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Abstract
Multimodal information such as text and audiovisual data has been used for emotion/sentiment estimation during
human-agent dialogue; however, user sentiments are not necessarily expressed explicitly during dialogues. Bio-
signals such as brain signals recorded using an electroencephalogram (EEG) sensor have been the subject of focus
in affective computing regions to capture unexpressed emotional changes in a controlled experimental environment.
In this study, we collect and analyze multimodal data with an EEG during a human-agent dialogue toward capturing
unexpressed sentiment. Our contributions are as follows: (1) a new multimodal human-agent dialogue dataset is
created, which includes not only text and audiovisual data but also frontal EEGs and physiological signals during
the dialogue. In total, about 500-minute chat dialogues were collected from thirty participants aged 20 to 70. (2)
We present a novel method for dealing with eye-blink noise for frontal EEGs denoising. This method applies facial
landmark tracking to detect and delete eye-blink noise. (3) An experimental evaluation showed the effectiveness of
the frontal EEGs. It improved sentiment estimation performance when used with other modalities by multimodal
fusion, although it only has three channels.
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1. Introduction
Capturing the user’s sentiment during dialogue is
important for an adaptive dialogue system. For
example, if the user seems interested in the cur-
rent topic, the dialogue system should continue as
is, whereas if the user seems bored, the system
should change the current topic. Since the estima-
tion of user’s sentiment during dialogue is a difficult
task, developing the adaptive dialogue systems is
still challenging (Clavel and Callejas, 2015).
A promising approach to achieve accurate sen-
timent estimation is multimodal sentiment analy-
sis (Morency et al., 2011; Baltrušaitis et al., 2018).
This approach conducts sentiment analysis using
not only the user’s utterance contents but also au-
diovisual information. So far, many datasets for
multimodal sentiment analysis have been created
(Zhu et al., 2023).
There are two types of labels in sentiment anal-
ysis, that is, sentiment labels annotated by
the users themselves (hereinafter referred to as
self-reported sentiment) or by third-party human
coders (hereinafter referred to as third-party sen-
timent). It is known that self-reported sentiment
does not necessarily correspond to third-party
sentiment (Truong et al., 2012). In the ideal, sys-
tems should capture self-reported sentiment dur-
ing dialogue; however, self-reported sentiment are
not always expressed explicitly.
The key technique we focus on is one involv-
ing biosignals. Biosignals are often used in the
field of affective computing to detect emotional
changes. Among the biosignals, brain signals

recorded using an electroencephalogram (EEG)
sensor have often been used to study emotion
recognition (Alarcão and Fonseca, 2019). Many
studies have shown the potential of EEGs col-
lected in a controlled experimental environment.
Thus, we believe that EEGs are also useful for
detecting unexpressed sentiment of the user in a
human-agent dialogue; however, several issues
need to be addressed.
First, a human-agent dialogue dataset with an
EEG is needed to investigate the effectiveness of
EEGs. In this study, we used a patch-type EEG
sensor with three-channel measurement (Li et al.,
2019) for our multimodal data collection. The elec-
trode sheet of the sensor is designed to be attach-
able to a user’s forehead and is suitable for collect-
ing frontal EEGs during dialogue since it causes
neither disturbance nor discomfort.
Second, EEGs are susceptible to noise because
of their low amplitude (10–100 µV) (Teplan et al.,
2002). In particular, the frontal EEG is suscepti-
ble to eye-blink noise (eye-blink artifacts) (Urigüen
and Garcia-Zapirain, 2015). Thus, EEG denoising
is needed.
Third, it is necessary to investigate whether the
simple three-channel EEG sensor is effective for
self-reported sentiment estimation. Specifically,
comparing the effectiveness with that of other mul-
timodal information is needed. It is also neces-
sary to investigate whether the multimodal fusion
of frontal EEGs with other modalities contributes
to performance improvement in sentiment estima-
tion.
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In this study, we tackled these issues. The main
contributions of this work are as follows:

• We created a new multimodal human-agent
dialogue dataset with a frontal EEG toward
capturing unexpressed sentiment. Text, au-
diovisual, and physiological data are also in-
cluded. Both self-reported and third-party
sentiment labels are also collected at the ut-
terance level (Section 3).

• We proposed an EEG denoising method with
facial tracking for eye-blink noise removal.
This method improves the sentiment estima-
tion performance of the model on the basis of
the frontal EEG (Section 4 and 5.2).

• Finally, preliminary results of a multimodal
sentiment analysis are shown by using the
newly created dataset. We showed that the
fusion of EEGs and other modalities is ef-
fective for self-reported sentiment estimation
(Section 5.3).

2. Related Work
In this section, we briefly summarize the related
research, i.e., multimodal datasets, EEG datasets,
and denoising methods, and finally compare our
studies with previous ones.
Various datasets for multimodal sentiment anal-
ysis have been created since the early 2000s.
IEMOCAP (Busso et al., 2008) is a widely used
multimodal dataset that includes text and audiovi-
sual data collected from actors during scripted and
unscripted spoken communication. Other popular
datasets are MOSI (Zadeh et al., 2016) and MO-
SEI (Zadeh et al., 2018), which are based on the
monologues (such as movie reviews) of YouTube
speakers. MOSEI is a larger-scale dataset that
includes 23,453 sentences with third-party senti-
ment annotation. Also, other large-scale datasets
created are based on a monologue or dyadic
dialogue between humans (Poria et al., 2019;
Zadeh et al., 2020). Although datasets com-
prising human-agent dialogue are scarce, a few
datasets (McKeown et al., 2011; Komatani and
Okada, 2021) that include multimodal data during
human-agent dialogue exist.
There are several publicly available datasets that
include EEGs under emotional stimuli such as
the MAHNOB-HCI (Soleymani et al., 2011), DEAP
(Koelstra et al., 2011), and AMIGOS datasets.
(Miranda-Correa et al., 2021). AMIGOS in-
cludes EEGs collected from 40 participants with
a 14-channel headset during the movie-watching
task. Publicly available EEG datasets compris-
ing human-human dialogue are scarce except for
the K-EmoCon (Park et al., 2020) and PEGCONV
(Saffaryazdi et al., 2022) datasets, which have

been more recently created as multimodal dia-
logue datasets including EEGs. K-EmoCon in-
cludes audiovisual, accelerometer, frontal single-
channel EEG, and physiological data, collected
from 32 participants during a debate task. Emo-
tion annotations are based on self-reported, de-
bate partner, and third-party labels. PEGCONV
includes audiovisual, 16-channel EEG, and physi-
ological data collected from 23 participants. Each
emotion is induced by imagining, recalling, and ex-
pressing emotional memories, and annotated by a
self-reported questionnaire.
Various denoising methods have been developed
since EEGs have a lower amplitude than other bio-
signals. Blind source separation (BSS) has been
widely used in EEG noise removal to separate
target EEGs from noise-contaminated raw EEGs
(Urigüen and Garcia-Zapirain, 2015). Among
BSS methods, independent component analysis
(ICA) is a well-known algorithm that measures in-
dependence among the source signals (Comon,
1994). Variations of ICA, such as time-domain
ICA (TDICA, Lee, 1998), frequency-domain ICA
(FDICA, Smaragdis, 1998), independent vector
analysis (IVA, Kim et al., 2006) and indepen-
dent low-rank matrix analysis (ILRMA, Kitamura
et al., 2016), have been established (more ad-
vanced methods have been reviewed in Urigüen
and Garcia-Zapirain, 2015). Furthermore, meth-
ods based on wavelet transform (Chavez et al.,
2018) and empirical mode decomposition (Patel
et al., 2016) have been proposed. Deep-learning
based EEG denoising was also proposed in (Roy
et al., 2019; Zhang et al., 2021; Li et al., 2023).
Most denoising methods have been proposed un-
der the assumption that EEG data is collected us-
ing a multi-channel setup covering the entire scalp
in a controlled environment. Also, visual inspec-
tion of the processed data by neurologists is of-
ten needed. Furthermore, since biosignals are not
easy to distinguish from ground truth and noise,
simulated noise is also used for exploration.
Differences between previous studies and ours
are considered here. Although datasets con-
taining dialogue or EEG data have already been
created, those including dialogue and EEG data
are insufficient. In particular, EEGs collected in
human-agent dialogue are scarce. Thus, the cre-
ation of a dataset that includes EEGs during dia-
logue is first needed to explore estimation meth-
ods for capturing unexpressed sentiment.
Furthermore, in conjunction with dataset scarcity,
a denoising method for a simple frontal EEG dur-
ing dialogue has not yet been investigated in senti-
ment estimation. We propose a denoising method
that takes advantage of the multimodal data with-
out an additional learning model and show the ef-
fectiveness of the method in the sentiment estima-
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Figure 1: Data collection setup

tion task.

3. Data Collection with EEG
We newly created a multimodal human-agent di-
alogue dataset with frontal EEGs, Hazumi2306,
which will be released as an additional version of
themultimodal dialogue corpus Hazumi (Komatani
andOkada, 2021). Multimodal data were collected
from thirty participants with almost balanced gen-
ders (14 male and 16 female) and balanced ages
(20 to 70) recruited from the general public from
June to July 2023.
A human-agent chit-chat dialogue (dialogue ses-
sion) is the main core of this data collection. The
participants chatted with an agent operated by a
human operator. The human operator selected
an utterance prepared prior to the study and at-
tempted to make the participant enjoy the conver-
sation. About a dozen topics such as food prefer-
ence, traveling, and movies were prepared for the
dialogue.
The setup, including each device for multimodal
data collection with frontal EEGs, is shown in Fig-
ure 1, and the overall data collection flow is shown
in Figure 2. Multimodal data collection was con-
ducted in three sessions including resting, dia-
logue, and recall sessions. The dialogue and re-
call sessions were conducted in Japanese. Self-
reported annotation was conducted by the partici-
pants themselves after the recall session to collect
participants’ sentiment labels.
The experimental protocol was reviewed and
approved by the research ethics committee of
SANKEN, Osaka University, in May 2023. All par-
ticipants provided written informed consent to par-
ticipate in the study.

3.1. Setup
The main focus of this study is the collection of
brain signals using an EEG sensor withmultimodal
data in human-agent dialogue. We selected the
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Figure 2: Data collection flow

wearable patch-type EEG sensor HARU-21 (PGV
Inc., Tokyo, Japan) for collecting frontal EEGs.
This EEG sensor was released in 2022 (as the
successor to the HARU-1, which can pick up µV
brain signals in a manner comparable with tradi-
tional EEG equipment (Li et al., 2019)). After skin
cleaning, the EEG sensor was attached to the par-
ticipant’s forehead (Figure 1, depicted as “Frontal
EEG”) with a flexible stretchable electrode sheet
and conductive gel to prevent disturbance and dis-
comfort. The three-channel electrodes were posi-
tioned in close proximity to the Fpz, Fp1, and Fp2
positions on the forehead, and the reference elec-
trode was attached to the left mastoid (bone be-
hind the left ear). The sampling frequency was
250 Hz, and the room temperature was controlled
to be comfortable for the participant.
Other devices were set similarly to a previous
multimodal data collection (Komatani and Okada,
2021). In summary, the facial expressions and
voice were recorded using a video camera and
stored as mp4 files recorded at 30 fps. The sam-
pling rate of the audio recording was 44.1 kHz.
The Microsoft Kinect V2 sensor recorded voice,
depth information, and upper body posture. For
physiological signals, electrodermal activity (EDA,
4 Hz), blood volume pulse (BVP, 64 Hz), and skin
temperature (4 Hz) were collected by using an E4
wristband2 (Empatica Inc., Cambridge, MA, USA)
worn around the participant’s non-dominant wrist
(denoted as “E4 (physiological)” in Figure 1). The
system’s utterances and timestamps during the di-
alogue session were also logged.

3.2. Procedure
Multimodal data collection was composed of three
sessions (Figure 2). This subsection describes the
procedure of each session. The recording sum-
mary is shown in Table 1.

3.2.1. Resting Session
An EEG is characterized by low amplitude (µV),
and individual differences, and is difficult to pre-
pare the ground truth. Therefore, the resting ses-
sion was designed to validate frontal EEG data
collected from actual participants. We validated

1https://www.pgv.co.jp/en/
2https://www.empatica.com/research/e4/
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Number of participants 30 (M14/F16)
Resting session
Average duration 5.1 min
Total session duration 151.9 min

Dialogue session
Average duration 17.2 min
Total session duration 516.6 min
Total number of exchanges 2004
Annotations
- Self-reported sentiment per exchange
- Third-party sentiment per exchange
- Dialogue evaluations per participant
- Big-Five personality traits per participant

Recall session
Average duration 2.3 min
Total session duration 69.9 min

Dataset total 738.4 min

Table 1: Multimodal data collection summary. The
dataset includes text, audio, visual (face, depth,
posture), physiological signals (EDA, BVP, skin
temperature), and frontal EEGs.

the frontal EEG data in both the eyes-open and
-closed conditions to determine whether the eyes-
open condition induces α-attenuation (Barry et al.,
2007) in the frontal forehead region, as observed
in a previous study (Li et al., 2019). The partici-
pants were instructed to keep their eyes open for
30 seconds while looking at a fixation cross on the
display and then to keep their eyes closed for 30
seconds. This cycle was repeated 5 times (5 min-
utes in total). The collected data was also used
to evaluate the effectiveness of our proposed de-
noising method (mentioned in Section 4).

3.2.2. Dialogue Session
During the dialogue session, the participants chat-
ted with a virtual agent (MMDAgent3) shown on
a display, operated by a human operator using
the Wizard-of-Oz method (i.e., remotely control-
ling the system from another room). The partic-
ipants were not informed that the agent was re-
motely controlled by a human operator until the
end of the experiment. In the dialogue session,
we defined a small unit as a pair consisting of a
system utterance and user utterance, i.e., an ex-
change (Figure 3, the exchange is denoted as e).
Sentiment labels were annotated at the exchange
level after the session. More details on the dia-
logue session procedure were set up similarly to
those in previous studies (Komatani and Okada,
2021; Katada et al., 2023).

3.2.3. Recall Session
We also introduced a recall session, which is the
preliminary trial to analyze the relation between
positive sentiment and frontal EEGs. Prior to the

3http://www.mmdagent.jp/

User u�erance

System u�erance U�. U�. U�.

e1 e2 en

start

dialogue

end

dialogue

U�. U�. U�.

Exchange

Figure 3: Definition of exchange

1 2 3 4 5 6 7
Sentiment score

0

250

500

750

1000

Fr
eq

ue
nc

y SS
TS:F1
TS:F2
TS:F3
TS:F4
TS:M1

Figure 4: Distribution of the sentiment score. SS
(black) indicates self-reported sentiment score,
and TS (blue gradient color) indicates third-party
sentiment score, respectively. The two characters
after TS in legend denote annotator IDs.

study, the participants were instructed to prepare
a short talk (2 minutes) about something that they
had enjoyed recently. After the dialogue session,
the system prompted the participants to recall and
talk about it in a monologue style. In this way, we
explicitly collected frontal EEG data with positive
sentiment when participants talked about things
enjoyable for them.

3.3. Annotations and Questionnaires
We collected two types of sentiment labels in
dialogue sessions at the exchange level: self-
reported sentiment and third-party sentiment la-
bels. In particular, the self-reported sentiment la-
bel is the main focus of this study. The participants
themselves annotated the self-reported sentiment
labels after the recall session. They annotated
each exchange while watching their videos of the
dialogue session. The labels were assigned sub-
jective sentiment scores on a Likert scale ranging
from 1 (not enjoying the dialogue) to 7 (enjoying
the dialogue).
Third-party sentiment labels were annotated by
five annotators while watching the video of the di-
alogue session ranging from 1 to 7 on whether the
participant seemed to enjoy the dialogue. The dis-
tributions of the sentiment scores are shown in Fig-
ure 4. The agreement between the coder ratings
was calculated using Cronbach’s alpha, which was
0.88. This high value indicates a high consistency
of the annotations.
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Three kinds of questionnaires, namely pre-
dialogue evaluation (Q1, 18 items), post-dialogue
evaluation (Q2, 18 items), and Ten-Item Person-
ality Inventory (Oshio et al., 2012, Q3, 10 items)
were also collected. Q1 and Q2 are based on
(Kimura et al., 2005), which was derived from
(Bernieri et al., 1996). Q3 is what is called Big-
Five (Goldberg, 1990). The timing of each ques-
tionnaire assessment is depicted in Figure 2. More
details of the annotations and questionnaires were
set up similarly to those in (Komatani and Okada,
2021).

4. Proposed EEG Denoising
We propose a new eye-blink noise removal algo-
rithm for frontal EEGs denoising that takes advan-
tage of the multimodal information. The proposed
method is divided into two steps: video-EEG syn-
chronization (Section 4.1, Figure 5) and EEG de-
noising with facial tracking (Section 4.2, Figure 6).

4.1. Video-EEG Synchronization
The first step of the proposed denoising method
is synchronization between video and EEG data.
Although each stand-alone wireless device, such
as a video camera and EEG sensor, can be syn-
chronized by the Network Time Protocol before
measurement, there is no guarantee that all video
frames and EEG data are aligned accurately at
the millisecond level during measurement. Thus,
a synchronization method for alignment between
video and EEG data is needed for accurate anal-
ysis. Importantly, this step is essential to proceed
to the next step of the proposed method. The flow
of video-EEG synchronization is illustrated in Fig-
ure 5.

4.1.1. Eyelid Acceleration Calculation
The proposed method starts with video data seg-
mentation to extract the target region (Figure 5, up-
per left). The video data segmentation in this study
was performed at the exchange level on the basis
of the dialogue system log. Next, time-series eye-
lid acceleration is extracted using the OpenFace
library (Baltrusaitis et al., 2018), which can track
facial landmarks including the eyelid at the frame
level. Then, the frame-level eyelid acceleration is
resampled to EEG sampling frequency. EEG data
with margins of several seconds before and after
each exchange are also prepared (Figure 5, upper
right, orange).

4.1.2. Extraction of Synchronized EEG
To search for the EEG sequence corresponding to
the video data at the frame level, the eyelid accel-
eration sequence is slid across the prepared EEG
data from edge to edge while calculating the corre-
lation coefficient between the two sequences. Fol-
lowing this process, the maximum value of the cor-
relation coefficient is obtained when the eyelid ac-
celeration sequence is located in the correspond-
ing EEG region (Figure 5, lower right). Finally, the
corresponding EEG region is extracted by cutting
both ends, and a frame-level synchronized EEG
sequence is obtained (Figure 5, lower left).

4.2. EEG Denoising with Facial Tracking
Our proposed blink noise removal is achieved by
using eyelid acceleration sequence and the BSS
technique (Sawada et al., 2019).
One of the issues with applying BSS to EEG de-
noising is that we cannot determine the permuta-
tion of the blink noise signal. Let the observed sig-
nal be expressed as x(t), the separation matrix as
W , and output source estimates as y(t) = Wx(t).
The ICA family calculatesW under the assumption
that the source estimates are independent of each
other. When observed input signals derived from
the three channels are x1(t), x2(t), and x3(t) and
separated output signals by BSS are y1(t), y2(t),
and y3(t), it is impossible to automatically deter-
mine which output signal corresponds to the blink
noise signal only from the signals themselves.
However, as described in Section 4.1, a synchro-
nized eyelid acceleration sequence is obtained by
our proposed video-EEG synchronization. This
sequence can be used to determine the blink noise
signal automatically. That is, by calculating the
correlation coefficient between the eyelid acceler-
ation sequence and y1(t), y2(t), and y3(t), we can
identify the blink noise signals whose correlation
coefficients with the eyelid acceleration sequence
are higher than a threshold4.

4We set it to 0.2 in our experiment.
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Figure 6: EEG denoising by blink noise identification

An example of the proposed method is shown in
Figure 6. Around 30 seconds of frontal EEG data
during a resting session from three channels (EEG
Fpz, EEG Fp1, and EEG Fp2 corresponding to
x1(t), x2(t), and x3(t)) are shown in the top three
rows. The separated signals by BSS (IC1, IC2,
and IC3 corresponding to y1(t), y2(t), and y3(t))
are shown in the bottom three rows. The eyelid
acceleration sequence is depicted in the central
row. The eyelid acceleration sequence is aligned
with each sequence at the millisecond level. The
correlation coefficient between the eyelid acceler-
ation sequence and IC1, IC2, and IC3 is 0.073,
0.075, and 0.613, respectively. Thus, it is consid-
ered that IC3 corresponds to a blink noise signal,
and IC1 and IC2 do not. The details of the con-
figuration and evaluation are described in the next
section.

5. Evaluation
This section presents the effectiveness of our EEG
denoising method and frontal EEG features for
sentiment estimation in human-agent dialogue,
enabled by our newly created multimodal dataset.
Section 5.1 describes the evaluation settings in-
cluding EEG processing, multimodal processing,
and machine learning settings. Section 5.2 shows
the effects of our proposed EEG denoising method
(described in Section 4) on sentiment estimation.
Section 5.3 presents an evaluation of each modal-
ity in the unimodal and multimodal sentiment anal-
ysis using frontal EEGs.

5.1. Settings
5.1.1. EEG Processing and Configuration
The procedure described here is related to the
evaluation of the proposed denoising method
(Section 5.2).
The EEG processing consists of linear detrend-
ing, standardization (average of 0 and a variance
of 1), bandpass filtering (between 1 and 45 Hz),
and notch filtering (for 60 Hz hum noise), similar
to conventional methods. For the bandpass filter,
a zero-phase Butterworth filter was used. Short-
time Fourier transform (STFT) or inverse STFT

was used to convert to the frequency domain and
back to the time domain with a segment length of
256 and a stride length of 128.
For the eyelids sequence, video data of the dia-
logue session in 30 fps are segmented at the ex-
change level. The left and right eyelids’ accel-
eration was calculated from the velocity between
frames, averaged, and resampled to 250 Hz. The
stride length of the eyelid acceleration sequence
for searching the maximum values of the correla-
tion coefficient was 5.
To evaluate our proposed method, four types of
BSS methods, namely TDICA, FDICA, IVA, and
ILRMA are implemented (the details of each BSS
are described in Sawada et al., 2019).
After preprocessing in the time or frequency do-
main, blink noise signals were determined by the
method described in Section 4.2.
Then, the remaining source estimates are used for
the power calculation of each frequent bin in the
range of 1 to 45 Hz. The power value of source
estimates is averaged if there are two remaining
source estimates. Finally, the summation of the
power of each frequent bin is used as frontal EEG
features (45-dimensional vector in total).

5.1.2. Multimodal Analysis Settings
The settings described here are related to multi-
modal analysis (Section 5.3). The newly created
dataset was designed for collecting not only frontal
EEGs but also text, audio, visual, and physiologi-
cal information simultaneously (pentamodal in to-
tal). In summary, facial expression features as vi-
sual features were extracted by OpenFace from
segmented video data at the exchange level (66-
dimensional vector). Using the wav file derived
from the segmented video data, audio features
were extracted by openSMILE5 (384-dimensional
vector). The segmented wav file was used for au-
tomatic speech recognition (ASR) using Whisper
(Radford et al., 2023). The word error rate was
22.7%. Text derived from the ASR is represented
by pre-trained6 BERT (Devlin et al., 2019, 768-

5https://www.audeering.com/opensmile/
6https://github.com/cl-tohoku/bert-japanese
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dimensional vector).
Physiological signals (from the E4 wristband) were
synchronized by the acceleration log of the hand-
clapping, which was performed just before the
dialogue session. EDA statistics and a num-
ber of the galvanic skin responses in each ex-
change were extracted as physiological features
(14-dimensional vector). More details on feature
extraction were set up similarly to those in a previ-
ous study (Katada et al., 2023).

5.1.3. Machine Learning Settings
The settings described here are related to all eval-
uations (Sections 5.2 and 5.3). All evaluations
were performed as sentiment estimation using the
collected dialogue session data and self-reported
sentiment labels at the exchange level.
Linear support vector regression (Cristianini and
Shawe-Taylor, 2000) was used for the eval-
uation. Leave-one-person-out cross-validation
(LOPOCV) was performed for 30 participants.
That is, the samples (exchanges) from one par-
ticipant were used as test data, and the remain-
ing samples from 29 participants were used as
the training data. For the optimization, a threefold
cross-validation scheme was used for the train-
ing data set with the penalty parameters set as
{0.001, 0.01, 0.1, 1, 10, 100}, the insensitivity pa-
rameters set as {0, 0.5, 1}, and the maximum num-
ber of iterations set as 1000.
The machine learning settings for the multimodal
model evaluations were identical to those of the
unimodal ones for fair comparison. Multimodal fu-
sion was conducted by concatenating each feature
vector (so-called early fusion (Baltrušaitis et al.,
2018)), and inputting the support vector regression
with the same configuration as that of the unimodal
models. All combinations derived from five modal-
ities were evaluated, and thus 25 − 1 models were
evaluated in total.
We reported the average mean absolute error
(MAE) and Spearman correlation (Corr) in the
LOPOCV. All experiments were performed three
times, and the evaluation values were calculated
as averages across the three repetitions. The ma-
jority baseline for self-reported sentiment estima-
tion has an MAE of 1.166, which is calculated un-
der the assumption that the estimation value is al-
ways the average of the sentiment score of training
data.

5.2. Effectiveness of Denoising
Table 2 shows the regression performance in self-
reported sentiment estimation based only on the
frontal EEGs, to which our proposed denoising
methods with each BSS were applied. “None”
(the second row in Table 2) indicates no blink
noise removal. The proposed method with ILRMA

BSS method MAE Corr
None 1.187 0.181
TDICA 1.155 0.199
FDICA 1.249 0.195
IVA 1.208 0.182
ILRMA 1.145 0.200
Majority 1.166 -

Table 2: Frontal EEG-based self-reported senti-
ment estimation with proposed denoising method

Modality MAE Corr
T (Text) 1.096 0.274
A (Audio) 1.083 0.328
V (Visual) 1.227 0.088
P (Physiological) 1.220 0.149
B (Brain) 1.145 0.200
Majority 1.166 -

Table 3: Self-reported sentiment estimation with
unimodal models. Bold indicates the best perfor-
mance among all unimodal models.

achieved the best performance with an MAE of
1.145 and a Corr of 0.200 (the second row from
the bottom in Table 2). This performance is better
than the majority baseline (MAE of 1.166, the last
row in Table 2).

5.3. Sentiment Analysis with EEG
Table 3 presents the estimation performance us-
ing unimodal data. Among the unimodal models,
the model based on the audio feature achieved the
best performance (MAE of 1.083, Corr of 0.328).
The second best model is that based on text fea-
tures, followed by the frontal EEG feature (denoted
as “B (Brain)”). The frontal EEG feature, even
when used alone, is useful for the estimation.
We evaluated all multimodal models combining
features corresponding to each five modality (26
models in total). We reported representative
model performance that related to the best perfor-
mance (Table 4). Among the multimodal models,
a combination of the text (T), audio (A), and frontal
EEG (B) features achieved the best performance
in terms of Corr (0.338). In terms of MAE, a combi-
nation of the text (T), visual (V), physiological (P),
and frontal EEG (B) features achieved the best re-
sult (1.039). The frontal EEG (B) feature improves
estimation performance by combining the text (T)
or audio (A) features (rows 2 to 5 in Table 4), com-
pared with unimodal models in Table 3. This effect
is limited in quad (T, V, P, B, Corr of 0.309) or pen-
tamodal (T, A, V, P, B) models (rows 2 and 4 from
the bottom in Table 4).
The strong benchmark in self-reported estimation
is the estimation performance based on the human
(the last row in Table 4, derived from five human
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Modality MAE Corr
T, B 1.074 0.302
A, B 1.079 0.333
T, A 1.080 0.333
T, A, B 1.080 0.338
T, V, P 1.049 0.321
T, V, P, B 1.039 0.309
T, A, V, P 1.045 0.328
T, A, V, P, B 1.044 0.329
Human 1.038 0.387

Table 4: Self-reported sentiment estimation with
multimodal models. Bold indicates the best per-
formance among all multimodal models (26 multi-
modal models were evaluated in total).

annotators). Although there is still a gap in terms
of Corr, the best multimodal model has a perfor-
mance close to human in terms of MAE.

6. Discussion
The created dataset is particularly valuable for ex-
ploring the method that enables the dialogue sys-
tem to consider the user’s sentiment, even if it is
unexpressed. Further analysis of this dataset by
data scientists or EEG researchers can contribute
to the development of an adaptive dialogue sys-
tem.
One of the future issues for the denoising method
is that noise other than eye-blink, such as mus-
cle or cardiac noise (Urigüen and Garcia-Zapirain,
2015), is not removed in this study. Additionally,
since single-channel-based noise removal meth-
ods, such as wavelet transform (Chavez et al.,
2018) and empirical mode decomposition (Patel
et al., 2016), have been proposed, the compari-
son and combination of these techniques with our
proposed method are needed to evaluate under a
multimodal dialogue scenario.
Self-reported sentiment estimation in a strict
LOPOCV (user-independent) schema is a difficult
task even if frontal EEGs are introduced. Since
there are individual differences in brain activity
(Greene et al., 2022), one of the alternative ways
is user-dependent evaluation, i.e., using data de-
rived from the same user in both the training and
test phase. On the basis of the survey (Alarcão
and Fonseca, 2019), 43.5 percent of EEG studies
use user-dependent data. Although this schema
lacks generalizability, clearer effectiveness of the
frontal EEG may be observed.
Another point to consider is that combinations of
text, audio, and frontal EEGs can be useful for cap-
turing unexpressed sentiment. We have also ob-
served that physiological features contribute to re-
ducing the error rate when fusing text or audio fea-
tures (data not shown). Since self-reported senti-

ments may not necessarily be expressed through
text and audiovisual modalities, it is suggested that
EEGs and physiological signals, which are invol-
untarily regulated, can complement other modal-
ities. This observation is consistent with a previ-
ous study (Katada et al., 2023) that demonstrated
the effectiveness of physiological signals in self-
reported sentiment estimation. Since third-party
sentiment is based on text and audiovisual modal-
ities (but not on biosignals), a comparative eval-
uation of each modality in self-reported and third-
party sentiment estimation is an important area for
future research.
Applying the state-of-the-art model of multimodal
machine learning is also considered as future
work. As shown in Table 4, the performance im-
provement by fusing frontal EEG features is limited
in quad or pentamodal models (rows 2 and 4 from
the bottom in Table 4). Because only conventional
linear support vector regression was used for eval-
uation as a preliminary experiment, it seems that
theremay be no room for complementation if many
modalities are fused. Although various multimodal
models for third-party sentiment estimation have
been proposed recently (Zhu et al., 2023), explo-
ration of effective models for self-reported senti-
ment estimation with EEGs is still insufficient in
terms of learning methods and neural network ar-
chitectures. Thus, further investigation is needed
in parallel with the aforementioned points.
One limitation of our study is that EEG data is col-
lected using only three electrodes in a frontal po-
sition. Different emotional stimuli induce different
neural patterns in each brain region. For exam-
ple, neural patterns for negative emotions have
higher gamma responses at prefrontal sites, but
higher delta responses at parietal and occipital
sites (Zheng et al., 2017). Therefore, electrodes
covering the entire scalp are used for controlled
experiments. On the other hand, our aim in this pa-
per is to investigate whether the simple EEG sen-
sor can effectively capture the user’s sentiment,
as simple devices are easy to use in a variety of
applications, including dialogue. Thus, selecting a
device aligned with the research question is cru-
cial.
Another limitation is that it is unknown which of
the brain waves such as alpha, beta, and gamma
waves are related to the user’s sentiment in this
study. Since we also collected frontal EEG dur-
ing resting and recall sessions, a detailed analysis
of these data can clarify the relationship between
sentiment and frontal EEG.

7. Conclusion
In summary, we presented a new multimodal di-
alogue dataset that includes frontal brain activity
in human-agent dialogue. Together with this, we
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introduced an eye-blink noise removal technique
using video-EEG synchronization to deal with the
low amplitude of EEGs. Finally, preliminary results
of self-reported sentiment estimation were shown
to evaluate the potential of frontal EEGs. We are
convinced that this dataset is useful and unique for
the exploration of multimodal analysis with frontal
EEGs, and further investigation will contribute to
the dialogue system development, which can con-
sider the user’s unexpressed sentiment.
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