
LREC-COLING 2024, pages 3538–3552
20-25 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

3538

Combining Discourse Coherence with LLMs for More Robust and
Equitable Task-Oriented Dialogue

Katherine Atwell, Mert Inan, Anthony Sicilia, Malihe Alikhani
Northeastern University, Boston, MA

{atwell.ka, inan.m, sicilia.a, m.alikhani}@northeastern.edu

Abstract
Large language models (LLMs) are capable of generating coherent responses, but using LLMs to synchronously
generate responses is not yet feasible for many task-oriented systems, especially those deployed in production
environments to achieve user goals. We hypothesize that an offline generation approach using discourse theories,
formal grammar rules, and LLMs can allow us to generate human-like, coherent text in a more efficient, robust,
and equitable manner within a task-oriented setting. To this end, we present the first discourse-aware multimodal
task-oriented dialogue system that combines discourse theories with offline LLM generation. We deploy our system as
an app to the general public and keep track of the user ratings for six months. Our user ratings show an improvement
from 2.8 to 3.5 out of 5 with the introduction of discourse coherence theories. We also show that our model reduces
misunderstandings in the dialect of African-American Vernacular English from 93% to 57%. Further, we find that
100% of the responses generated with our offline generation method were rated as engaging or more engaging than
baseline utterances designed by humans. We release our code in a format that can be integrated into most existing
dialogue systems while maintaining compliance with terms of use.

Keywords: task-oriented dialogue, discourse coherence, multimodal , robust

1. Introduction

Effective collaboration between humans and con-
versational AI requires alignment of goals in each
round of dialogue. But it has been shown that large
language models (LLMs) can be distracted by irrele-
vant context (Shi et al., 2023). As powerful as these
models are, they struggle in goal-oriented settings.
The stochastic nature of LLMs necessitates placing
controls on the output in order to provide guaran-
tees on quality, relevance, correctness, or safety.
Thus, for deployed task-oriented systems, there is
still a need for modular, controllable dialogue sys-
tems to generate more effective, human-like, and
equitable responses.

In this work, we advocate for an offline approach
to dialogue generation grounded in discourse co-
herence theory (Hobbs, 1979; Hobbs et al., 1985;
Kehler, 2006), which provides a theoretical frame-
work for tracking context and goals within a dia-
logue. It has been argued that discourse coher-
ence theories can be used to interpret sentence
fragments within a dialogue (Schlangen and Las-
carides, 2003), track speaker commitments (Stone
and Lascarides, 2010), and resolve pronouns (Sto-
jnić et al., 2017). We show how, using principles
from discourse coherence theories, we simplify the
intent recognition problem for our system and de-
velop multiple repair strategies for grounding.

Most notably, we use state tracking information
from our discourse-aware dialogue management
system to fill in response templates generated of-
fline using a formal grammar. This allows us to
manually inspect our responses before they are

Figure 1: Three different areas of benefits of using
discourse theories for task-oriented dialogue sys-
tem design. Our model with discourse coherence
and LLMs is better at intent recognition, can ask
better clarification questions, and can respond with
more context awareness. Top box: A model with-
out a discourse framework can only understand
simple commands like "next," while our model can
understand more complex intents like "I did it." All
the utterances are given in pairs, where the filled
boxes represent our model’s response while the
empty boxes represent a simple dialogue system’s
response without any discourse framework.

presented to the user, and prevents our system
from prompting LLMs with real user data. This is
especially important in our domain, in which we



3539

intend to use LLMs to take users through intricate,
multi-step tasks in real time (i.e., imprecise control
of instruction generation can lead to fire hazards,
serious illness, or legal/financial trouble).

We present a discourse-aware task-oriented dia-
logue system, and describe our methods for offline
generation using a formal grammar and principles
from discourse coherence theories. We highlight
our main contributions below:

1. Use contextual features motivated by dis-
course theories to improve intent recognition
and state tracking.

2. Incorporate several critical grounding and re-
pair strategies using state tracking information
to achieve common ground with the user.

3. Implement a system of offline LLM genera-
tion using a formal grammar and discourse
coherence theory for inclusive and human-like
generation.

We evaluate our system and find that our
discourse-aware approach improves upon our
baseline intent model by a large margin, our clarifi-
cation and repair strategies appear to improve user
ratings, and our system mitigates automatic speech
recognition (ASR) biases for words or phrases
from underrepresented dialects such as African-
American Vernacular English (AAVE).

This system was deployed as part of the 2023
Alexa Prize TaskBot Challenge1 (Agichtein et al.,
2023), where thousands of users interacted with
our system. We release our code in a manner that
is compliant with the terms of the Alexa Prize, while
ensuring that our code can be adapted to most
existing dialogue systems2. The technical paper
for our work (Sicilia et al., 2023) is available on the
Alexa Prize website.

2. Related Work

Discourse coherence theories describe how units
of text relate to the context as a whole, going be-
yond even the sentence and utterance level. These
discourse units are linked to the existing context via
discourse relations. In some discourse frameworks,
these relations are hierarchical (Mann and Thomp-
son; Asher and Lascarides, 2003), while in others,
they are “shallow" (only occurring between individ-
ual units of text) (Prasad et al., 2008). In this work,
we focus on Segmented Discourse Representation
Theory (Asher and Lascarides, 2003), a discourse
framework in which the dialogue structure is repre-
sented as a graph. The first and most well-known

1https://www.amazon.science/
alexa-prize/taskbot-challenge

2https://github.com/katherine-atwell/
discourse-aware-offline-generation

SDRT-labeled dialogue corpus, the STAC corpus,
is composed of conversations and game moves be-
tween players in an online Settlers of Catan game
(Asher et al., 2016).

Task-oriented dialogue systems are designed
to assist users in completing a particular goal
(Fellows et al., 2022). These systems often use
external knowledge sources, such as databases
and APIs, to aid users in their task (Budzianowski
et al., 2018b; Rastogi et al., 2020; Young et al.,
2022). These chatbots are typically designed as
pipeline systems composed of natural language un-
derstanding (NLU), dialogue state tracking (DST),
dialogue management (DM), and neural response
generation (NRG) modules (Budzianowski et al.,
2018b; Rastogi et al., 2020; Zhang et al., 2020).
Some systems use an end-to-end approach, but
they typically require a large amount of training
data, which is expensive to obtain for many task-
oriented systems (Zhang et al., 2020), and often
require complex neural models. For many tasks
and systems in production (including our own), this
is infeasible. Thus, in this work we focus on a
pipeline approach to response generation using
discourse coherence theories.

Task-oriented dialogue systems have become
increasingly popular (Budzianowski et al., 2018a;
Zhang et al., 2020; Fellows et al., 2022). The clos-
est work to ours is Khalid et al. (2020), who use
discourse coherence relations for a referential com-
munication task. Though they find good results,
their system is designed for a different setting of
collaborative problem-solving and is not a system
that assists the user in completing a task, nor is
it multimodal. Building on these, we are design-
ing the first system, working with a variety of tasks,
combining LLMs and using them for parsing, us-
ing discourse for diversity, and proposing creative
repair strategies.

Further, we use discourse-level information to
deploy repair strategies, often using outputs from
LLMs. There are a few works that use discourse
relations to control the output of generative models.
Balakrishnan et al. (2019) add discourse relations
to the input of neural response generation (NLG)
models to better control the structure of generated
responses. Maskharashvili et al. (2021) find that
discourse relations markedly improve the outputs
of pretrained NLG models under limited data. How-
ever, these works generate responses on the fly,
which may be infeasible for systems that cannot
host large language models or make external API
calls without violating privacy restrictions.

3. Problem Setup

We design a dialogue system with the goal of as-
sisting users in completing various tasks, from

https://www.amazon.science/alexa-prize/taskbot-challenge
https://www.amazon.science/alexa-prize/taskbot-challenge
https://github.com/katherine-atwell/discourse-aware-offline-generation
https://github.com/katherine-atwell/discourse-aware-offline-generation


3540

Figure 2: Pipeline for offline natural language generation for our system.

recipes to DIY tasks. To retrieve relevant results,
the system queries a Whole Foods database (for
recipes) and WikiHow database (for DIY articles)
in its backend. These databases were provided
to our team by Amazon as part of the Alexa Prize
TaskBot Challenge. Once the user has chosen
a task, the system provides an overview of the
task and, when prompted, reads out each step to
the user. Our system is multimodal, and when de-
ployed on a multimodal app-based dialogue system,
users can interact with the system via voice input
or the touchscreen. We also provide a unimodal
dialogue system in the app where users must in-
teract with the system via voice. The user flow is
as follows: the users first search for a task, and
the bot queries its databases and provides results.
The user then chooses a task, and the system pro-
vides an overview of the task. Once the user is
ready to start, the system reads out each step one
by one, allowing the user to complete each step
before moving on to the next step. In the following
paragraph, we describe how we utilize discourse
and context to improve our system.

Progressing through a dialogue with our system
requires users to issue a series of requests; i.e., in
order to view the query results, the user must give
or select a search query, and in order to start a task,
the user must first select the desired task from the
list of query results. At any time, the user may say
“stop" to deactivate the bot. The task is considered
“complete" when the user indicates that they are
done, either by saying “complete" while working on
the task or by pressing the Complete button that
appears at the end of the task. A visualization of
the dialogue flow is depicted in Figure 3.

4. Incorporating Discourse into
Multimodal Task-Oriented Dialogue

To gain insight on the structure of our system’s con-
versations with users, during the initial stages of
system development we manually annotate user
conversations using the SDRT discourse frame-
work. An example of one such conversation is in
Appendix B. This conversation illustrates a pattern
we observe in every successful user dialogue: the
dialogue can be split up into four key stages, and
the interpretation of the user’s utterance should de-
pend in part on the current stage. These stages
are: Opening, Query & Results, Task Info, and
Completion, respectively. Figure 3 illustrates these
stages in more detail, along with screenshots from
the user interface.

We yield additional insights from these manually-
annotated discourse graphs. To progress through
the above stages, users can only make subordi-
nating discourse moves 3 that request a piece of
information or specific action from the bot. When
the user’s request is ambiguous or unsupported at
that stage, we wish to ground the users, e.g. with
help messages that let the user know what they
can request from the bot. These messages should
give examples of things users can say to request
a particular action from the bot. Thus, when de-
termining what action the bot should take next, we
can treat ambiguous intents the same way we treat
“invalid" intents (intents that cannot be directly ad-
dressed by our bot at that particular point in the
dialogue): by grounding the user with a help mes-
sage or context about a previous utterance. This
greatly reduces the number of “valid" intents or re-
sponses the model must check for at each turn.

By tracking the dialogue context and focusing on
desired discourse relations between our bot’s utter-

3ones which do not progress the conversation further



3541

Figure 3: Diagram depicting the user flow for our TaskBot, with screenshots of the UI at each stage. The
actions depicted in the arrows represent the user actions that must take place in order to progress to the
next stage.

User Utterance Stage Baseline Intent Label Context-Aware Intent Label
i’m thinking
of blueberry muffins Opening General QueryIntent

option two Query & Results General SelectIntent

the last step Task Info General PreviousIntent

Table 1: Instances where the baseline intent model does not predict the user intent correctly, but the
contextually-aware intent model does (note: these were not taken from real user conversations)

ance and the previous user utterance, we can thus
constrain the number of candidate intents at each
turn and simplify the question of 1) what the user’s
intent is (§4.1) and 2) whether to deploy a grounding
strategy (§4.1.1). We next introduce a novel formal
grammar that allows us to generate response candi-
dates offline and incorporate contextual information
during runtime (§4.2). This reduces repetition and
improves human-likeness in our bot’s responses,
while at the same time minimizing human effort and
allowing for complete control over the generated
text. We illustrate this approach in Figure 2, and
describe our methods in detail in the following sec-
tions. Note that, to preserve user privacy, none of
the sample dialogues or utterances in this paper
are pulled from real user dialogues. Rather, they
are based on common user queries and requests,
and multi-turn dialogues are simulated using our
bot.

4.1. Context-Aware Intent Recognition

When the user’s utterance is first processed, a
baseline few-shot intent recognition and slot-filling
model is run, which labels intents (and slots, if ap-
plicable) based on the utterance’s similarity to a
set of samples. Some intents can be easily recog-
nized by the baseline model, regardless of context,
such as Yes, No, and StopIntents. After running

the baseline model, we use dialogue state infor-
mation to run our context-aware intent recognition
model. Depending on the baseline intent and the
dialogue context, this may overwrite the baseline
intent model. We provide some examples of this
in Table 1. In the following, we describe several
heuristics used by our context-aware model to clas-
sify intents.
Opening When the user is in the Opening stage,
the only valid moves the user can make are to
provide their own search query or select a search
query from the menu. Thus, if the system deter-
mines that the user is not selecting an item (e.g.
“the first one"), it uses a series of heuristics (which
were iteratively designed based on user conver-
sations, domain knowledge, and article titles) to
determine whether the user’s utterance is likely to
be a query. For instance, if the user utters a noun
phrase (e.g. “cake recipes"), or uses a verb that
commonly occurs in how-to article titles (e.g. “pick
a lock"), the bot labels their utterance as a search
query and performs slot-filling using similar heuris-
tics.
Task Info During the Task Info stage, as with each
dialogue state, there is a set of intents deemed “ac-
ceptable" for the user - intents that yield discourse
relations with salient utterances. For instance, if
a bot has just finished reading out a step to the
user, this step is considered salient, as is the task



3542

User Query Response
thanksgiving
recipes

These recipes are sure to make your taste buds happy! Check out what I found on the Whole
Foods market place for your search on thanksgiving recipes: The top results are Squash and
cranberry stuffing with sage butter, Chocolate pecan pie, and Granny’s sweet potatoes with
peanut butter and marshmallows. If you want the highest rated, check out the first one, and for a
quick recipe, check out the third choice. Don’t forget to select an option, summarize it, or search
for something else!

how to play
tennis

Get ready to unleash your creativity! Check out these cool options I found on WikiHow for play
tennis: The top results are How to Play Tennis, How to Play a Tennis Tiebreaker, and How to Play
Ping Pong (Table Tennis). You can select an option, summarize an option, or search something
else.

start a gar-
den

Let’s make something awesome! Check out these ideas I found on WikiHow for start a garden:
The top results are How to Start a Flower Garden, How to Start a Vegetable Garden, and How to
Start a Garden. You can select an option, summarize an option, or search something else.

Table 2: Examples of bot responses generated from a formal grammar to list search results, as shown in
§4.2 (note: these were not taken from real user conversations).

overview. The requests a user is allowed to make
at this stage must relate to one of the salient bot
acts: either the current step or the overview of the
task as a whole. These include going to the next
step, going back to the previous step, going back to
the task summary page, and completing the task.
We use a simple rule-based classifier that uses key-
word matching strategies to predict these intents
when the baseline model fails, for instance “I did it"
or “I want to go to the next step". By constraining
the user intent candidates to those that form coher-
ent relations with salient dialogue context, we are
able to predict user intents with higher accuracy
(§ 5).

4.1.1. Choosing Repair Strategies

Below, we detail common repair strategies de-
ployed in our system (see Appendix C for exam-
ples).
Clarification questions Clarification questions
clarify a user’s goals, often in cases of suspected
automatic speech recognition (ASR) errors. If a
user’s intent or selection cannot be determined, the
bot compares the user’s utterance against a set
of contextually-relevant candidates. If one of the
candidates is similar to the user’s utterance, the
bot will ask the user if they meant that.
Question tracking When the bot has posed a
question that has not been answered by the user,
the user must provide a satisfactory answer to the
question for the dialogue to progress. If a satis-
factory answer is not provided, or the user’s intent
cannot be ascertained, the bot repeats the ques-
tion and outlines the types of responses that are
valid (e.g. “yes"/“no" answers). We refer to this
grounding strategy as question context.
Help messages The user intent cannot always
be mapped to one of the valid intent candidates,

whether because of an intent recognition error or
an unsupported user action at that stage. To han-
dle this, the bot generates help messages, which
tell the user that their utterance appeared not to fall
within the allowed intents, and suggest things the
user can say to facilitate grounding. These mes-
sages are generated using our offline generation
method, which we describe in the next section.

4.2. Context-Aware LLM-based Natural
Language Generation

Using our discourse-aware system and the dia-
logue management strategies above, we are able
to provide relevant responses for the user based on
the existing dialogue context. But how can we make
these responses human-like and prevent them from
sounding repetitive? One solution is to use LLMs
“on the fly", automatically generating live responses
to a user’s utterance. Recent utterance-level perfor-
mance improvements and human-likeness of end-
to-end LLMs such as GPT (Brown et al., 2020),
PaLM (Chowdhery et al., 2022), LLaMa (Touvron
et al., 2023), and AlexaTM (Soltan et al., 2022).
However, making API calls to a closed-source LLM
to generate a relevant response requires exposing
user utterances, and details of the conversation,
to a third-party system. Open-source alternatives,
meanwhile, are costly to house or to train. Regard-
less of the method, responses generated on the
fly cannot be manually inspected for quality, rel-
evance, and safety before they are presented to
the user. Thus, the responses could contain errors
or harmful content, or may not be relevant to the
conversation or user goals.

One way to mitigate this problem is to generate
LLM utterances offline, manually validating can-
didates before putting them into production. For
many dialogue acts, this strategy can be as simple



3543

Stage Message
Opening I’m sensing you might be a bit lost, or I could not understand you. This is our landing page.

What do you want to do together today? Try saying I want to start a garden.
Query &
Results

It looks like we need some help getting started. You can tap on the options on the screen. You’ll
need to select one of the tasks I have found to start working together. So, which task do you
want to do? As a reminder: Here are your previous options. The top results are How to Solve a
Cryptic Crossword, How to Finish a Crossword Puzzle, and How to Make Crossword Puzzles.
You can select an option, summarize an option, or search for something else.

Task Info It seems like either you or I might need a little guidance on what to do next. I was talking about
the steps of our task. If you want to hear it again, you can ask me to repeat it.

Table 3: Examples of help messages generated from a formal grammar for different stages, as described
in §4.2

Figure 4: Seven day averages for user ratings over the course of deployment. Notable events, such as
changes to the user base or features added, are marked on the dates they occurred. On September 5th,
we stop adding new features, and we analyze conversations from this day onward.

as generating preambles, postambles, and other
stand-alone utterances, then inserting them pro-
grammatically into the symbolically planned text
outputs (i.e., planned using our discourse-aware
intent and management strategies). Unfortunately,
this limits the structure and diversity of the gen-
erated text, making it infeasible for dialogue acts
which are more context-sensitive. The main chal-
lenge arises because of key lexical, semantic, and
structural constraints imposed on the generation
by the system’s symbolic components:

1. A symbolic algorithm will process the users’
next utterance, so clear communication of pos-
sible “next steps” to the user and how to trigger
these steps is important.

2. Programmatic insertion of outputs from the sys-
tem’s symbolic generation components must
be possible, e.g., retrieved articles and attribu-
tion in the case of displaying search results.

3. Any necessary components of the generation
(e.g., content attribution) should be present.

4. The user’s query cannot be provided to the
(third-party) LLM to preserve user privacy.

To accommodate generation under these con-
straints, we propose to use formal grammars
(Chomsky, 1956). A formal grammar is a model of
language defined by the following components.

Terminals: a set which defines the base alphabet
or vocabulary for the grammar (we modify this
slightly to increase stochasticity, asking the LLM
to generate these itself)
Variables: can take on different combinations
from the terminal alphabet
Production Rules: describe how to go from the
start symbol (a special variable) to other variables,
and then to the terminals, which in the end, should
form a full utterance in the grammar.

We propose two strategies using formal grammars
to generate offline: (1) we directly prompt gpt-
3.5-turbo with the grammar’s rules, asking this
LLM to generate according to these rules or (2) we
use gpt-3.5-turbo to generate terminals only,
sampling from the grammar based on the produc-
tion rules and variables programmatically. These
approaches are discussed in greater detail, and
prompt templates are released in full, in Appendix
D.1 and 4.2.1, respectively. Examples of outputs
produced by our method for search results and help
messages can be found in Table 2 and 3.

4.2.1. Using GPT-3.5 to Generate Terminals
Only

Help messages guide the users when they are lost,
and thus require contextual awareness to let the



3544

user know what actions they can perform based on
the current state of the conversation. To generate
these messages, we employ a set of grammatical
rules and templates. They are based on the current
state and the response that is shown to the user.

Similar to the above section, we generate help
messages based on formal grammatical rules. For
help messages, rather than supplying rules within
the prompt to an LLM like gpt-3.5-turbo, we
instead use human effort to design the grammar’s
production rules and variables, automating only
the generation of terminals (i.e., using gpt-3.5-
turbo with some human supervision). The ran-
domly generated terminals can then be combined
using simple deterministic algorithms.

For example, one grammatical rule for generating
help messages is the following:

start → confused + eurekaIntj +
info + whatWantDoQ

where ‘+’ denotes concatenation and all other terms
are variables. gpt-3.5-turbo can then generate
multiple terminals that map directly to each variable
with human supervision; e.g.,

confused → Hmm, it looks like we need
some help getting started.
confused → You don’t know what to do,
right?
confused → I’m having trouble under-
standing you.
. . .

After randomly generating terminals, we can exe-
cute rules with a simple deterministic algorithm. So,
a full help message corresponding to the rule from
before could look like:

Hmm, it looks like we need some help
getting started. Aha! You can ask me to
help you make a recipe or do a DIY task.
What would you like to do today?

A high degree of stochasticity comes from having
gpt-3.5-turbo generate multiple potential ter-
minal values for each variable, making the help
messages appear more human-like.

5. Results

We comprehensively evaluate our system by de-
ploying it to users over six months and collecting
overall satisfaction ratings. Our system was de-
ployed to thousands of users over the course of this
six-month period as part of the Alexa Prize TaskBot
Challenge, where it was advertised to users with
Echo Show devices. We use these ratings and user
conversations to iteratively improve our system’s
capabilities to adapt to users’ needs during the first
five months and evaluate our system over the last

month of deployment. We find evidence suggesting
that our clarification strategies improve user experi-
ence and that incorporating conversational context
into our system improves our intent model. Our
evaluations also indicate that our neurosymbolic,
offline generation approach yields varied, human-
like utterances without needing external API calls.

Below, we show the progression of the user rat-
ings throughout the deployment, highlighting dates
where significant feature changes and user demo-
graphic changes occurred. We then provide a re-
gression analysis of user data from the last month
of deployment (where no additional changes to the
bot were made) to evaluate the effectiveness of our
discourse- and context-aware grounding strategies.
Finally, we use manual annotations to analyze the
effectiveness of our strategy for intent modeling
and language generation. We present these re-
sults below, and provide further discussion in §6.

5.1. User Ratings

We track the user ratings throughout the deploy-
ment of our system, starting April 14, 2023, and
ending October 12, 2023. The users are asked to
rate their overall satisfaction after interacting with
the bot on a scale from 1 to 5 and provide additional
feedback if applicable.

Figure 4 showcases how these scores evolved
throughout the deployment. It is marked with rel-
evant events, including the beginning of internal
testing and our bot’s release to the general public.

We observe that ratings improve after 1) releas-
ing the bot to a general audience, 2) incorporating
our generation strategy using formal grammar, and
3) the UI overhaul. Note that changes may take
up to a week to be reflected on the graph, which
plots seven-day averages. Further, the makeup of
the system’s user base changed throughout the de-
ployment, as Amazon ran advertising campaigns
throughout which included themed events. An ex-
ample of this is the improvement in results during
internal testing, followed by a significant drop in
ratings when the system was released to the pub-
lic. Because the system was advertised to a large
number of users with Echo Show devices, users
were frequently directed to the Alexa Prize TaskBot
Challenge bots without a clear idea of their capa-
bilities. An example of this which was commonly
found in conversational transcripts occurred when
users asked Alexa to turn on the lights, check the
time, or play a video. Due to the presence of these
confounders throughout the competition, in §6 we
perform a regression analysis on the last month
of ratings (starting with “End of Updates" on the
ratings plot) to analyze the impact of individual fea-
tures more closely.



3545

Figure 5: Linear regression model predicting user
ratings based on the above factors.

5.2. Regression Analysis
We conduct a regression analysis to disentangle
the effects of different features on user ratings. For
this analysis, we use the statsmodels package.
We analyze the set of rated conversations between
September 4 and October 4 for a total of 569 rated
conversations. Each data point represents a con-
versation, and our coefficients are calculated at
the conversation level. Although we experimented
with both linear and non-linear models, we show-
case the results of our linear regression analysis,
which resulted in the greatest reduction of error. We
present the results of our linear regression analysis
in Figure 5. We briefly describe each coefficient
below.

completed: whether the user completed a task
during the conversation.
question asked: whether the bot asked a ques-
tion at some point during the conversation
question context: whether the bot had to repeat
a question to a user at any point during the conver-
sation (see the last bot response in the Question
Tracking Figure 7).
general intent predicted by baseline: whether
the baseline (non-contextually-aware) intent
model predicted a “general" intent during the con-
versation
help message: whether the bot issued a help
message during the conversation (Figure 7)
multimodal: whether the user was using a multi-
modal device (as opposed to headless)
average number of words: average number of
words the user utters per turn during the conver-
sation

We are interested in measuring the efficacy of our
grounding strategies. completed, general intent
predicted by baseline, multimodal, and average
number of words serve as potential confounders
which we control for. These results show that the
coefficients most likely to improve ratings are com-
pleted and question asked. We discuss these
results, and their implications, more in §6.

We also find evidence that help messages may
improve ratings, but these results are insignificant.

5.3. Manual Evaluation
We perform manual annotations for the intent recog-
nition and generation modules to measure the spe-
cific performances of our context-aware models.

Context-Aware Intent Labeling To evaluate our
context-aware intent labeling strategies described
in §4.1 compared to the baseline intent model, ut-
terances from user conversations are randomly se-
lected and stratified between positive and negative
predictions so an equal amount of each is labeled.
Our contextual model shows an improved average
between precision and recall for each intent, as well
as improvements in precision and recall for each
intent except QA (precision) and Select (precision)
(Table 4).

LLM Generation with Formal Grammar Using
the formal grammar rules described in §4.2, we
prompt gpt-3.5-turbo to output 70 responses
designed to convey search results to a user. Our
manual evaluation of LLM-generated text using for-
mal grammar shows that 86% of generated utter-
ances met all of the constraints given in our gram-
mar. We also found that 100% were as engaging or
more engaging than baseline utterances designed
by humans. Further, themes or partial utterances
were repeated across only 31% of the generations
based on human evaluation.

6. Discussion

Here, we interpret our results from the previous sec-
tion and enumerate the benefits of our discourse-
aware strategies for intent recognition, user satis-
faction, and human-likeness. We also discuss the
impacts on inclusivity, privacy, and safety.

Contextually-aware intent labeling improves in-
tent recognition and may mitigate bias Based
on the results in Table 4, our contextually-aware
intent model outperforms the baseline by a large
margin for both precision and recall. Thus, utilizing
our context-aware model improves intent recogni-
tion performance over using a baseline context-
agnostic model. In the following, we examine how
a speaker’s dialogue may affect these results.

It is known that current automatic speech recog-
nition (ASR) systems hold a number of racial, cul-
tural, and social biases, as well as biases towards
women and disabled people (Ngueajio and Wash-
ington, 2022). We perform a preliminary manual
evaluation to determine the accuracy of the intent
model for the African-American Vernacular English
(AAVE) keyword “wanna", compared to the stan-
dard English counterpart, “want to".

We find that the baseline intent model correctly
recognizes the intent for the word “want to" 100%



3546

Query Select QA Back Help Step Nav. Stop Complete

Without Context P 0.66 1.0 0.50 0.56 0.00 0.83 0.33 0.67
R 0.48 0.21 0.06 0.56 0.00 0.47 0.41 0.51

With Context P 0.70 0.74 0.30 0.74 0.42 0.91 0.77 0.74
R 0.88 0.97 0.88 0.60 0.91 0.67 0.45 0.72

Table 4: Precision (P) and Recall (R) for user intent recognition (W/) and without (W/O) our discourse-
aware approach, based on human evaluation of a random sample of user utterances.

of the time, but only 7% for “wanna" - a 93% per-
formance gap. Our context-aware intent model,
however, classifies the correct intent for 43% of the
“wanna" instances, while maintaining 100% correct-
ness for the “want to" instances. This drops the
performance gap from 93% to 57%, a 36% reduc-
tion. As this evaluation shows, there still exists
a significant performance gap between these two
keywords; however, deploying our model reduces
this gap.

Clarification strategies improve user satisfac-
tion Our regression analysis results (Figure 5)
indicate that asking a question to the user signifi-
cantly improves ratings (p > 0.1) by over 0.5 points.
We disambiguate the instances where question
context must be provided, as this indicates that the
user answered the bot’s question incorrectly and
may be uncooperative or become frustrated. We
find that providing question context leads to a sig-
nificant decrease in ratings when conditioned upon
question-asking, but question-asking as a whole
improves ratings.

Discourse allows us to incorporate LLMs to
generate human-like dialogue in a privacy-pre-
serving manner In Figure 4, we see that adding
formal grammar to our model results in an upswing
in user ratings. As this phenomenon could be due
to multiple factors, we perform additional human
evaluation to determine the human-likeness of the
generated text. From the results in Section 5.3,
we find that the generated text is able to conform
to the constraints of the grammar, while still being
human-like and avoiding repetition.

We also view the regression results in Section
5.2 to be a positive sign, given how high the help
messages coefficient is. While this effect size is not
statistically significant, the ordinary least squares
coefficient estimates we use are unbiased.4

By prompting large language models to create
templates offline without user data, and using con-
versational context to fill in the templated responses
in real-time, we make the best use of LLMs without
exposing user information to third-party APIs. This

4This is true whenever the mean of the error distribu-
tion is 0, which we verify empirically: the mean error of
our model is xyz.

allows systems that cannot host language mod-
els themselves to preserve user privacy while still
producing varied, human-like responses.

Our discourse-aware strategies result in a safe,
reliable system Along with quality control issues,
LLM-generated text comes with safety concerns
(Zhiheng et al., 2023). Because we are not gener-
ating task information on the fly, our main vulnera-
bilities regarding safety are 1) how we respond to
harmful or dangerous user queries and 2) whether
any safety issues exist in the articles we show to
users. At any point during our system’s deploy-
ment, if dangerous content is shown to a user, our
bot is deactivated for 24 hours and can be reac-
tivated only after a fix is made that prevents this
content from showing up in the future. To address
potential safety issues, we use different techniques
for different contexts; we use classifiers to detect
dangerous user queries, and we have separate
lists of guardrails for article titles and article steps.
These guardrails were developed based on detailed
searches of the databases, and were iteratively
added as needed over the course of deployment.
Using our safety techniques in combination with
the rest of our techniques, we were able to achieve
93% uptime over the course of deployment.

7. Conclusion

In this work, our goal was to study how discourse co-
herence theories in combination with LLMs can em-
power task-oriented dialogue systems to be more
robust, aligned with user goals, and effective with
diverse populations. Using a combination of man-
ual analysis and user ratings collected over six
months, we find support for our approach, which
yields improvements in intent recognition and user
ratings while reducing manual labor required to cre-
ate response candidates. Including more theory-
informed approaches in multimodal interactive sys-
tems in the future will enable us to explore the po-
tential of LLMs in designing human-level conversa-
tional systems.



3547

8. Acknowledgements

We would like to thank the Alexa Prize Taskbot Chal-
lenge team, especially Lavina Vaz, and Michael
Johnston for helping us throughout the competition,
and for giving us the opportunity and the resources
to develop and deploy our system to a large au-
dience of users. We would also like to thank our
team members: Yuya Asano, Sabit Hassan, Dipunj
Gupta, Paras Sharma, Jennifer Nwogu, and Qi
Cheng.

9. Bibliographical References

Eugene Agichtein, Michael Johnston, Anna Got-
tardi, Lavina Vaz, Cris Flagg, Yao Lu, Shao-
hua Liu, Sattvik Sahai, Giuseppe Castellucci,
Jason Ingyu Choi, Prasoon Goyal, Di Jin, Saar
Kuzi, Nikhita Vedula, Lucy Hu, Samyuth Sagi,
Luke Dai, Hangjie Shi, Zhejia Yang, Desheng
Zhang, Chao Zhang, Daniel Pressel, Heather
Rocker, Leslie Ball, Osman Ipek, Kate Bland,
James Jeun, Oleg Rokhlenko, Akshaya Iyen-
gar, Arindam Mandal, Yoelle Maarek, and Reza
Ghanadan. 2023. Advancing conversational task
assistance: the second alexa prize taskbot chal-
lenge. In Alexa Prize TaskBot Challenge 2 Pro-
ceedings.

Nicholas Asher and Alex Lascarides. 2003. Logics
of conversation. Cambridge University Press.

Anusha Balakrishnan, Jinfeng Rao, Kartikeya Up-
asani, Michael White, and Rajen Subba. 2019.
Constrained decoding for neural NLG from com-
positional representations in task-oriented dia-
logue. In Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics,
pages 831–844, Florence, Italy. Association for
Computational Linguistics.

Tom B. Brown, Benjamin Mann, Nick Ryder,
Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish
Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse,
Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher
Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language
models are few-shot learners.

Paweł Budzianowski, Tsung-Hsien Wen, Bo-
Hsiang Tseng, Iñigo Casanueva, Stefan Ultes,
Osman Ramadan, and Milica Gašić. 2018a. Mul-
tiWOZ - a large-scale multi-domain Wizard-of-Oz

dataset for task-oriented dialogue modelling. In
Proceedings of the 2018 Conference on Empir-
ical Methods in Natural Language Processing,
pages 5016–5026, Brussels, Belgium. Associa-
tion for Computational Linguistics.

Paweł Budzianowski, Tsung-Hsien Wen, Bo-
Hsiang Tseng, Iñigo Casanueva, Stefan Ultes,
Osman Ramadan, and Milica Gasic. 2018b.
Multiwoz-a large-scale multi-domain wizard-of-
oz dataset for task-oriented dialogue modelling.
In Proceedings of the 2018 Conference on Em-
pirical Methods in Natural Language Processing,
pages 5016–5026.

Noam Chomsky. 1956. Three models for the de-
scription of language. IRE Transactions on infor-
mation theory, 2(3):113–124.

Aakanksha Chowdhery, Sharan Narang, Jacob
Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung,
Charles Sutton, Sebastian Gehrmann, Parker
Schuh, Kensen Shi, Sasha Tsvyashchenko,
Joshua Maynez, Abhishek Rao, Parker Barnes,
Yi Tay, Noam Shazeer, Vinodkumar Prab-
hakaran, Emily Reif, Nan Du, Ben Hutchinson,
Reiner Pope, James Bradbury, Jacob Austin,
Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier Gar-
cia, Vedant Misra, Kevin Robinson, Liam Fe-
dus, Denny Zhou, Daphne Ippolito, David Luan,
Hyeontaek Lim, Barret Zoph, Alexander Spiri-
donov, Ryan Sepassi, David Dohan, Shivani
Agrawal, Mark Omernick, Andrew M. Dai, Thanu-
malayan Sankaranarayana Pillai, Marie Pellat,
Aitor Lewkowycz, Erica Moreira, Rewon Child,
Oleksandr Polozov, Katherine Lee, Zongwei
Zhou, Xuezhi Wang, Brennan Saeta, Mark Diaz,
Orhan Firat, Michele Catasta, Jason Wei, Kathy
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav
Petrov, and Noah Fiedel. 2022. Palm: Scaling
language modeling with pathways.

Ryan Fellows, Hisham Ihshaish, Steve Battle, Cia-
ran Haines, Peter Mayhew, J Ignacio Deza, et al.
2022. Task-oriented dialogue systems: Perfor-
mance vs quality-optima, a review. In CS & IT
Conference Proceedings, volume 12. CS & IT
Conference Proceedings.

Jerry R Hobbs. 1979. Coherence and coreference.
Cognitive science, 3(1):67–90.

Jerry R Hobbs et al. 1985. On the coherence and
structure of discourse, volume 208. CSLI Stan-
ford, CA.

Julie Hunter, Nicholas Asher, and Alex Lascarides.
2018. A formal semantics for situated conversa-
tion. Semantics and Pragmatics, 11:10–EA.

https://www.amazon.science/alexa-prize/proceedings/alexa-lets-work-together-introducing-the-second-alexa-prize-taskbot-challenge
https://www.amazon.science/alexa-prize/proceedings/alexa-lets-work-together-introducing-the-second-alexa-prize-taskbot-challenge
https://www.amazon.science/alexa-prize/proceedings/alexa-lets-work-together-introducing-the-second-alexa-prize-taskbot-challenge
https://doi.org/10.18653/v1/P19-1080
https://doi.org/10.18653/v1/P19-1080
https://doi.org/10.18653/v1/P19-1080
http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2005.14165
https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/D18-1547
http://arxiv.org/abs/2204.02311
http://arxiv.org/abs/2204.02311


3548

Andrew Kehler. 2006. Discourse coherence. The
handbook of pragmatics, pages 241–265.

Baber Khalid, Malihe Alikhani, Michael Fellner,
Brian McMahan, and Matthew Stone. 2020. Dis-
course coherence, reference grounding and goal
oriented dialogue. In Proceedings of the 24th
Workshop on the Semantics and Pragmatics of
Dialogue.

William C Mann and Sandra A Thompson. Rhetor-
ical structure theory: Description and construc-
tion of text structures. In Natural language gen-
eration: New results in artificial intelligence, psy-
chology and linguistics, pages 85–95. Springer.

Aleksandre Maskharashvili, Symon Stevens-Guille,
Xintong Li, and Michael White. 2021. Neural
methodius revisited: Do discourse relations help
with pre-trained models too? In Proceedings
of the 14th International Conference on Natural
Language Generation, pages 12–23, Aberdeen,
Scotland, UK. Association for Computational Lin-
guistics.

Mikel K Ngueajio and Gloria Washington. 2022.
Hey asr system! why aren’t you more inclusive?
automatic speech recognition systems’ bias and
proposed bias mitigation techniques. a literature
review. In International Conference on Human-
Computer Interaction, pages 421–440. Springer.

Rashmi Prasad, Nikhil Dinesh, Alan Lee, Eleni Milt-
sakaki, Livio Robaldo, Aravind Joshi, and Bonnie
Webber. 2008. The Penn Discourse TreeBank
2.0. In Proceedings of the Sixth International
Conference on Language Resources and Evalu-
ation (LREC’08), Marrakech, Morocco. European
Language Resources Association (ELRA).

Abhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara,
Raghav Gupta, and Pranav Khaitan. 2020.
Towards scalable multi-domain conversational
agents: The schema-guided dialogue dataset. In
Proceedings of the AAAI conference on artificial
intelligence, volume 34, pages 8689–8696.

David Schlangen and Alex Lascarides. 2003. The
interpretation of non-sentential utterances in di-
alogue. In Proceedings of the Fourth SIGdial
Workshop of Discourse and Dialogue, pages 62–
71.

Freda Shi, Xinyun Chen, Kanishka Misra, Nathan
Scales, David Dohan, Ed H Chi, Nathanael
Schärli, and Denny Zhou. 2023. Large language
models can be easily distracted by irrelevant con-
text. In International Conference on Machine
Learning, pages 31210–31227. PMLR.

Anthony Sicilia, Yuya Asano, Katherine Atwell,
Qi Cheng, Dipunj Gupta, Sabit Hassan, Mert

Inan, Jennifer Nwogu, Paras Sharma, and Malihe
Alikhani. 2023. Isabel: An inclusive and collab-
orative task-oriented dialogue system. In Alexa
Prize TaskBot Challenge 2 Proceedings.

Saleh Soltan, Shankar Ananthakrishnan, Jack
FitzGerald, Rahul Gupta, Wael Hamza, Haidar
Khan, Charith Peris, Stephen Rawls, Andy
Rosenbaum, Anna Rumshisky, Chandana Satya
Prakash, Mukund Sridhar, Fabian Triefenbach,
Apurv Verma, Gokhan Tur, and Prem Natarajan.
2022. Alexatm 20b: Few-shot learning using a
large-scale multilingual seq2seq model.

Una Stojnić, Matthew Stone, and Ernie Lepore.
2017. Discourse and logical form: Pronouns,
attention and coherence. Linguistics and Philos-
ophy, 40:519–547.

Matthew Stone and Alex Lascarides. 2010. Coher-
ence and rationality in grounding. In Proceed-
ings of the 14th Workshop on the Semantics and
Pragmatics of Dialogue, pages 51–58. Poznán
Poland.

Hugo Touvron, Thibaut Lavril, Gautier Izacard,
Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric
Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume
Lample. 2023. Llama: Open and efficient foun-
dation language models.

Tom Young, Frank Xing, Vlad Pandelea, Jinjie Ni,
and Erik Cambria. 2022. Fusing task-oriented
and open-domain dialogues in conversational
agents. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 36, pages
11622–11629.

Zheng Zhang, Ryuichi Takanobu, Qi Zhu, MinLie
Huang, and XiaoYan Zhu. 2020. Recent ad-
vances and challenges in task-oriented dialog
systems. Science China Technological Sciences,
63(10):2011–2027.

Xi Zhiheng, Zheng Rui, and Gui Tao. 2023. Safety
and ethical concerns of large language models.
In Proceedings of the 22nd Chinese National
Conference on Computational Linguistics (Vol-
ume 4: Tutorial Abstracts), pages 9–16, Harbin,
China. Chinese Information Processing Society
of China.

10. Language Resource References

Nicholas Asher, Julie Hunter, Mathieu Morey, Bena-
mara Farah, and Stergos Afantenos. 2016. Dis-
course structure and dialogue acts in multiparty

https://aclanthology.org/2021.inlg-1.2
https://aclanthology.org/2021.inlg-1.2
https://aclanthology.org/2021.inlg-1.2
http://www.lrec-conf.org/proceedings/lrec2008/pdf/754_paper.pdf
http://www.lrec-conf.org/proceedings/lrec2008/pdf/754_paper.pdf
https://aclanthology.org/W03-2106
https://aclanthology.org/W03-2106
https://aclanthology.org/W03-2106
https://www.amazon.science/alexa-prize/proceedings/isabel-an-inclusive-and-collaborative-task-oriented-dialogue-system
https://www.amazon.science/alexa-prize/proceedings/isabel-an-inclusive-and-collaborative-task-oriented-dialogue-system
http://arxiv.org/abs/2208.01448
http://arxiv.org/abs/2208.01448
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
https://aclanthology.org/2023.ccl-4.2
https://aclanthology.org/2023.ccl-4.2
https://aclanthology.org/L16-1432
https://aclanthology.org/L16-1432


3549

dialogue: the STAC corpus. In Proceedings of the
Tenth International Conference on Language Re-
sources and Evaluation (LREC’16), pages 2721–
2727, Portorož, Slovenia. European Language
Resources Association (ELRA).

A. The STAC Corpus

The STAC corpus is an SDRT-labeled corpus which
contains conversations and game moves from on-
line Settlers of Catan games (Asher et al., 2016).
Thus, the STAC corpus contains relations between
linguistic (chats) and non-linguistic acts (game
moves). Table 5“‘ shows an example from Hunter
et al. (2018) of such relations; in turn 434, for
instance, GWFS types “noooo!", referring to the
game move depicted in 433.0.4, where william mo-
nopolizes wheat. As such, a Comment relation
holds between the game move (a nonlinguistic
event) and the utterance (a linguistic event). In
the STAC corpus, all game moves are part of the
“core" of the discourse structure, and would all re-
main connected to one another even if the chat
moves were removed from the graph. However,
as we will explain further below, some linguistic
and nonlinguistic events from the user may rep-
resent the same moves when interacting with our
TaskBot. Further, many TaskBot turns contain a
combination of linguistic utterances and multimodal
displays within the same turn.

433.0.3 Server william played a Monopoly
card

433.0.4 Server william monopolized
wheat

433.0.5 Server It’s william’s turn to roll the
dice.

434 GWFS noooo!
435 Server william rolled a 2 and a 1.
436 Server GWFS gets 1 sheep. LJAY

gets 2 wood. TK gets 2
wood.

436.0.0.1 UI GWFS has 4 resources.
LJAY has 3 resources.
william has 13 resources.

437 GWFS greedy :D
438 william :D
439 GWFS spend it wisely then
440 LJAY :)
441 LJAY 13! :o

Table 5: A sample conversation from the STAC
corpus (Asher et al., 2016) in which discourse re-
lations hold between linguistic events (e.g. chats)
and non-linguistic events (e.g. game moves)

B. A Discourse Analysis of Our
System’s Task-Oriented Dialogues

In annotating the discourse structure of our sys-
tem’s dialogues, we arrive at several conclusions.
We describe these conclusions below, and delve
into a conversation that exemplifies these conclu-
sions.

1. There can only exist subordinating relations
(relations which do not move the dialogue for-
ward) between a user’s utterance and the pre-
ceding dialogue. This is consistent with the
nature of our task, as only the TaskBot’s ut-
terances move the dialogue forward and the
user’s utterances serve as questions or re-
quests for information.

2. Each TaskBot stage connects to the previous
stage via a Result relation.

3. Turns which involve changes to the multimodal
interface must hold a coordinating relation (re-
lations which move the dialogue forward) with
a discourse unit in the preceding dialogue.

A sample conversation between a user and our
bot can be found in Table 6, and the corresponding
discourse graph (using the SDRT framework) can
be found in Figure 6.

C. Grounding Strategy Examples

D. LLM-generated Responses

D.1. Directly Prompting GPT-3.5
Below is an example for how we can directly prompt
gpt-3.5-turbo using a formal grammar. Inter-
estingly, GPT tends to understand the grammar as
well as our slight modifications.

Example Prompt: (temp: 1, top p: 0.9, freq
penalty: 0.25)

I am going to describe a formal
grammar and then ask you to gener-
ate text according to this grammar.
To promote more diverse derivations
from the grammar, we will modify the
usual definition so that terminals
can be stochastic. To achieve this
behavior, a similarity symbol "∼"
will mean you should self-prompt,
so you are supposed to generate the
terminal value on your own according
to the provided prompt. For more
traditional, deterministic terminal
assignments in the grammar, we will
use the equality "=" symbol. These
terminals should be copied exactly.

https://aclanthology.org/L16-1432


3550

Figure 6: SDRT graph for the sample interaction between our TaskBot and a user detailed in Table 6. The
four colors correspond to the four stages of our TaskBot, as depicted in Figure 3.

Figure 7: Examples of conversations between a user and our bot that exemplify each of the grounding
strategies mentioned in Section 4.1.1: clarification questions, question tracking, and help messages (note:
these were not taken from real user conversations).

The set of stochastic terminals
is below. Remember, you should gen-
erate these according to the self-
prompt:

• fun_message ∼ generate something
exciting to hype a user up before
they start working on a DIY task.
For example, "Are you ready to
get started" or "These options
seem fun!" or "This looks like it
will be a blast!"

• search_results ∼ generate a mes-

sage to display WikiHow article
options that were found on Wik-
iHow. Make sure to attribute
WikiHow and use the place-
holder "___input_search___" and
"__list_options__" to indicate
what was searched and what was
found, respectively. For exam-
ple, "Here’s what I found on the
WikiHow for ___input_search___:
__list_options__." Copy both
placeholders verbatim.

The set of deterministic terminals



3551

1* Bot Welcome! I can help with a task
you choose. You can ask me
for things like recipes for cookies,
how to garden, or how to make
origami.

2 User I want to bake a cake
3* Bot Are you excited to try some new

recipes? Whole Foods has got
you covered! For your search
on a cake, I found some great
options: The top results are Car-
rot Cake Coffee Cake, Louisa’s
Cake, and Hummingbird Cake. .
Now, it’s up to you to select an
option, summarize it, or search
for something else.

4 User the first option
5* Bot Displays summary view of recipe
5.1 Bot Great! Before we get started,

please be careful when using any
tools or equipment. Remember,
safety first!

5.2 Bot OK, here are the ingredients for
Carrot Cake Coffee Cake. The
first ingredient is: 2 large carrots.
Say ’next’ when you’re ready for
another. Or say ’start cooking’
when you’re ready for the recipe
steps.

6 User next
7 Bot ¾ cup granulated sugar
8 User start cooking
9* Bot Preheat the oven to 350 degrees.

Peel and grate the carrots (I use
my food processor). You should
have about 1 1/2 cups.

10 User the next step
11* Bot Whisk sugar, melted butter, and

eggs. Stir in carrots. Add flour,
baking soda, and cinnamon. Mix
until just combined. The batter
will be very thick.

12 User next
13* Bot Mix ingredients for the streusel

until you get a texture that looks
like pebbles (sometimes I use my
hands to mix it all together).

14 User complete
15* Bot Awesome! Task complete! If you

want to start another task, just
ask me.

Table 6: Sample interaction between our bot and
a user, where the user selects a recipe and the
bot guides the user through it step-by-step (note:
this is not a real user conversation). The discourse
graph of this interaction can be found in Figure 6.
A * indicates that a change to the bot’s multimodal
interface occurs as part of that turn.

is below. Recall, these should be
copied exactly as written here:

• instructions = "You can select
an option summarize an option or
search something else."

The set of variables are:

• FUN_SEARCH

• INSTRUCT

The start symbol is:

• START

The set of production rules are:

• START -> FUN_SEARCH __instruc-
tions__

• FUN_SEARCH -> fun_message
search_results

• FUN_SEARCH -> search_results
fun_message

An example derivation is given be-
low:

Mmm, these recipes look delicious!
Here’s what I found on the Whole
Foods marketplace for __search__:
__list_options__. You can select an
option summarize an option or search
for something else.

Generate 10 diverse and fun ex-
amples according to this grammar.
Respond differently to the self-
prompts each time. Use all the
rules with equal likelihood.

Example Output:

• Are you ready for some DIY
fun? Here’s what I found on
WikiHow for __input_search__:
__list_options__. You can select
an option, summarize an option,
or search for something else.

• Oh boy, this is going to be
exciting! I found some awe-
some ideas on WikiHow for __in-
put_search__: __list_options__.
You can select an option, sum-
marize an option, or search for
something else.

• These options seem like a blast!
Check out what I found on Wik-
iHow for __input_search__:
__list_options__. You can select
an option, summarize an option,
or search for something else.



3552

• Get ready to unleash your cre-
ativity! Check out these ideas
I found on WikiHow for __in-
put_search__: __list_options__.
You can select an option, sum-
marize an option, or search for
something else.

• Let’s see what we’ve got! Here
are some options I found on
WikiHow for __input_search__:
__list_options__. You can select
an option, summarize an option,
or search for something else.


	Introduction
	Related Work
	Problem Setup
	Incorporating Discourse into Multimodal Task-Oriented Dialogue
	Context-Aware Intent Recognition
	Choosing Repair Strategies

	Context-Aware LLM-based Natural Language Generation
	Using GPT-3.5 to Generate Terminals Only


	Results
	User Ratings
	Regression Analysis
	Manual Evaluation

	Discussion
	Conclusion
	Acknowledgements
	Bibliographical References
	Language Resource References
	The STAC Corpus
	A Discourse Analysis of Our System's Task-Oriented Dialogues
	Grounding Strategy Examples
	LLM-generated Responses
	Directly Prompting GPT-3.5


