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Abstract
Recently, code Pre-trained Language Models (PLMs) trained on large amounts of code and comment, have shown
great success in code defect detection tasks. However, most PLMs simply treated the code as a single sequence and
only used the encoder of PLMs to determine if there exist defects in the entire code. For a more analyzable and
explainable approach, it is crucial to identify which lines contain defects. In this paper, we propose a novel method for
code defect detection that integrates line-level defect localization into a unified training process. To identify code
defects at the line-level, we convert the code into a sequence separated by lines using a special token. Then, to
utilize the characteristic that both the encoder and decoder of PLMs process information differently, we leverage both
the encoder and decoder for line-level defect localization. By learning code defect detection and line-level defect
localization tasks in a unified manner, our proposed method promotes knowledge sharing between the two tasks. We
demonstrate that our proposed method significantly improves performance on four benchmark datasets for code
defect detection. Additionally, we show that our method can be easily integrated with ChatGPT.

Keywords: code defect detection, line-level defect localization, unified multi-task training

1. Introduction

Code defect detection is the process of identifying
errors, bugs, or potential issues in software code.
These defects can lead to functional errors in the
software, and result in software threats and vulner-
abilities. The purpose of code defect detection is to
discover these flaws in advance and correct them,
thereby enhancing the quality of the software.

Pre-trained Language Models (PLMs) for pro-
gramming language have achieved significant suc-
cess in code defect detection tasks (Feng et al.,
2020a; Ahmad et al., 2021; Wang et al., 2021a;
Guo et al., 2022). These models learned the con-
text and patterns of programming language from
large datasets of source code in pre-training stage.
Then, the encoder of PLMs is fine-tuned on labeled
datasets where code are tagged as either contain-
ing defects or being defect-free.

However, most PLMs for code defect detection
tasks focused solely on classifying whether code
has defects or not. They just treated the entire code
as a single sequence input and predicted the de-
fects based on the overall context of the code. It
fails to provide detailed information about where ex-
actly in the code the bugs or defects exist, and what
their causes might be. Simply classifying whether
the code has defects makes developers manually
find out which line in the code is vulnerable.

For code defect detection, it is important to know
where the defect is in the code. As shown in Fig-
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Figure 1: An example of code defect detection. Find-
ing vulnerable lines in the code helps developers
quickly fix defective code.

ure 1, it helps developers to identify precise vulner-
able sections within the source code, facilitating
rapid resolution of security flaws. If a specific line is
predicted to be vulnerable in a software project, it
can prompt code reviews or modification efforts tar-
geted at that particular line. Line-level code defect
predictions enhance overall software reliability.

For a more analyzable and explainable approach
to code defect detection, it is crucial to identify
which lines contain defects. However, most PLMs
for programming language have simply used a
whole code sequence as input during the pre-
training stage. When given code and comments
as input, they are concatenated with special tokens.
[CLS] token is added at the beginning, [SEP] to-
ken is placed between the code and comment, and
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[END] token is placed at the end of the sequence.
Finally, during the fine-tuning stage, the input se-
quence is concatenated with [CLS] token at the
beginning of the code and is fed to the classifier.
The entire code sequence as a whole input makes
it challenging to focus on line-level details, which
are crucial for tasks like code defect detection.

To address these aspects of code defect detec-
tion, we treat the code line-by-line and detect de-
fective lines by classifying whether each line of
the code exists as a defect. In this paper, we pro-
pose a novel method for code defect detection that
integrates line-level defect localization into a uni-
fied training process. We utilize code PLMs with
an encoder-decoder architecture, which is capable
of understanding the context of programming lan-
guages. First, we insert [LINE] token at the end of
each line to process the code as sequences based
on each line. When the input is given to the PLMs,
the encoder of PLMs learns for two tasks. The first
task is a code defect detection task that identifies
code defects in the code based on the [CLS] to-
ken. The second task is a line-level defect localiza-
tion task that learns to identify which lines contain
defects based on all [LINE] tokens. Furthermore,
to utilize the characteristic that both the encoder
and decoder in PLMs process information differ-
ently, we leverage both the encoder and decoder
of the PLMs for line-level defect localization. The
decoder of PLMs is trained to generate lines with
defects. By employing a unified training method
for the three processes, our approach promotes
knowledge sharing between code defect detection
and line-level defect localization. We demonstrate
that our proposed method significantly improves
defect detection performance on four benchmark
datasets.

We summarize the contributions of this paper
in three aspects: (1) We introduce a method to
process the code as sequences based on each line
for line-level defect localization. (2) We utilize code
PLMs with an encoder-decoder architecture into a
unified training process for code defect detection
task. (3) We demonstrate that our proposed method
can be easily integrated with ChatGPT.

2. Related Work

Previous research for code defect detection can
be categorized into sequence-based approaches,
which extract vulnerability patterns from code se-
quences, and graph-based approaches, which
utilize the hierarchical structure of code. For
sequence-based approaches, Li et al. (2018) used
the Bidirectional LSTM (Hochreiter and Schmidhu-
ber, 1997) method and learned vulnerability pat-
terns extracted from code through APIs and li-
braries to detect defects. Li et al. (2022) extracted

sequential patterns using the flattened Abstract
Syntax Tree (AST) of the code using Bi-GRU
model (Cho et al., 2014). For a graph-based ap-
proach, Zhou et al. (2019) encoded code into a
graph structure using Graph Neural Networks. How-
ever, these approaches were only trained to predict
code defects using limited datasets, and they have
limitations in performance.

As the pre-trained models based on the Trans-
former architecture (Vaswani et al., 2017) have
achieved great success in natural language un-
derstanding tasks (Devlin et al., 2019; Radford
et al., 2019; Liu et al., 2019; Lewis et al., 2020;
Clark et al., 2020; Raffel et al., 2020), the meth-
ods for extending natural language-based meth-
ods to code have recently been proposed in code
understanding tasks (Kanade et al., 2020; Feng
et al., 2020a; Guo et al., 2020; Ahmad et al.,
2021; Wang et al., 2021a; Guo et al., 2022; Wang
et al., 2023). Kanade et al. (2020) proposed a
method that was pre-trained on a massive amount
of Python code to obtain contextual embeddings
of source code. They also introduced three bench-
mark datasets such as Variable-Misuse Classifica-
tion, Wrong Binary Operator, Swapped Operand
for defect detection tasks. Feng et al. (2020a) pro-
posed CodeBERT, a pre-trained language model,
based on BERT (Devlin et al., 2019), to learn cross-
modal representation of both program language
and natural language. Ahmad et al. (2021) pro-
posed PLBART to support both code generation
tasks using encoder-decoder model BART (Lewis
et al., 2020). Wang et al. (2021a) proposed CodeT5,
a pre-trained encoder-decoder model based on
T5 (Raffel et al., 2020), to facilitate generation tasks
for programming language, and recently proposed
an expended CodeT5 model, CodeT5+ (Wang
et al., 2023). However, they only predict whether
there are defects in the entire code, and they do
not predict which specific lines contain defects.

Recently, Large Language Models (LLMs) have
been proposed with massive model sizes and ex-
tensive training data. ChatGPT (Brown et al., 2020;
OpenAI, 2024) has the capability to understand
various topics and contexts, thereby demonstrating
high performance in diverse generation tasks. How-
ever, its performance in classification tasks such as
code defect detection is not as high as that of tradi-
tional PLMs designed specifically for programming
languages.

3. Method

In this section, we introduce a unified framework
that utilizes both the encoder and decoder of PLMs
for code defect detection. Figure 2 shows the ar-
chitecture of our proposed method. Our proposed
method aims to train two tasks: code defect de-



3448

Figure 2: The framework of our proposed method. Our proposed method utilizes both the encoder and
decoder of PLMs to simultaneously train code defect detection and line-level localization tasks in a unified
manner.

tection and line-level defect localization. First, we
employ the encoder of PLMs with the primary goal
of classifying code defect detection (Section 3.1).
Second, we focus on identifying the specific loca-
tions of defects within the code, classifying defec-
tive lines on a line-by-line basis (Section 3.2). For
utilizing both the encoder and decoder of PLMs
which process information differently, we addition-
ally conduct the task of generating defective lines in
the decoder for line-level localization (Section 3.3).
Our goal is to enhance code defect detection by
simultaneously training on these three processes
within a unified framework (Section 3.4).

We provide a detailed explanation of our training
processing in the following subsection.

3.1. Encoder: Code Defect Detection

In the pre-training stage, PLMs incorporate the
[CLS] token at the beginning of each sequence
to facilitate the learning of sequence embeddings.
This [CLS] token serves as a crucial anchor, cap-
turing the context of the code sequence and rep-
resenting it as an embedding. As the embedding
of this token represents context information of the
entire input, it is used during the fine-tuning stage.
In code defect detection task, the embedding of the
[CLS] token enables PLMs to classify whether the
code contains defects.

Given code C, we aim to train the encoder of
PLMs that identify defects within code. In this phase,
we obtain the embedding value hi of C. The em-
bedding of the [CLS] token is then fed into the first

classifier for code defect detection as follows:

I = ⟨[CLS];C; [END]⟩ (1)
h = Encoder(I) (2)

logitd = Classifierd(h[CLS]) (3)

where [CLS] and [END] tokens are special tokens
representing the classification token and the end
of sequence respectively, h[CLS] refers to the em-
bedding of the [CLS] token, and logitd is the output
from the classifier for code defect detection.

Finally, the loss Ld is computed as follows:

Ld = CrossEntropy(logitd, labeld) (4)

where labeld is the ground truth label whether the
code contains a defect or not.

3.2. Encoder: Line-level Defect
Localization

Previous works for code defect detection using
PLMs only learn from the embedding of the [CLS]
token corresponding to code C. They simply re-
garded the entire code sequence as a whole input.
These approaches summarize the code with a sin-
gle [CLS] token. However, most code defects derive
from specific parts of a line, such as variables or
operators. Thus, training solely based on a single
[CLS] token may not effectively capture detailed
information about the precise locations of defects
or bugs in the code. To capture more context infor-
mation about the code, we introduce a line-level
defect localization method that allows the model
to detect defects on a line-by-line basis, thereby
enabling it to learn the exact location information
related to defects and bugs.

Given code C = {c1, c2, ..., cn} consisting of n
lines, which ci means the i-th line of the code, we
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Datasets Train Valid Test Lines (defective)
Devign 17.8K (9.7K/8.2K) 2.2K (1.3K/0.9K) 2.3K (1.3K/1.0K) 49.6 (6.2)
Variable-Misuse 700.6K (350.3K/350.3K) 8.2K (4.1K/4.1K) 378.4K (189.2K/189.2K) 10.2 (1.0)
Wrong Binary Operator 459.4K (229.7K/229.7K) 8.2K (4.1K/4.1K) 251.8K (125.9K/125.9K) 18.4 (1.0)
Swapped Operand 236.2K (118.1K/118.1K) 8.2K (4.1K/4.1K) 131.0K (65.5K/65.5K) 22.5 (1.0)

Table 1: Statistic of the four benchmark datasets. (/) represents the number of datasets with defects and
without defects, respectively. (defective) means the average number of defective lines in a code.

aim to train a model that detects defects on a line-
by-line basis. We insert line tokens to delineate
each line for a code C as shown in Figure 2. This ef-
fectively segments the code at every newline. Then,
using the encoder of PLMs, we obtain embeddings
for each individual line. The embeddings of the n
line tokens are fed into a classifier for line-level de-
fect localization. The process of obtaining logiti for
the i-th line ci is as follow:

I = ⟨[CLS]; [LINE]1; c1; ..., [LINE]n; cn; [END]⟩ (5)

h = Encoder(I) (6)
logitli = Classifierl(h[LINE]i) (7)

where [LINE]i is a special token representing the
start of code i-th line, h[LINE]i refers to the final em-
bedding of the [LINE]i token for the encoder of
PLMs, and logitli is the output of i-th line from the
classifier for line-level defect localization.

The loss for localizing defects in each line of the
code is as follows:

Ll =

n∑
i=1

CrossEntropy(logitli , labelli) (8)

where labelli is the ground truth label whether the
i-th line of code is defective or not.

As shown in Figure 2, we simultaneously con-
duct code defect detection and line-level defect
localization using the encoder of PLMs. The whole
code sequence C is trained through the classifier
for code defect, and the classifier for line-level de-
fect is trained to determine the absence of defects
on a line-by-line basis. By integrating to train on
two tasks, a single PLM encoder shares the context
information of the code.

3.3. Decoder: Line-level Defect
Localization

For classification tasks, classifiers are commonly
trained using only the encoder of PLMs. The en-
coder is well-suited to understanding the context
of the input sequence for classification. To utilize
the generation capability of the decoder as well as
the encoder, we aim to train both the encoder and
decoder of PLMs for line-level defect localization.

If the encoder detects whether each line has a de-
fect, the decoder is designed to generate which line
contains the defect. Both the encoder and decoder
aim to find the defective line, but they differently pro-
cess information through each process. The code
embedding h obtained from the encoder is fed to
the decoder. The decoder generates a defective
line geni. The generated line and defective line are
calculated to compute the loss as follows:

geni = Decoder(h) (9)

Lg = GenerationLoss(geni, senti) (10)
where senti is the ground truth defective line in the
code.

3.4. Unified Multi-task Training
Instead of training each task separately, we aim
to learn across three processes in a unified man-
ner, leading to a better transfer of knowledge across
tasks. We obtain the loss in the encoder for classify-
ing the entire code’s defect, the loss for classifying
each line as a defect or not, and the loss in the
decoder for generating defective lines in the code.
Then we compute the final loss by summing the
three losses, each multiplied by a weight factor. The
final loss for our proposed method is presented as
follows:

Lfinal = w1 ∗ Ld + w2 ∗ Ll + w3 ∗ Lg (11)

where w1, w2, and w3 are the weights of each loss.

4. Experiment Setup

Dataset We conduct experiments on four pub-
lic benchmark datasets for the defect detection
task. Zhou et al. (2019) introduced the Devign
dataset, which is one of the benchmark datasets in
CodeXGLUE (Lu et al., 2021). Kanade et al. (2020)
presented three benchmark dataset, Variable-
Miuse, Wrong Binary Operator, and Swapped
Operand. Table 1 shows the detailed statistics of
the datasets.

• Devign consists of functions from large open-
source C projects. Its objective is to predict
whether the code is vulnerable to software sys-
tems or not. We removed datasets from which
we cannot obtain line-level defect information.



3450

Datasets Devign VM WBO SO
Models Acc. F1. Acc. F1. Acc. F1. Acc. F1.
CuBERT (Kanade et al., 2020) - - 94.04 - 89.90 - 92.20 -
CodeBERT (Feng et al., 2020a) 63.73 51.51 93.21 93.03 90.66 90.27 91.06 90.77
CodeT5 (Wang et al., 2021a) 62.87 58.39 93.82 93.74 88.12 87.75 91.78 91.70
CodeT5+ (Wang et al., 2023) 63.40 62.59 93.28 93.21 89.08 88.62 92.70 92.61
UniXcoder (Ahmad et al., 2021) 63.18 47.57 93.95 93.85 90.35 90.11 93.73 93.66
CodeT5 (ours) 65.44 62.68 95.43 95.38 90.53 90.29 93.88 93.80
CodeT5+ (ours) 64.91 63.97 95.08 95.02 91.56 91.35 93.69 93.62
UniXcoder (ours) 64.29 58.37 95.36 95.30 92.49 92.31 94.22 94.16

Table 2: Comparison of our proposed method with the baseline models on the four benchmark dataset.
We selected CodeT5, CodeT5+, and UniXcoder, which are the state-of-the-art (SOTA) PLMs with the
encoder-decoder architecture, as our baselines. The best result is in boldface, and the next best is
underlined.

• Variable-Misuse Classification (VM) is a
dataset to determine whether two variables
in a code are mistakenly swapped.

• Wrong Binary Operator (WBO) is a dataset
to check if a binary operator is erroneously
replaced with another operator.

• Swapped Operand (SO) is a dataset to verify
whether the operands of a binary operator are
incorrectly swapped.

Evaluation Metrics For code defect detec-
tion, we use Accuracy, F1-score, AUC-ROC
curve (Bradley, 1997), and PR-AUC (Davis and
Goadrich, 2006). For line-level defect selection, we
use Accuracy and F1-score.

• Accuracy is the ratio of correctly predicted
instances to the total number of instances in
the dataset.

• F1-score is the harmonic mean of precision
and recall.

• AUC-ROC is that the ROC curve plots the true
positive rate against the false positive rate for
various threshold values, and AUC gives the
area under the ROC curve.

• PR-AUC is the precision-recall curve plots pre-
cision against recall for various thresholds.

Baselines We compare our proposed approach
with PLMs for programming language, such as Cu-
BERT (Kanade et al., 2020), CodeBERT (Feng
et al., 2020a), CodeT5 (Wang et al., 2021b),
CodeT5+ (Wang et al., 2023), and UniXCoder (Guo
et al., 2022). They are fine-tuned using only the
[CLS] token of each code, as a general training
method for code defect detection. We refer to the
CuBERT reported by Kanade et al. (2020), which
is a PLM specifically for Python language.

Implementation Details We selected various
code PLMs, CodeT5, CodeT5+, and UniXcoder,
which are encoder-decoder architectures, as our
framework. Our framework has three main tasks:
(1) Code Defect Detection in Encoder, (2) Line-level
Defect Localization in Encoder, and (3) Line-level
Defect Localization in Decoder. The input is the
code C = [c1, ..., cn] with [CLS] token and [LINE]
tokens to delineate each code line ck. While other
tokens or different special tokens can be consid-
ered, we chose the [SEP] token that preserved the
overall meaning of the code in C and Python Lan-
guage. We set the batch size to 8 and the learning
rate is 2e-5, the maximum source length to 512
tokens. VM/WBO/SO and Devign fine-tuning for 2
and 10 epochs, respectively. Also, we set the maxi-
mum length of the [LINE] token to 50, 15, 20 and 30
for Devign, VM, WBO and SO, which are similar to
the average line length of the code in each dataset.

The loss weight values and ground truth label
are as follows:
(1) Fine-tuning with [CLS] token and target is no-

defect(0) or defect(1). We set the loss weight
w1 for Ld to 1.

(2) Fine-tuning with [LINE] tokens and target is no-
defect(0) or defect(1) with each line. We set the
loss weight w2 for Ll to 0.1 and 0.5 for Devign
and VM/WBO/SO datasets, respectively.

(3) If code C has a defect in k-th line ck, the de-
coder generate the the k-th line. Otherwise,
the decoder generates the "No Defect Found".
We set the target sequence length to 50 tokens
and loss weight w3 for Lg to 0.1.

5. Experiment Result

5.1. Main Result
Table 2 shows the comparison of our proposed
method with baselines on four benchmark datasets
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Devign VM WBO SO
Acc. F1. Acc. F1. Acc. F1. Acc. F1.

Baseline: (1) 62.87 58.39 93.82 93.74 88.12 87.75 91.78 91.70
Ours: (1)+(2) 63.18 58.88 94.76 94.70 89.13 88.84 92.35 92.28
Ours: (1)+(3) 63.67 56.01 94.12 94.06 89.97 89.68 92.80 92.72
Ours: (1)+(2)+(3) 65.44 62.68 95.43 95.38 90.53 90.29 93.88 93.80

Table 3: Ablation study on three learning processes of our proposed method, (1) Code Defect Detection
in Encoder (2) Line-level Defect Localization in Encoder, and (3) Line-level Defect Localization in Decoder.
The best result is in boldface, and the next best is underlined. We chose CodeT5 as the baseline.
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Figure 3: Comparison results of AUC-ROC curve on the four benchmark datasets. The X-axis and Y-axis
represent the False Positive Rate and True Positive Rate, respectively. A higher AUC score indicates
better classification performance to distinguish between defective and non-defective classes.

for the code defect detection tasks. First, the De-
vign dataset contains defects that may be used to
attack software systems, such as resource leaks
and use-after-free, so the task is very difficult com-
pared to other datasets. Among the baselines, the
CodeT5+ showed higher scores with an Accuracy
and F1-score of 63.40 and 62.59. When we applied
our proposed method with CodeT5+, the score in-
creased by 2.38% and 2.20%, respectively. Also,
while UniXcoder demonstrated high Accuracy, its
F1-score was significantly lower. This indicates an
increased number of False Negative predictions,
leading to a decreased Recall and hence lower F1-
score. It implies that the model often misclassifies
actual defective code as non-defective. By apply-
ing our method, the increase in F1-score is more
significant in all baselines. Finally, CodeT5 with our
proposed method shows the best performance in
the Devign dataset.

For the datasets of Variable-Misuse (VM), Wrong
Binary Operator (WBO), and Swapped Operand
(SO), CuBERT and UniXcoder show higher perfor-
mance than other baselines. CuBERT is trained on
only Python programming language, so it shows
better performance in the datasets, which consist
of the code in Python datasets. In UniXcoder, code
representation is obtained based on the Abstract
Syntax Tree, enabling it to better capture structural
information. Also, CodeBERT, which is only com-
posed of a PLM encoder, showed higher perfor-
mance on the WBO dataset compared to other
baselines. However, all baselines tended to show a

lower F1-score compared to Accuracy. By applying
our proposed method to these baselines, both Ac-
curacy and F1-score improved and resulted in more
consistent defect detection. Finally, CodeT5 with
our proposed method shows the best performance
in VM dataset, and UniXcoder with our proposed
method achieves state-of-the-art in WBO and SO
datasets.

5.2. Ablation Study

In Table 3, we present an ablation study to inves-
tigate the impact of line-level defect localization
learning in the encoder and decoder respectively on
the code defect detection performance. We chose
CodeT5 as our baseline. Baseline (1) represents
the performance of the fine-tuning method using
only the [CLS] token. Ours (1)+(2) indicates the
results when only the encoder of PLMs is used for
both code defect detection and line-level defect lo-
calization. Ours (1)+(3) represents the results when
the encoder of PLMs is only trained for code defect
detection and the decoder of PLMs is trained for
line-level defect localization. Lastly, we present the
results of our final proposed method (1)+(2)+(3)
which combines all three training processes.

First, for ours (1)+(2), we observed an increase in
both Accuracy and F1-score compared to the base-
line. We treated the code as line-by-line based on
the [LINE] token rather than just a single sequence.
This demonstrates that by training the encoder to
detect code defects and simultaneously identify the
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Figure 4: Comparison results of PR-AUC curve on the four benchmark datasets. The X-axis and Y-axis
represent the Recall and Precision, respectively. A higher PR-AUC score indicates better classification
performance to correctly classify defective code.

Models CodeT5 CodeT5+ UniXcoder
Dataset Acc. F1. Acc. F1. Acc. F1.
Devign 78.8 11.2 78.2 7.8 80.4 13.8

VM 99.0 93.5 98.7 91.3 98.8 92.2
WBO 98.5 87.2 98.4 85.2 98.9 90.4
SO 99.4 94.5 99.2 93.1 99.4 94.9

Table 4: Performance of the encoder of PLMs for
Line-level Defect Localization on the four bench-
mark datasets.

specific lines with defects, the model can better
pinpoint defective code.

For ours (1)+(3), while there was an overall perfor-
mance improvement compared to the baseline, we
noticed a significant increase in Accuracy but a no-
tably lower F1-score in the Devign dataset. This is
because the model does not focus on line-level but
instead tries to locate the defect sequence based
on the entire code, leading to a higher number of
False Negative predictions compared to (1)+(2).

Lastly, for our final proposed method (1)+(2)+(3),
we observed a significant increase in both Accuracy
and F1-score across all datasets. By utilizing code
PLMs with an encoder-decoder architecture that un-
derstands the context of programming languages,
we trained on code defect detection and line-level
defect localization tasks using an integrated learn-
ing method. This unified approach promotes knowl-
edge sharing between the encoder and decoder.

Figure 3 shows the AUC-ROC curve results for
four benchmark datasets. For all datasets, our
method achieved the highest AUC score. Espe-
cially, for our final approach (1)+(2)+(3), The re-
sults increase by 3.00%, 0.41%, 1.26%, and 0.72%
compared to the baseline (1), respectively. We
demonstrated that our method effectively classi-
fied whether the code has defects and consistently
performed well across all thresholds.

In Figure 4, we present the PR-AUC curve for four
benchmark datasets. For all datasets, our proposed
method achieved the highest PR-AUC score. A

Models ChatGPT ChatGPT+Ans Ours
Dataset Acc. F1. Acc. F1. Acc. F1.
Devign 51.6 52.7 81.0 82.6 65.3 62.5

VM 56.3 55.5 87.0 88.0 95.0 94.8
WBO 54.8 49.4 83.7 85.0 90.4 89.7
SO 55.2 49.2 83.1 84.6 93.6 93.1

Table 5: Comparison of our proposed method with
ChatGPT to detect defect code on four datasets
sampled with 1000 instances.

Models ChatGPT ChatGPT+Ours
Dataset BLEU CodeBLEU BLEU CodeBLEU
Devign 63.2 65.1 65.3 67.6

VM 60.5 64.3 62.6 65.8
WBO 74.8 77.9 78.7 80.1
SO 72.1 75.2 77.1 80.2

Table 6: Comparison of our proposed method with
ChatGPT to fix repair code on defective code in
terms of BLEU (Papineni et al., 2002) and Code-
BLEU (Ren et al., 2020) score.

good PR-AUC curve performance indicates that the
model is effectively predicting the defective class
and the model is correctly predicting a large number
of defective samples while minimizing the number
of false positives. We showed that our proposed
method has the excellent predictive capability of
the model.

5.3. Line-level Defect Localization
We analyze how well the encoder of PLMs per-
formed on line-level defect localization, and evalu-
ate based on Accuracy and F1-score for lines that
contain defects. Table 4 presents the performance
of the encoder for Line-level Defect Localization. In
the Devign dataset, which predicts vulnerabilities
in a software system rather than just syntactical
errors, the result shows lower performance than
other datasets. Additionally, the dataset contains
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ChatGPT ChatGPT+Ours
Prompt: Repair the following defect code snippet. Prompt: Repair the following defect code snippet.

In your response, output the fixed code only. In your response, output the fixed code only.
(Code) Defect candidate Line: n-th line in this code.

(Code)
Code 1: Code 1:
def update_thumbs(self, nameList): def update_thumbs(self, nameList):

invalid = (set(self.thumbList) - set(nameList)) invalid = (set(self.thumbList) - set(nameList))
if len(nameList) > 0: if len(invalid) > 0:

with self.thmblock: with self.thmblock:
for thumbkey in invalid for thumbkey in invalid

self.thumbList.remove(thumbkey) self.thumbList.remove(thumbkey)
del self.thumbDict[thumbkey] del self.thumbDict[thumbkey]
self._tkf_highlight.discard(thumbkey) self._tkf_highlight.discard(thumbkey)

self.reorder_thumbs() self.reorder_thumbs()
Code 2: Code 2:
def _guess_media_encoding(self, source): def _guess_media_encoding(self, source):

info = source.byteStream.info() info = source.byteStream.info()
if ’Content-Type’ in info: if ’Content-Type’ in info:

for param in self.getplist(): for param in info.getplist():
if param.startswith(’charset=’): if param.startswith(’charset=’):

return param.split(’=’, 1)[1].lower() return param.split(’=’, 1)[1].lower()

Table 7: A qualitative example of the VM dataset on repair task.

multiple defective lines within a single code, mak-
ing accurate prediction challenging. However, by
training to identify which lines contain defects simul-
taneously, we can observe that the model better
represents code for the code defect detection task.
Furthermore, for the VM, WBO, and SO datasets,
the model is notably effective at predicting lines with
defects. It helps developers to identify precisely vul-
nerable sections within the source code.

5.4. Comparison with ChatGPT
To evaluate how well the Large Language Model,
ChatGPT, performs in code defect detection, we
sample 1000 instances from each dataset, and
compare the defect detection performances of
ChatGPT and our proposed method as shown in
Table 5. When we simply ask ChatGPT to detect
the defect code, ChatGPT shows a very low per-
formance, around 50% for each dataset. In order
to maximize the performance of ChatGPT, we per-
form additional experiments by providing defect
line information for each code in prompts. The
ChatGPT+Ans in Table 5 show the results with the
ground truth defect information.

We notify that our proposed method shows sig-
nificantly higher performance even than ChatGPT
with golden defect line information. Our proposed
method performs better on the VM, WBO, and SO
datasets. Interestingly, on the Devign dataset, Chat-
GPT with the ground truth of defect line information
performs the best. This may arise from the small
size of the Devign dataset. As shown in Table 1,
the size of Devign is approximately one over sev-

eral tens of others. So, a model may learn rela-
tively small amount of information from the dataset.
Since ChatGPT was trained on a large corpus, it
can perform better on the small size of datasets
using its knowledges from the pre-training dataset.
This suggests that we may benefits from the broad
knowledge of a pre-trained language model even
for code intelligence tasks.

5.5. Integration with ChatGPT
Since ChatGPT was designed as a general-
purpose generative AI, it showed limitations in clas-
sification tasks like code defect detection. However,
we can combine our proposed method to ChatGPT
to enhance its generative capabilities. We conduct
another experiments to generate repaired code by
combining ChatGPT with our model. We sample
100 defect code instances from each dataset, and
we additionally provide the predicted line-level de-
fect information by our method in prompts. The
repair performance is shown in Table 6.

When we simply ask ChatGPT to repair the de-
fective code (ChatGPT in Table 6), the BLEU scores
are 63.2%, 60.5%, 74.8%, and 72.1%, respectively,
on the four benchmark datasets. However, when
we provide ChatGPT with the predicted defect loca-
tions by our method (ChatGPT+Ours), the scores
significantly improve to 65.3%, 62.6%, 78.7%, and
77.1%. This demonstrated that we can enhance the
generative capabilities of large language models
using our proposed method.

Table 7 shows qualitative examples of the repair
task with ChatGPT. We provide the task descrip-
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tion in the prompt for ChatGPT as shown in the
left column, and provide the task description with
the predicted defect locations for ChatGPT+Ours.
When we simply instruct ChatGPT to repair the
defective code, ChatGPT struggle to identify the
defective line, which lead to unsuccessful repair
attempts. However, when we provide information
about the predicted defective line, ChatGPT suc-
cessfully repairs the defective code.

6. Conclusion

We introduced a novel method for code defect de-
tection with line-level defect localization in a uni-
fied manner. By segmenting the code based on
lines and leveraging both the encoder and decoder
of PLMs, we achieved a more detailed and inter-
pretable defect detection mechanism. We demon-
strated that our evaluations on four benchmark
datasets showed the superiority of our method in
code defect detection. Moreover, the interaction of
our approach with generative AI, specifically Chat-
GPT, broadens its applicability and potential in real-
world scenarios. In future work, we plan to conduct
research on an integrated model that simultane-
ously performs code defect detection and defect
repair based on line-level defect information.
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