
LREC-COLING 2024, pages 3587–3602
20-25 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

3587

Common Ground Tracking in Multimodal Dialogue

Ibrahim Khebour1, Kenneth Lai2, Mariah Bradford1, Yifan Zhu2, Richard Brutti2,
Christopher Tam2, Jingxuan Tu2, Benjamin Ibarra1, Nathaniel Blanchard1, Nikhil Krishnaswamy1, and

James Pustejovsky2
1Colorado State University, Fort Collins, CO, USA

2Brandeis University, Waltham, MA, USA
{ibrahim.khebour, nkrishna}@colostate.edu,jamesp@brandeis.edu

Abstract
Within Dialogue Modeling research in AI and NLP, considerable attention has been spent on “dialogue state
tracking” (DST), which is the ability to update the representations of the speaker’s needs at each turn in the dialogue
by taking into account the past dialogue moves and history. Less studied but just as important to dialogue modeling,
however, is “common ground tracking” (CGT), which identifies the shared belief space held by all of the participants
in a task-oriented dialogue: the task-relevant propositions all participants accept as true. In this paper we present a
method for automatically identifying the current set of shared beliefs and “questions under discussion” (QUDs) of a
group with a shared goal. We annotate a dataset of multimodal interactions in a shared physical space with speech
transcriptions, prosodic features, gestures, actions, and facets of collaboration, and operationalize these features
for use in a deep neural model to predict moves toward construction of common ground. Model outputs cascade
into a set of formal closure rules derived from situated evidence and belief axioms and update operations. We
empirically assess the contribution of each feature type toward successful construction of common ground relative
to ground truth, establishing a benchmark in this novel, challenging task.
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1. Introduction
In the context of increasingly sophisticated interac-
tions involving natural language dialogues with an
AI, there is considerable attention being spent on
“Dialogue State Tracking” (DST), which is the abil-
ity to update the representations of the speaker’s
(user’s) needs at each turn in the dialogue, by tak-
ing into account the past dialogue moves and his-
tory. In this paper, we address the related but less-
studied problem of Common Grounding Tracking
(CGT), which identifies the shared belief space
held by all of the participants in a task-oriented
dialogue. We describe the procedure for training
CGT models to both identify the current set of be-
liefs, as well as determine the level of evidence for
each, to condition where the dialogue will go (the
“questions under discussion”, or QUDs). The goal
is to provide a more informative snapshot of the
dialogue situation, after each action in the task, to
develop a policy incorporating shared beliefs in ad-
dition to past dialogue history.

A major challenge facing the development of
computational models for multimodal interactions
involves tracking the intentions, goals, and atti-
tudes of the participants (Cassell et al., 2000; Fos-
ter, 2007; Kopp and Wachsmuth, 2010; Marshall
and Hornecker, 2013; Schaffer and Reithinger,
2019; Wahlster, 2006). For task-oriented dia-
logues, just as important is the problem of identify-
ing and tracking the common ground between par-
ticipants (Clark and Brennan, 1991; Traum, 1994;
Asher, 1998; Dillenbourg and Traum, 2006).

In this work, we specifically: (a) identify both
communicative expressions (speech, gesture) and
jointly perceived actions in a multi-party dialogue,
in order to convert them into propositional con-
tent; and (b) add them to a dynamic data struc-
ture we call the Common Ground Structure (CGS).
This consists of three parts: FBank, a set of facts
that are assumed to be known by the group; an
EBank, a set of evidences available to the group;
and QBank, the “questions under discussion”, a
set of topics remaining to be discussed in order to
solve the task.

In total, this work encompasses three novel con-
tributions:

• A challenging new task: multimodal common
ground tracking, with a formal model of com-
mon ground in a shared, situated task;

• A novel incorporation of the formal model into
an automated pipeline that tracks the evolu-
tion of group common ground over time;

• An augmentation of the Weights Task Dataset
(Khebour et al., 2023) with gesture, action,
and common ground annotations, to enable
the operationalization of our formal model.

Our code may be accessed at
https://github.com/csu-signal/Common-Ground-
detection

2. Related Work
The present work draws on several diverse areas
of research, from modeling common ground in HCI
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Figure 1: Sample still from the Weights Task
Dataset showing communication with multiple
modalities. The accompanying utterance at this
time is “Put the twenty on there; take off a ten”.

and HHI, and Dialogue State Tracking, to the role
of gesture in multimodal interactions.

When engaged in dialogue, our shared under-
standing of both utterance meaning (content) and
the speaker’s meaning in a specific context (in-
tent), involves the ability to link these two in the
act of situationally grounding meaning to the local
context, what is typically referred to as “establish-
ing the common ground” between speakers (Grice,
1975; Clark and Brennan, 1991; Stalnaker, 2002;
Asher, 1998; Traum and Larsson, 2003). The con-
cept of common ground refers to the set of shared
beliefs among participants in a Human-Human in-
teraction (HHI) (Markowska et al.; Traum, 1994;
Hadley et al., 2022), as well as HCI (Krishnaswamy
and Pustejovsky, 2019; Ohmer et al., 2022) and
HRI interactions (Kruijff et al., 2010; Fischer, 2011;
Scheutz et al., 2011). Del Tredici et al. (2022)
have recently employed the notion of common
ground operationally to identify and select relevant
information for conversational QA system design.
Stewart et al. (2021) and Bradford et al. (2023)
both study human-human collaboration through
the lens of an AI agent.

Dialogue state tracking (DST) aims to estimate
the current dialogue state or belief state of the
users during the conversation (Budzianowski et al.,
2018; Liao et al., 2021; Jacqmin et al., 2022). Cur-
rent DST models can be categorized into three
types: fixed ontology (Henderson et al., 2014;
Mrkšić et al., 2017; Chen et al., 2020), open vo-
cabulary (Gao et al., 2019; Hosseini-Asl et al.,
2022; Wu et al., 2019) and hybrid methods (Goel
et al., 2019; Zhang et al., 2020a; Heck et al., 2020).
Recently, pretrained language models have been
widely used to model slot relations, while Graph at-
tention networks (GATs) have been used to model
the hierarchical structure of DST, enabling the in-
corporation of semantic compositionality, cross-
domain knowledge sharing and coreference (Lin
et al., 2021; Li et al., 2021; Cheng et al., 2020).

Understanding the role of nonverbal behavior
in multimodal communication has long been a
research interest in HCI, but has recently taken
on new interest within CL and the broader AI
community. Gestures offer an array of unique
dimensions in communication, ranging from de-
noting situational references to indicating specific
spatial locations or even conveying manner and
orientation (Rohrer et al., 2020; Efthimiou and
Kouroupetroglou, 2011; Kong et al., 2015; Kendon,
1997, 2004; Mcneill, 2005). Gesture AMR (GAMR)
(Brutti et al., 2022) considers gestures that convey
the same propositional content and intentionality
as speech acts. Gesture may have meaning on its
own, or it may enhance the meaning provided by
the verbal modality (Goldin-Meadow, 2003; Krish-
naswamy and Pustejovsky, 2020). Also critical to
multimodal dialogue is human action, which in ad-
dition to communicating deictic and bridging infor-
mation can also make lasting changes to the world,
affecting the common ground (Tam et al., 2023).
Much work has been done to facilitate action iden-
tification from video (Sigurdsson et al., 2016) (Gu
et al., 2018) (Li et al., 2020) as well as to annotate
specific semantic roles (Sadhu et al., 2021).

Di Maro et al. (2021) implement dynamic belief
sets as graphs, which we do not do explicitly. How-
ever, such an approach is theoretically and compu-
tationally compatible with ours, as the result (post-
condition) of a public announcement or observed
action can act as the preconditions for promoting
QUDs to evidence, or evidenced propositions to
strong beliefs, leading to a natural interpretation of
common ground tracking as a graph.

3. Dataset
The Weights Task (Khebour et al., 2023) is a col-
laborative problem-solving task in which groups
of three work together to deduce the weights of
differently-colored blocks by making comparisons
of block weights using a balance scale. In this
activity, the group has a balance scale and five
blocks of various colors, sizes, and weights. They
are told the weight of one block and must identify
the weights of the remaining blocks and, eventu-
ally, the algebraic relation between them, which
is an instance of the Fibonacci Sequence (Sigler,
2002; Bonacci, 1202). Due to the co-situated na-
ture of the task and its inclusion of physical ob-
jects and reasoning about their properties, this
task involves communication in multiple modali-
ties, such as language, gesture, and action (see
Fig. 1), meaning that knowledge is shared using
multiple communicative channels. The Weights
Task Dataset (WTD) comes with automatic and hu-
man transcriptions of the speech, as well as ges-
ture annotated using Gesture-AMR (GAMR) (Brutti
et al., 2022), and collaborative problem solving
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(CPS) indicators according to the framework of
Sun et al. (2020). All groups successfully deduce
the correct block weights, giving a consistent end
state against which to assess our models.

3.1. Example Dialogue

Figure 2: Example dialogue. Participant 3 (right)
says “looks like they’re fairly equal” after placing
the red and blue blocks on different sides of the
scale. We refer back to this example elsewhere in
the paper.

In the WTD, participants are canonically indexed
from 1–3, left to right. In Fig. 2, Participant 3 makes
a statement that the red and blue blocks are “fairly
equal”, which is interepreted as an assertion of be-
lief that red = blue. Participant 1 give a quali-
fied assent to this through the utterance “yeah, I
suppose,” meaning that at this point, red = blue
and other necessarily entailed propositions can be
considered part of the common ground (for exam-
ple, if we had established that red < yellow, then
blue < yellow also becomes part of the common
ground).

4. Common Ground in Dialogue
Here we assume the context of a multi-participant,
task-oriented conversation, involving communica-
tion by multiple content-generating modalities (lan-
guage, gesture) and mutually interpretable non-
verbal behaviors (e.g., actions) (Kruijff et al., 2010;
Pustejovsky and Krishnaswamy, 2021). To this
end, we need a data structure representing the
common ground in such a context, that can be dy-
namically updated throughout the dialogue. We
adopt a version of a Dialogue Game Board (DGB),
as developed in Ginzburg (2012).

Because of the evolving and dynamic nature
of co-interactive dialogue and situated actions,
following van Benthem et al. (2014) and Pacuit
(2017), we adopt an evidence-based model of be-
lief, where our commitments to propositions de-
scribing situations or facts are not binary, but are
graded, where they can weaken or strengthen de-

pending on available evidence for them as the dia-
logue progresses.

First, however, we define the minimal structure
of a task-oriented interaction as a sequence, D,
of dialogue steps, where each move in the dia-
logue takes it into another situation or state. Let
P = {p1, p2, p3}, be the participants in our dia-
logue. From any situation sk, we define a D move,
mi, as mi = (pj , Cj , sk+1): participant pj performs
a communicative act Cj , bringing the multimodal
dialogue into situation sk+1. TheD can be defined
as the sequence of these moves: D = m1, . . . ,mn.

Here our interest is in tracking the situation con-
tent resulting from each move: the set of proposi-
tions that captures the current state of the world,
the current progress towards a goal, or the status
of a task. In addition, it captures the current ques-
tions under discussion and beliefs in the dialogue.

Given these considerations, we identify three
components for tracking common ground in dia-
logue: a minimal static model of degrees of be-
lief; a data structure distinguishing the elements of
the agents’ common ground that are being tracked;
and a dynamic procedure which updates this struc-
ture, when new information and evidence is avail-
able to the agents. We consider each of these in
turn below.

4.1. Evidence-based Belief
Pacuit (2017) provides a model for evidence-
based belief, where agents obtain evidence in
favor of a proposition, φ, and can , to eventu-
ally believe φ. We adopt a simplified model of
the evidence-based Dynamic Epistemic Logic (EB-
DEL) as developed in van Benthem et al. (2014)
and Pacuit (2017). We define a model as a tuple,
M = (W,E, V ), where

(1) a. W is a non-empty set of worlds;
b. E ⊆W × ℘(W ) is an evidence relation;
c. V : At→ ℘(W ), is a valuation function.

Let E(w) denote the set {X | wEX}, the worlds
accessible to w through the evidencing relation, E.
The evidence-based epistemic language, L, will
be the set of formulas generated by the grammar
below:

(2) p | ¬φ | φ ∧ ψ | [E]φ | [B]φ | [A]φ

We distinguish the situation where an agent has
“evidence in favor of” a proposition φ, as [E]φ.
Because an agent can have evidence for propo-
sitions that convey contradictory information, she
can consider both [E]φ and [E]¬φ. This corre-
sponds to an agent having multiple neighborhoods,
X, that are each evidenced in their unique way by
w. However, consider the set of non-contradictory
worlds as a unique subset of X, one which has
what van Benthem and Pacuit (2011) refer to as
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the finite intersection property (fip). This prop-
erty allows us to identify a neighborhood of acces-
sible worlds with non-contradictory propositional
content. When this occurs, we say an agent has
belief in a proposition, [B]φ. Finally, the universal
modality is considered “knowledge” of a proposi-
tion, [A]φ.

4.2. Common Ground Structure
Capturing situational state information in a task-
oriented dialogue is critical for reflecting cur-
rent common ground as well as predicting fu-
ture dialogue moves (Traum and Larsson, 2003;
Schlangen and Skantze, 2011; Zhang et al.,
2020b; Jacqmin et al., 2022). For our present pur-
pose, we adopt the notion of a Dialogue Game
Board (Ginzburg, 1996, 2012), modified to re-
flect the varying degrees of evidence associated
with propositions under discussion. A Common
Ground Structure, cgs, is a triple, (QB,EB,FB),
consisting of:

(3) a. Questions Under Discussion (QBANK): set
of topics or unknowns that need to be an-
swered to solve the task;
b. Evidence (EBANK): set of propositions for
which there is some evidence they are true;
c. Facts (FBANK): set of propositions believed
as true by all participants.

The task begins with a set of unknowns referred
to as the “Questions under Discussion” (QUDs).
For this implementation, we create a finite model,
including a finite model of questions. For all ob-
jects in the domain relating to the task, questions
are generated for each relation implicated in the
task for that object. For example, in the Weights
Task, the goal is to identify the weights of five dis-
tinct blocks, and then the algebraic relation be-
tween them, i.e., the Fibonacci sequence. The
weight of a block ranges between 10 and 50 grams,
in 10 gram intervals. Hence, for each block in B,
where B = {red, blue, yellow, green, purple}, we
have five possible values, expressed as yes/no
questions. Hence, initialization of the QBank re-
sults in the following set:

(4) QBank =
{Eq(r, 10)?, . . . , Eq(r, 50)?, . . . , Eq(p, 10)?,
. . . Eq(p, 50)?}

At the outset of our dialogue, we set both EBank
and FBank to nil, since no task-relevant propo-
sitions have been established as commonly evi-
denced or believed. In the next section, we ad-
dress the task of determining how information is
updated in the dialogue, thereby changing the
common ground.

4.3. Updating the Common Ground
Given the epistemic logic presented above, we
introduce the mechanisms that update the infor-
mation state within a dialogue. Following Plaza
(1989) and subsequent developments of Public
Announcement Logic (Baltag et al., 2016), we
introduce a new operator to the model, the an-
nouncement operator, !. Public announcements
are statements that are made to all agents, and
after the announcement, all agents know that the
statement has been announced and that it is true.

If [!φ] represents the act of announcing φ, then
[!φ]ψ means “after φ is announced, then ψ is be-
lieved to be the case.”

In order to distinguish evidence for φ from belief
in φ, we relativize the impact of a statement to the
context within which it is uttered. Let us interpret
[!φ]ψ as follows.

(5) a. Update with Evidence:
[!φ][E]ψ: Given the announcement of φ,
there is evidence for ψ;

b. Update with Belief:
[E]φ→ [!φ][B]ψ: Belief in φ is conditional-
ized on φ’s announcement in the prior con-
text of evidence for φ.

Semantically, an update represents the state of
affairs after an announcement. This entails trans-
forming the current model by removing all states
where the announced formula is false. With ev-
idence distinguished from belief/knowledge, we
also update the evidence function, where [!φ]:

(6) a. Updates the worlds: W ′ =W ∩ φ
b. Updates the Evidence function: E′(w) =
E(w) ∩ φ
c. (M,w) |= φ implies (M |φ, w) |= [E]ψ

This update actually changes the underlying ev-
idence sets themselves. The announcement is
taken as a piece of direct evidence. Hence, to
capture that the announcement of φ becomes ev-
idence and not just belief, the evidence sets for
each agent get restricted (or updated) to reflect the
worlds where φ is true. Subsequently, the belief
function will then naturally adjust based on the new
evidence sets.

Operationally, after (5a) is run, the model is rela-
tivized to evidencing neighborhoods, where φ is
true. This corresponds to moving a proposition
from QBank to the EBank. Then, if the same
proposition is “announced” again, as with an AC-
CEPT move, then (5b) promotes that proposition
from the EBank to the FBank.

In Section 6.4, we illustrate how these updates
are applied when running over the output of the
move classifier, in order to determine the content
of the current common ground.
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5. Annotation
We augmented the existing WTD annotations with
dual annotation of GAMR, and participant actions
using VoxML (Pustejovsky and Krishnaswamy,
2016). Finally, we also tracked the group’s collec-
tive surfacing of evidence and acceptance of task-
relevant facts by supplying another layer of “com-
mon ground annotations” (CGA):

Annotation in the dialogue involves identifying
categories relating to the cognitive state of partic-
ipants to actions and knowledge, concerning the
task. This includes the following categories: (a)
OBSERVATION: participant Pi has perceived an
action, a; (b) INFERENCE: deduction from φ; (c)
STATEMENT : announcement of evidence φ; (d)
QUESTION: introducing role interrogative relating
to φ; (e) ANSWER; supplying filler to question
about φ; (f) ACCEPT : agree with evidence φ; (g)
DOUBT : disagree with evidence for φ.

In the example from Sec. 3.1, Participant 3’s ut-
terance would be considered a STATEMENT of
the proposition red = blue while Participant 1’s ut-
terance would be an ACCEPT of that proposition.
Participant 3 subsequently says “that’s 20, these
two [referring to the red and blue blocks] are 10”
(STATEMENT of proposition red = 10∧blue = 10),
to which Participant 1 says “wait, let’s see” signal-
ing a DOUBT in red = 10∧blue = 10. Therefore at
this stage of the dialogue, red = blue can be con-
sidered an agreed-upon fact (element of FBank),
but none of the participants have accepted that
red = 10∧blue = 10, so that proposition is still only
an element of EBank. This example illustrates the
subtleties captured through the annotation.

GAMR, action, and common ground annota-
tions were all dually-annotated. GAMR annota-
tions achieved a SMATCH-F1 score of 0.75. Ac-
tion annotation achieved an F1 score of 0.67 and
Cohen’s κ of 0.59. CGA achieved F1 of 0.54 and
Cohen’s κ of 0.50. Each was adjudicated by an
expert to produce the gold standard.

6. Experiments: Modeling Common
Ground Tracking

Our experimental pipeline consists of 3 primary
components: a move classifier, which predicts
which cognitive state is being expressed in an ut-
terance (Sec. 5); a propositional extractor, which
may either consult a dictionary of expressed propo-
sitions that is collected from the annotated data
with all modalities considered, or may automat-
ically extract the propositional content of an ut-
terance through vector-similarity methods; and a
set of closure rules that unify the cognitive state
and propositional content and update the status of
QBank, EBank, and FBank.

Our primary metric for the entire pipeline

is Sørensen-Dice coefficient (DSC) (Sørensen,
1948; Dice, 1945). DSC indicates how much the
set of propositions extracted by the model matches
the set of propositions in the ground truth. It also
normalizes for the size of the samples being com-
pared, as the cardinality of the different banks may
fluctuate widely as the task proceeds. DSC can
also be evaluated as a group proceeds through the
task, or averaged over a single group. Since the
groups have different numbers of utterances, and
hence moves, when aggregating across groups to
calculate DSC over time, we pad the length of the
shorter groups out to the maximum length by copy-
ing the final state of the banks, assuming a “steady
state” in the common ground once the task is fin-
ished.

6.1. Preprocessing
We first mapped the annotated data to the “or-
acle” (manually-segmented) utterances in the
WTD (Terpstra et al., 2023). If more than one anno-
tation for a given modality was present in the same
utterance, we used the one that had the biggest
overlap with the oracle utterance.

We encoded the manually transcribed utter-
ances in the WTD into embedding vectors using
BERT (base-uncased) (Devlin et al., 2019), and
extracted the 768D [CLS] token embedding from
the final encoder layer. Following Bradford et al.
(2023), we processed the audio into 88D prosodic
features using openSMILE (Eyben et al., 2010).
The CPS indicators for an utterance were trans-
formed into their corresponding high-level facets
according to the Sun et al. (2020) framework, and
encoded as 3D one-hot vectors.

GAMR representations were featurized as k-
hot encodings of size 81. The first 4 compo-
nents describe the gesture type (icon, gesture-unit,
deixis and emblem) along with a fifth component
that represents and in cases where 2 types are
annotated. Following this is one hot encoding of
the GAMR ARG0 (gesturer), then a k-hot encoding
vector of components of the GAMR ARG1 (gesture
content, such as object of deixis). Given the vo-
cabulary of items in the data, this comprises 68
dimensions. Finally, GAMR ARG2 (gesture recip-
ient) was represented by a one-hot encoding of
size 5 (group/researcher/1 of 3 participants). As
more than one participant can have a GAMR anno-
tated for them over the same utterance, we allow
for 1 GAMR feature vector per participant, result-
ing in a total GAMR feature size of 243.

Action annotations comprise scale actions,
which were vectorized as a one-hot representation
of the scale status (left/balanced/right), and partic-
ipant actions. Participant actions comprise a 2D
representation of “lift” vs. “put”, a one hot encoding
for the block being acted upon, a 2D one hot en-
coding of “in” and/or “on”, and a 2nd one-hot object
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representation of block, scale, or table (the desti-
nation of the action, where applicable). A partici-
pant’s action vector is of size 25 (× 3 for 3 partici-
pants), resulting in a total action feature size of 78,
including the scale actions.

To facilitate propositional extraction, we decon-
textualized each utterance from the dialogue con-
text, inspired by the dense paraphrasing method
(Tu et al., 2022, 2023) that rewrites a textual ex-
pression to reduce ambiguity and make explict the
underlying semantics. We filtered the utterances
containing at least one pronoun from a predefined
set, and had annotators identify the blocks de-
noted by the pronouns, if any, based on the aligned
actions and video frames. Utterances were dually
annotated (Cohen’s κ = 0.88) and adjudicated by
an expert. Utterances were paraphrased by re-
placing the pronouns with the adjudicated annota-
tion of the block colors (e.g., they [red block and
blue block] are probably equal).

The annotated dataset presents a number of
challenges related to sparsity, imbalance, and
cross-group diversity. The individual feature chan-
nels either capture a single communicative modal-
ity or cross-cut two or more (viz. prosodic and CPS
features). For input to the model, we concatenate
the features of each utterance to the w previous ut-
terances. We remove utterances with no CGA, un-
less they fall within thew-utterance context window
of an utterance with CGA. Of the 1,822 utterances
in the dataset, only 271 have any common ground
annotation, and these annotations are heavily bi-
ased toward the STATEMENT class (195, vs. 61
ACCEPTs and 15 DOUBTs).

6.2. Move Classifier
The move classifier is a multimodal LSTM-based
model, intended to capture contextual information
that conditions the sequence of cognitive states in
a dialogue. Each utterance, including a prior con-
text of w = 3 previous utterances, was processed
through two linear layers (256 and 512 units) fol-
lowed by ReLU activation and an LSTM block of
512 units. The final hidden states of the LSTM
block for each modality of interest were concate-
nated and passed through a 512-unit linear layer,
tanh, another 512-unit linear layer, and SiLU be-
fore the classification layer. Fig. 3 shows this ar-
chitecture.

We optimized for the detection of STATEMENT,
ACCEPT, and DOUBT. To alleviate imbalance
during training, we augmented the data with
SMOTE (Chawla et al., 2002). We trained using
Kaiming initilization with a uniform distribution (He
et al., 2015). All layers except the classification
layer are trained using a triplet loss with a margin of
1 (Balntas et al., 2016) for 200 epochs and a learn-
ing rate of 10−4. Subsequently the entire model
was trained using cross-entropy loss and a learn-

Figure 3: Move classifier architecture.

ing rate of 10−3 for 100 epochs, and for 200 further
epochs with a learning rate of 10−4. Hyperparame-
ters were fixed using a search with one group held
out as validation and one group as test, after which
each group was held out in turn while an instance
of the model is trained on the other 9 groups, for
evaluation on the held-out test group. We ended
up with ten trained instances of the archicture, one
for each group.

6.3. Propositional Extractor
In additional to the cognitive state expressed by
the utterance, we also needed to retrieve the
task-relevant propositional content expressed rel-
ative to the QUDs. We used two methods for
this: 1) CGA (Common Ground Annotation): We
automatically mapped the statement IDs to the
propositions expressed as captured in the com-
mon ground annotation. Upon move prediction,
we consulted this mapping to retrieve the proposi-
tional content to be associated with the move in the
common ground update. Because annotators had
access to the video channel and all other modali-
ties when annotating the propositions expressed,
this method is a multimodally-informed method
of propositional extraction. 2) DP (Dense Para-
phrase): We encoded the dense paraphrase of the
input utterance through BERT (base-uncased).
Stop words were filtered out before encoding. The
stop words came from a standard list, augmented
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with words that occured in the transcriptions in 5
or fewer bigrams and are not number words, color
words, or words describing equality or inequality.
BERT vectors were computed by summing over
the last 4 encoder layers and taking the average
of the [CLS] token vector and all individual to-
ken vectors in the utterance. Upon move predic-
tion, we chose the proposition whose similarly-en-
coded BERT vector had the highest cosine simi-
larity to the utterance embedding. Only text and
a language model were used in this method, mak-
ing it unimodal. However, it is important to note
that the annotators of the dense paraphrased ut-
terance still had access to the video channel when
determining which objects were the denotata of
demonstrative pronouns, meaning that is some
distant signal from the multimodal data reflected
here.

These two methods provide an additional axis of
comparison when computing the common ground
and allow us to measure the performance gain pro-
vided a targeted annotation that directly takes into
account all modalities vs. a method using only text
and a language model.

6.4. Closure Rules
In order to determine the contents of the CG banks
after each utterance, we developed a set of clo-
sure rules consistent with the epistemic model pre-
sented in Section 4. These rules describe how
utterances (specifically, STATEMENTs and AC-
CEPTs) affect what is known about the weights
of the blocks, and whether certain possibilities are
more or less likely than others. When the task be-
gins, the set of possibilities for each block is ini-
tialized to {10, 20, 30, 40, 50}, with no evidence for
or against any of those possibilities (i.e., the evi-
dence_for and evidence_against sets are empty).

Given a STATEMENT or ACCEPT, we first
parsed the propositional content of the utterance
into one or more atomic propositions, p ∈ At,
where an atomic proposition consists of a block
name, a relation (=, <, >, or ̸=), and a right-hand
side. The right-hand side can either be a weight
∈ {10, 20, 30, 40, 50}, a block name, or a set of
block names connected by +. Atomic propositions
generally update knowledge about the block on the
left-hand side of the relation; the exception is if
there is a single block on the right-hand side, and
less is known about the right-hand-side block (as
measured by the relative sizes of the possibility
and evidence sets), in which case that block’s pos-
sibilities are updated instead.

Then for each atomic proposition, we updated
the knowledge associated with the relevant block,
according to the move type:

STATEMENTs add evidence for or against cer-
tain weights. Statements of propositions “block =
weight” directly add that weight to the evidence_for

set; e.g., [!Eq(b, 10)][E]Eq(b, 10). For other state-
ments, we compute the set of weights inconsis-
tent with that statement, and add them to the ev-
idence_against set.

ACCEPTs remove weights (specifically, those
inconsistent with the proposition) from the set of
possibilities (and both evidence sets).

Then, from the contents of the possibility and ev-
idence sets for each block, we generated the con-
tents of the CG banks:

If there was only one possibility for the weight
of a block, “block = weight” was added to FBank;
e.g., [E]Eq(b, 10) → [!Eq(b, 10)][B]Eq(b, 10).

Otherwise, for those weights in the block’s ev-
idence_for set, we added “block = weight” to
EBank. Similarly, for those weights in the block’s
evidence_against set, we added “block ̸= weight”
to EBank. Inequalities for which evidence existed
also were added to EBank.

For the remaining weights (not in either evidence
set) in the set of possibilities for the block, we
added “block = weight?” to QBank.

Considering the example in Sec. 3.1, since the
group already knows that red = 10 at that point,
once red = blue is accepted as a fact, the clo-
sure rules also elevate blue = 10 to the same epis-
temic status as red = 10. All other possibilities
for blue block’s weight are also removed from both
evidence sets.

The ground truth contents of the CG banks were
computed by running the closure rules directly over
the annotated data.

7. Results
Averaged across all groups, the move classifica-
tion model achieves a weighted F1 of 0.61. Most
misclassifications are confusions of STATEMENTs
and ACCEPTs, which affect the level of evidence
assigned to extracted propositions but not the
propositions themselves.

Table 1 shows average DSC per group, for each
bank, with propositional extraction using the Com-
mon Ground Annotation (CGA) method (Sec. 6.3).
We also assess the union of the fact bank and ev-
idence bank, to assess how different modalities
contribute to the extraction of propositional content
and elevation to either status. We compare the per-
formance using all modalities to using language
features only, in the form of BERT vectors.

We find that in most cases, our common ground
tracker has trouble not with retrieving the right
propositions with the multimodal CGA method, but
with assigning the right level of evidence. This
is seen in the values for the union of FBank and
EBank, which remain high across all groups, even
when the Sørensen-Dice coefficients of the indi-
vidual FBank or EBank are comparatively lower.
This also tracks the misclassifications made by
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Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 Group 8 Group 9 Group 10

All modalities

QBank 0.777 0.663 0.811 0.841 0.575 0.868 0.845 0.834 0.987 0.551
EBank 0.250 0.574 0.709 0.926 0.391 0.734 0.793 0.063 0.985 0.250
FBank 0.425 0.480 0.418 0.348 0.318 0.315 0.637 0.574 0.000 0.794
F ∪ E 1.000 0.864 0.939 0.866 0.875 0.880 1.000 0.600 0.996 0.903

Language only

QBank 0.767 0.911 0.829 0.817 0.514 0.868 0.972 0.834 0.987 0.392
EBank 0.344 0.713 0.712 0.812 0.335 0.691 0.904 0.049 0.985 0.262
FBank 0.000 0.528 0.501 0.045 0.165 0.372 0.825 0.526 0.000 0.000
F ∪ E 1.000 0.922 0.925 0.832 0.959 0.799 0.967 0.585 0.996 0.827

Table 1: Average DSC per group over all CG banks, comparing multimodal features and language only
features. Propositions are extracted using the CGA method.

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 Group 8 Group 9 Group 10

All 1.000 0.864 0.939 0.866 0.875 0.880 1.000 0.600 0.996 0.903
BERT 1.000 0.922 0.925 0.832 0.959 0.799 0.967 0.585 0.996 0.827
openSMILE 1.000 0.922 0.900 0.832 0.880 0.839 1.000 0.947 0.996 0.827
CPS 1.000 0.922 0.900 0.832 0.880 0.815 0.000 0.947 0.996 0.827
Action 1.000 0.922 0.900 0.832 0.880 0.873 0.571 0.947 0.996 0.827
GAMR 1.000 0.922 0.900 0.832 0.880 0.731 0.658 0.947 0.996 0.827

Table 2: Average DSC per group over FBank ∪ EBank, comparing multimodal features and each individ-
ual modality. Propositions are extracted using the CGA method.

Figure 4: DSC for each bank aggregated across groups, plotted vs. utterance, using all modalities
in the move classifier. [L]: propositional extraction performed using the multimodal CGA method. [R]:
propositional extraction performed using the language-only Dense Paraphrase (DP) method.

the move classifier, as an ACCEPT will elevate a
proposition to a fact, while a STATEMENT will keep
it in evidence without removing the corresponding
QUD from QBank.

Incorprating multiple modalities into the move
classifier model usually helps assign propositions
to the correct level of common ground and main-
tain greater overlap in the retrieved QUDs rela-
tive to ground truth. However, there is great va-
riety across groups. For example, Group 2 per-
forms better using only language, while in Group
9 non-linguistic features do not change the result.
These differences can be attributed to how differ-
ent groups use different modes of communication
to complete the task (see Sec. 8).

Table 2 shows average DSC per group over
FBank ∪ EBank, comparing each individual modal-
ity vs. all modalities.

We see here that often, each individual modality
performs similarly or identically, but in 4 out of 10
groups, using all multimodal features results in the
highest performance. However, in other groups,

multimodal features may make no difference, or
some other individual feature type is the strongest
predictor of performance. Compare Group 1 and
Group 9, where all modalities perform identically,
with Groups 6 and 7, where they all perform differ-
ently but multimodal features perform the highest.
This supports the previous observation: different
groups may adopt radically different modal combi-
nations to communicate equivalent information.

Fig. 4 shows the progression of DSC over time,
aggregated across all groups, using all modali-
ties in the move classifier, but comparing and con-
trasting the multimodal Common Ground Anno-
tation (CGA) and language model-based Dense
Paraphrase (DP) methods for proposition extrac-
tion. Including multimodal information improves
the retrieval of the correct propositions indepen-
dent of the level of evidence or factuality assigned
to them—as shown by the consistently high DSC
of FBank ∪ EBank in the left plot.
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8. Discussion
Some specific examples show how the language
model-based DP method struggles to extract
propositions from complex utterances. Table 3
shows how vector comparison over only linguis-
tic information tends to struggle with propositions
involving multiple objects. Certain groups, like
Group 1, tended to speak full propositions aloud,
while others, like Group 10, mixed modalities
(“ten and ten” is accompanied by gesture and ac-
tion, which are accounted for directly by Common
Ground Annotations but not Dense Paraphrases).

Group Utterance (DP) Proposition (Correct?)

1 red block’s ten so then red = 10 (3)

1 yeah ok so now we know that blue blue = 10 (3)block is also ten

5 so red block, blue block are both ten red = 20 and green = 40
in theory ten ten twenty and purple = 10 (7)

5 so the green we think is twenty ok so green = 20 (3)let’s see we can use our hands as well

10 i guess green block is like twenty and red = 50 and green = 20
red block, blue block is like ten and ten and purple = 10 (7)

Table 3: Utterances and propositions retrieved us-
ing DP method.

This reflects Table 2 where, even using the mul-
timodal CGA extraction method, Group 1 achieves
perfect overlap of FBank ∪ EBank with ground
truth using just language, while the model has to
combine modalities to reach its best performance
for Group 10. That Group 1 performance over
FBank ∪ EBank is also perfect using each individ-
ual modality alone suggests that their utterances
are strongly aligned with their non-verbal behav-
ior. Meanwhile, Group 6 stands out as a particular
case where each individual modality is contributing
something distinct.

Misclassifications of STATEMENTs as AC-
CEPTs, or vice versa, may elevate the utterances
of certain participants to fact status, or leave ele-
ments in the Questions Under Discussion when
they have already been resolved. This could also
lead to a certain participant having more apparent
influence over the dialogue. One participant’s be-
liefs may update the common ground of the group,
and leave other participants’ beliefs unconsidered.
Table 4 shows some examples from Group 10,
and demonstrates how affirmative language like
“yeah” may be indicative of ACCEPTs elsewhere
in the training data, while “okay” or restatements
of propositional content are typically indicative of
STATEMENTs even when in context they indicate
acceptance of a previously-stated proposition.

Timestamp Utterance Label Prediction

117.46-118.87 yeah they’re together. STATEMENT ACCEPT
217.89-219.78 thirty one thirty two so thirty ACCEPT STATEMENT
218.23-219.00 so okay ACCEPT STATEMENT

Table 4: Sample of utterances from Group 10 mis-
classified by move classifier.

9. Conclusion and Future Work
In this paper we have presented a challenging
novel task: multimodal common ground track-
ing, and a novel benchmark over the challenging
Weights Task Dataset. We presented a formal
model of common ground over a shared task and
augmented the WTD with additional gesture, ac-
tion, and common ground annotations. We per-
formed a set of experiments to evaluate the contri-
butions of different modalities toward modeling the
cognitive states of the group, extracting the propo-
sitions expressed, and building common ground
structures as the group proceeds through the task.
Our model will be particularly useful for AI systems
deployed in environments such as classrooms,
where they can track the collective knowledge of
a group and facilitate productive collaborations.

Certain modalities may be more prone to mis-
classifications based on the speaker. For instance,
future work could examine how prosidic features
could be used to detect power dynamics that may
bias the construction of common ground toward
certain people or assertions. Giving the common
ground model additional separate banks for each
speaker would allow an agent to facilitate knowl-
edge sharing and collaboration if it seems like a
subgroup has arrived at a belief not shared by the
whole group. In a task-based environment, the
agent could use the model of common ground to
make task-relevant inferences itself, such as the
algebraic relationship between the block weights
here, allowing it to learn from watching and in-
teracting with the group. Finally, because there
is a one-to-many mapping between propositions
and potential ways to phrase or express them
in utterances, the dense paraphrase method for
propositional extraction could benefit from a cross-
encoder approach, as used in coreference re-
search.

Limitations

Although our work addresses a novel and chal-
lenging problem, scaling the pipeline to other use
cases confronts some (surmountable) limitations.
For a given task, the relevant propositions that
may populate the common ground need to be de-
termined and enumerated. The number of propo-
sitions scales naturally to increased cardinality of
items, attributes, and relations within a similar do-
main (e.g., by computing the Cartesian product of
items, attributes, and binary relations, and subse-
quently the powerset of atomic propositions to ac-
count for conjunctions like red = 10 ∧ blue = 10).
Therefore the complexity of proposition construc-
tion is subject to the complexity of the task and
number of task items. Enumerating the closure
rules is straightforward once the propositions are
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determined. The move classifier itself should re-
quire no changes unless there is a change in input
modalities. Imbalance within the data categories
presents a further challenge that needs to be ad-
dressed. In this paper we used data augmenta-
tion approaches like SMOTE, but precise handling
would need to be determined on a task-specific ba-
sis.
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A. Group-wise Move Classifier
Performance

Table 5 shows the performance of the 10 classi-
fiers with each being trained on 9 different groups,
and evaluated on the remaining 10th.

B. Annotation Procedures and IAA

ELAN (Brugman and Russel, 2004) was the tool
used for most annotation, supplemented by collat-
ing annotations in spreadsheets. As we can see in
Fig. 5, this tool allows annotators to visualize the
data at any point in the videos, and also see all
other annotated modalities. The data is then fea-
turized and used as input for the move classifier.

Tables 6–8 show inter-annotator agreement
(IAA) metrics for the Common Ground, action, and
GAMR annotation per group. Because gestures
are individualized, GAMR annotations are also bro-
ken down by participant. Means are also provided.
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Group
1

Group
2

Group
3

Group
4

Group
5

Group
6

Group
7

Group
8

Group
9

Group
10

Accuracy 0.625 0.720 0.750 0.500 0.735 0.690 0.429 0.556 0.833 0.438
Micro F1 0.625 0.720 0.750 0.500 0.735 0.690 0.429 0.556 0.833 0.438
Macro F1 0.564 0.360 0.621 0.235 0.512 0.375 0.271 0.389 0.652 0.203
Weighted F1 0.605 0.680 0.768 0.412 0.706 0.737 0.453 0.509 0.791 0.342
Micro Precision 0.625 0.720 0.750 0.500 0.735 0.690 0.429 0.556 0.833 0.438
Macro Precision 0.583 0.369 0.611 0.200 0.525 0.382 0.288 0.355 0.912 0.167
Weighted Precision 0.604 0.654 0.796 0.350 0.687 0.837 0.526 0.473 0.863 0.281
Micro Recall 0.625 0.720 0.750 0.500 0.735 0.690 0.429 0.556 0.833 0.438
Macro Recall 0.567 0.365 0.650 0.286 0.516 0.462 0.298 0.433 0.625 0.259
Weighted Recall 0.625 0.720 0.750 0.500 0.735 0.690 0.429 0.556 0.833 0.438
AUROC 0.500 0.539 0.500 0.563 0.500 0.501 0.476 0.669 0.500 0.531

Table 5: Group-wise performance of the move classifier using hold-one-group-out evaulation method.

Figure 5: Still of annotation procedure using ELAN.

Group F1 score Cohen’s κ

1 0.520 0.359
2 0.454 0.295
3 0.492 0.356
4 0.411 0.267
5 0.471 0.503
6 0.639 0.603
7 0.678 0.572
8 0.522 0.712
9 0.575 0.564
10 0.645 0.772
mean 0.541 0.500

Table 6: IAA on Common Ground Annotations.

Group F1 score Cohen’s κ

1 0.557 0.464
2 0.651 0.666
3 0.750 0.688
4 0.719 0.654
5 0.804 0.689
6 0.737 0.798
7 0.761 0.660
8 0.583 0.466
9 0.519 0.432
10 0.629 0.458
mean 0.671 0.597

Table 7: IAA on action annotations.
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Group Participant F1 Precision Recall

1 1 0.921 0.953 0.890
1 2 0.943 0.917 0.971
1 3 0.899 0.912 0.886
1 µ 0.921 0.927 0.915
2 1 0.846 0.798 0.902
2 2 0.947 0.938 0.957
2 3 0.895 0.850 0.944
2 µ 0.896 0.862 0.934
3 1 0.686 0.720 0.656
3 2 0.809 0.796 0.824
3 3 0.793 0.775 0.811
3 µ 0.763 0.763 0.763
4 1 0.791 0.837 0.750
4 2 0.658 0.807 0.556
4 3 0.817 0.779 0.859
4 µ 0.755 0.808 0.722
5 1 0.824 0.836 0.813
5 2 0.693 0.642 0.754
5 3 0.835 0.853 0.817
5 µ 0.784 0.777 0.795
6 1 0.697 0.704 0.691
6 2 0.628 0.667 0.594
6 3 0.480 0.462 0.500
6 µ 0.602 0.611 0.595
7 1 0.865 0.874 0.857
7 2 0.736 0.724 0.748
7 3 0.667 0.662 0.671
7 µ 0.756 0.753 0.759
8 1 0.782 0.725 0.850
8 2 0.745 0.710 0.784
8 3 0.907 0.925 0.891
8 µ 0.812 0.787 0.841
9 1 0.846 0.846 0.846
9 2 0.600 0.525 0.700
9 3 0.800 0.818 0.783
9 µ 0.749 0.730 0.776
10 1 0.386 0.810 0.254
10 2 0.487 0.631 0.396
10 3 0.584 0.444 0.851
10 µ 0.749 0.730 0.776
µ 1 0.765 0.754 0.806
µ 2 0.738 0.712 0.752
µ 3 0.768 0.789 0.761
µ µ 0.752 0.752 0.773

Table 8: IAA on Gesture-AMR (GAMR) annotation.
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