-file only baseline. In addition, we show that
there is no degradation in perplexity (PPL) when evaluating all the tokens in the test set where the cross-file
context is not always required, suggesting that adding cross-file context helps in general.

Code Context Type ID Recall (%)
In-file context 75.19
In-file + Cross-file context 95.55

Table 3: CCFinder retrieves 27.07% more identi-
fiers when compared to only in-file contexts.

Entities From Code Match ID Match
EM BLEU-4 EM Prec. Rec.

Random 15.68 35.23 24.07 49.75 52.69
CCFinder (1-hop) 18.47 38.09 28.14 53.20 55.63
CCFinder (2-hop) 21.39 41.65 31.26 55.45 57.83

Table 4: Entities retrieved from CCFinder are more
useful than random entities, and 2-hop retrieval
help achieve better performance.

CoCoMIC Code Match ID Match
EM BLEU-4 EM Prec. Rec.

Mean pooling 16.78 36.02 25.01 50.50 52.61
[SUM] 21.39 41.65 31.26 55.45 57.83

Table 5: [SUM] token representing cross-file con-
text significantly outperforms mean pooling.

As a comparison, we further study multi-task learn-
ing that encourages embedding relational informa-
tion into entity representations.
Multi-task w/ Edge Prediction We use multi-
task learning (MTL) to encode cross-file relations.
Specifically, we train the model with an auxiliary
edge prediction task among cross-file entities. We
take representations of two cross-file entities gener-
ated by the LM layers and ask the model to predict
what edge type connects them.
Results Table 6 presents the results. While MTL
achieves 97.2% accuracy in the auxiliary edge
prediction task, it hardly improves CoCoMIC in
code completion. Such a gap suggests that even
if MTL fulfills the expectation of embedding edge
information, this information is not directly useful
for code completion. In contrast, adding locales
consistently improves CoCoMIC across all met-

CoCoMIC Code Match ID Match
EM BLEU-4 EM Prec. Rec.

No Relations 20.27 40.62 30.02 55.44 57.46
MTL 20.01 40.00 29.53 55.51 56.68
Locale 21.39 41.65 31.26 55.45 57.83
Locale + MTL 21.25 41.44 31.05 55.83 58.03

Table 6: Locales improve performance while learn-
ing cross-file relations with multi-task learning only
provides CoCoMIC marginal improvement.

rics. We hypothesize that this is due to locales
providing an exact and direct signal as text (e.g.,
class_name.method_name). Thus the model
could use them as short-cut in code completion.

6.5. k-hop Retrieval

As we see from Table 4, k = 1 underperforms
compared to k = 2. This is because k = 1
fetches less comprehensive context. For exam-
ple, with the import statement import FileA as
A, we can access class X’s static member function
Y as: A.classX.funcY through 2-hop retrieval,
whereas 1-hop retrieval will not fetch. In fact, 1-hop
retrieval won’t fetch any class member function if
only the file is imported, which frequently happens
in Python. Given the great coverage of k = 2 (Table
3) and given we found too many unrelated entities
were retrieved if we use k > 2, we decided to use
k = 2 throughout the work.

6.6. Re-ranking Cross-file Entities

The cross-file entities are organized and presented
to CoCoMIC following their import order in the pro-
posed design (§3.2). We also explore the effects of
re-ranking cross-file entities according to their rele-
vance to the prompt. Specifically, we use the Jac-
card index-based (Jaccard, 1912) ranking and use
the last 10 lines of code in the prompt as the query
to re-rank all the entities obtained by CCFinder.
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Code Match ID Match
EM BLEU-4 EM Prec. Rec.

CodeGen + Ft. 17.00 36.34 25.80 48.91 54.76
+ re-ranked ent. 17.76 36.98 26.31 48.27 55.87

CoCoMIC 21.39 41.65 31.26 55.45 57.83
+ re-ranked ent. 21.62 41.89 31.69 55.96 58.19

Table 7: Re-ranking cross-file entities marginally
improves the performance of CoCoMIC and Code-
Gen model finetuned with cross-file context.

Code Match ID Match
EM BLEU-4 EM Prec. Rec.

CodeGen + Ft.
+ CFC (full) 17.00 36.34 25.80 48.91 54.76
+ CFC (simp.) 17.49 37.57 26.76 51.71 54.88

CoCoMIC 21.39 41.65 31.26 55.45 57.83

Table 8: CoCoMIC significantly outperforms all
baselines even when more cross-file context (CFC)
is included in the prompt for baselines.

The detailed results are shown in Table 7. Re-
ranking cross-file entities does not significantly im-
prove the CoCoMIC’s performance. The improve-
ment is only marginal due to (1) CoCoMIC effi-
ciently encodes sufficient (up to 128 cross-file en-
tities) cross-file context, so re-ranking could not
bring more information, and (2) CoCoMIC’s cross-
context attention could make use of both in-file and
cross-file context flexibly, so the input order of cross-
file entities does not matter much. The baseline
model, CodeGen finetuned with cross-file context,
reports slightly more improvement when the cross-
file entities are re-ranked. This is because the base-
line model takes plain text as cross-file context, and
a large portion of such information is truncated due
to the limited input length, and thus prioritizing the
most relevant entities to the prompt brings more
useful information to the front and is included by
the model input. However, the performance of the
re-ranked and finetuned baseline is still far behind
CoCoMIC, highlighting CoCoMIC is effective in
modeling both in-file and cross-file context.

6.7. Additional Baseline Variants
In addition to the CodeGen w/ Cross-file Context
baseline (§5.3), which uses the same cross-file
context tokens as in CoCoMIC, we experimented
with a simplified setting that only takes the locales
and the signature prototypes (name, arguments,
and default return types, if present) to fit in more
cross-file context within the input length budget.

From Table 8, we see the performance only im-
proves marginally when using simplified cross-file
context, and it still underperforms CoCoMIC signif-
icantly. This suggests that baseline models have
substantial limitations of sequence lengths that the
performance is subpar even if we simplify the cross-

file context, while CoCoMIC is capable of com-
pressing up to 16,384 (=128x128) tokens of cross-
file context into only 128 vectors, making cross-file
context readily available for the model to use.

7. Related Work

In the last couple of years, a significant effort has
been made to pretrain Transformer language mod-
els using unlabeled source code (Feng et al., 2020;
Ahmad et al., 2021; Wang et al., 2021b; Guo et al.,
2022; Ding et al., 2022b) to facilitate software en-
gineering applications (Husain et al., 2019; Iyer
et al., 2018; Tufano et al., 2019; Zhou et al., 2019).
Among these efforts, developing code generation
models is noteworthy (Chen et al., 2021; Xu et al.,
2022; Wang and Komatsuzaki, 2021; Black et al.,
2021a, 2022; Nijkamp et al., 2023; Fried et al., 2023;
Li et al., 2022). Since most of these models are au-
toregressive language models, they can be directly
used in code completion - given a code snippet as a
prompt, generate the next N tokens. Until recently,
existing works in the literature use code snippets
from the current file (where the user is writing code)
to prompt the code generation models.

While the use of in-file or class context is rigor-
ously studied for software engineering applications
in the literature, the use of cross-file context is rel-
atively under-explored in code completion backed
by code LMs. Earlier works (Henninger, 1991;
Rosson and Carroll, 1996; Michail, 2001; Ye et al.,
2000; Ye and Fischer, 2002; Cubranic and Murphy,
2003; Inoue et al., 2003; Hill and Rideout, 2004;
Holmes and Murphy, 2005) in software engineer-
ing literature focused on developing tools to ex-
tract information from software repositories to help
developers complete code fragments (e.g., vari-
able, method name or body completion). On the
other hand, recent works focus on modeling cross-
file information in neural approaches. Wang et al.
(2021a) proposed to model intra- and inter-class
context for code summarization by extracting the
Unified Modeling Language (UML) class diagrams.
Shrivastava et al. (2023) proposed a prompt en-
gineering technique that learns a repository-level
prompt generator to generate example-specific
prompts. Zhang et al. (2023) proposed an iterative
retrieval-generation framework to augment prompt
with cross-file context. Our work has the same
spirit as we propose to retrieve cross-file context
given a source code. However, the fundamental
difference are 1) we utilize the import statements
for structured retrieval, and 2) we optimize in-file
and cross-file context jointly in modeling instead of
simple prompting.
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8. Conclusion
The absence of project-level cross-file context for
code LMs limits their practicality in modern soft-
ware development. In this work, we propose Co-
CoMIC, a framework that incorporates both in-file
and cross-file context for code completion based
on autoregressive code LMs. We build CCFinder,
a static code analysis tool that builds the project
context graph and finds the most relevant cross-file
context based on import statements. Empirical
results show that CCFinder retrieves 27.07% more
context that is not in the current file, and with the
retrieved context, CoCoMIC achieves 33.94% rel-
ative improvement over the baseline. We further
perform various ablations and analysis of various
components in CoCoMIC, presenting valuable in-
sights for future research in this direction. Our data
and code will be made available upon acceptance.

Ethics Statement
Our work aims at improving code LMs in code gen-
eration with cross-file context. We highlight the
limitations of our work in the following section. We
do not expect our work to have a negative broader
impact, though using code LMs always comes with
certain risks, e.g., generating biased, toxic, and in-
secure code. We refer readers to Sec. 7 in (Chen
et al., 2021) for a detailed discussion on the broader
impact of code LMs.

Limitations
Extension to other languages and third-party
packages Our work focuses on Python language,
which is widely used and has great availability
of open-sourced software projects through PyPI.
However, the main concept introduced in our work
should be extensible to other languages. In addi-
tion, we focus on the project (repo) context in this
work, and a potential extension is to incorporate
third-party packages and building models to sug-
gest the right third-party libraries to use. We leave
these as future work.
Model performances with the absence of cross–
file context In this work, we assumed that Co-
CoMIC could access the other source code files
within the project to understand source code depen-
dencies and utilize them accordingly to generate
the target code completion. However, CoCoMIC
may not access the code files in many cases, e.g.,
users do not want an AI code LM to read their
private or sensitive project APIs. Therefore, it is
valid to ask – how CoCoMIC performs when the
cross-file context is absent. We evaluate CoCoMIC
without access to cross-file context and compare
with the finetuned CodeGen model (second row
in Table 2). The results show that CoCoMIC per-
forms 5–7% lower (relative performance drop) than

the finetuned CodeGen model. Development of
training strategies to bridge this performance gap
is needed, and we leave this as future work.
Impact on different sized language models Al-
though we use CodeGen-350-mono model in this
work which consists of 350M parameters, we hy-
pothesize that larger LMs (e.g., 2B, 6B, or 16B vari-
ants of CodeGen) would result in similar or higher
performance boost due to modeling cross-file con-
text. However, we acknowledge that our work does
not substantiate that our proposed technique would
boost the performance of LMs of any size.
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